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Abstract: Using a unique data set containing about 15.06 million truck transportation records in five
months, we investigate the highway freight transportation diversity of 338 Chinese cities based on
the truck transportation probability pij from one city to another. The transportation probabilities are
calculated from the radiation model based on the geographic distance and its cost-based version
based on the driving distance as the proxy of cost. For each model, we consider both the population
and the gross domestic product (GDP), and find quantitatively very similar results. We find that
the transportation probabilities have nice power-law tails with the tail exponents close to 0.5 for all
the models. The two transportation probabilities in each model fall around the diagonal pij = pji

but are often not the same. In addition, the corresponding transportation probabilities calculated
from the raw radiation model and the cost-based radiation model also fluctuate around the diagonal
pgeo

ij = pcost
ij . We calculate four sets of highway truck transportation diversity according to the four

sets of transportation probabilities that are found to be close to each other for each city pair. It is
found that the population, the gross domestic product, the in-flux, and the out-flux scale as power
laws with respect to the transportation diversity in the raw and cost-based radiation models. It
implies that a more developed city usually has higher diversity in highway truck transportation,
which reflects the fact that a more developed city usually has a more diverse economic structure.

Keywords: econophysics; highway freight transportation; radiation model; transportation network;
network diversity; power law; economic development

1. Introduction

The growing volumes of passenger and freight transport around regionally and globally
witness their important role for economic development of different countries [1–5]. Aviation,
railway, highway and shipping are four main transportation methods in modern societies.
Unlike other three ones, information about highway transportation is less publicly available.
In mainland China, the highway system has experienced a very rapid development since
the Reform and Opening-up of China, forming a rapidly expanding multiplex network
which contains national highways, provincial highways, county highways and countryside
highways [6]. China has the longest expressway network in the world, which includes
about 0.143 million kilometers expressways.

In the past decades, the gravity law is the most adopted in understanding transporta-
tion networks and predicting transportation fluxes [7–11], which reads

Wij ∼
Mα

i Mβ
j

dγ
ij

, (1)
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where Wij is the flow between locations i and j, Mi (or Mj) is usually the population or
gross domestic product (GDP) of location i (or j), dij is the distance between i and j, and α,
β and γ are the model parameters. Very relevantly, the gravity law has been investigated
and confirmed in the Korean highway network between 30 largest cities [7], the express
bus flow in Korea consisting of 74 cities and 170 bus routes with 6692 operating buses
per day [12], and the urban bus networks of Korean cities [13], and the highway freight
transportation networks of 338 Chinese cities [6].

However, the gravity model has several limitations, especially the requirement of
previous traffic data to fit the parameters [14]. To overcome those limitations, the radiation
model has been proposed [14], in which the predicted flux F̃ij from city i to city j is obtained
as follows

F̃ij = Fout
i

Mi Mj

(Mi + Sij)(Mi + Mj + Sij)
, (2)

where Sij is the total “mass” (population or GDP) in the circle of radius dij centered at i but
excluding the source and destination population, and Fout

i is total out-flux departing from
city i

Fout
i = ∑

j 6=i
Fij, (3)

where Fij is the real flux from i to j. Obviously, the data of Fout
i are much easier to collect

than Fij.
In the raw radiation model, dij is the geographic distance between i and j. The cost-

based radiation model has been soon proposed based on the intuition that an individual
will choose the site that has the lowest travel cost on the network, where the travel cost can
be measured by the path length or travel time from i to j [15]. In this work, dij is measure
by the path length or driving distance from i to j. Later, to better estimate the fluxes at
different spatial scales, a scaling parameter is introduced into the radiation model [16].
By combining memory effect and population-induced competition, a general model has
been developed to enable accurate prediction of human mobility based on population
distribution only, which also has a parameter qualifying the memory effect [17].

Although the radiation model has been adopted in the study of trip distributions [9,18–21],
applications to freight transportation are rare. In this work, using a unique data set about
the highway freight transportation by trucks between 338 cities in mainland China, we
investigate the transportation probability pij between two cities i and j and the transporta-
tion diversity of a city calculated from pij. Although most studies dealt with undirected
transportation networks [6,22,23], radiation models enable us to consider directed trans-
portation networks due to the availability of data [24]. The raw radiation model and the
cost-based radiation model are adopted because they are parameter free.

It has been reported that higher social network diversity provides greater access
to social and economic opportunities and has a strong correlation with the economic
development [25]. With the highway freight transportation data between Chinese cities
available, we aim to investigate the relationship between highway freight transportation
network diversity and economic development of cities. Such an analysis has not been
conducted due to the difficulty in obtaining the highway freight transportation data. Our
analysis shows that the population, the gross domestic product, the in-flux, and the out-flux
scale as power laws with respect to the transportation diversity in the raw and cost-based
radiation models, which implies that a more developed city usually has higher diversity
in highway truck transportation. This finding reflects the fact that a more developed city
usually has a more diverse economic structure.

The remainder of this work is organized as follows. Section 2 describes the data sets
we analyze. Section 3 studies the basic properties of transportation probability. Section 4
deals with the transportation diversity of cities and their relationship with population and
GDP. We discuss and summarize in Section 5.
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2. Data Sets

The data set we analyze was provided by a leading truck logistics company in China,
which records the highway truck freight transportation between 338 cities in mainland
China over the period from 1 January 2019 to 31 May 2019 [6]. The data cleaning was done
by the company, who used the data set in their truck scheduling and route planning. There
are about 15.06 million truck freight transportation records in total, each entry containing
the origin and destination cities and the starting date of the transportation. We can construct
the flux matrix F =

[
Fij

]
338×338, where Fij stands for the number of trucks with freights

driven from city i to city j. Unloaded trucks are not counted in. Because radiation models
do not consider intra-city transportation, we set that

Fii = 0. (4)

It is obvious that Fij is not necessary to be equal to Fji for i 6= j.
The GDP and population data for the 338 Chinese cities in 2017 were retrieved online

from the Complete Collection of World Population (http://www.chamiji.com, accessed on
18 May 2021), which are publicly available except for a few cities. We supplemented the
missing data by searching Baidu Encyclopedias (https://baike.baidu.com, accessed on 18
May 2021).

The geographic distance dgeo
ij is the shortest surface distance between two cities located

by the longitude and latitude, which is the length of the great circle arc connecting two
points on the surface of the earth. The longitude and latitude of each city can be easily
obtained online for free. The data set of the driving distances dcost

ij between pairs of cities
was provided by the same truck logistics company, which were collected by their truck
drivers. The driving distance between two cities are usually “optimized” by the truck
drivers because they always have the motivation to find a path connecting the two cities
with the least cost (time and money). Such an optimization is achieved either by their own
experience or by information from buddy truck drivers they trust. It is obvious that

dgeo
ij < dcost

ij (5)

for all pairs of cities. The difference between these two distances increases when the two
cities are farther away to each other. By definition, the geographic distance matrix is
symmetric, that is,

dgeo
ij = dgeo

ji . (6)

In contrast, the driving distance matrix is asymmetric, i.e.,

dcost
ij 6= dcost

ji , (7)

which is mainly due to the fact that, besides highways, there are often local roads that a
truck driver has to take from one city to the other.

3. Transportation Probability
3.1. Formulae

According to the radiation models (2) we adopt, the transportation probability pij
from city i to city j is

pij =
Mi Mj

(Mi + Sij)(Mi + Mj + Sij)
. (8)

When we choose population P for M, the transportation probability becomes

pij =
PiPj

(Pi + Sij)(Pi + Pj + Sij)
, (9)

http://www.chamiji.com
(https://baike.baidu.com
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where Sij is the total population in the circle of radius dij centered at i but excluding the
source and destination population. Alternatively, when we use GDP as the proxy, we have

pij =
GiGj

(Gi + Sij)(Gi + Gj + Sij)
, (10)

where Sij is the total GDP in the circle of radius dij centered at i but excluding the source
and destination population.

The transportation probabilities pij of the raw radiation model using geographic
distance and the cost-based radiation model using driving distance are calculated with
respect to population P in Equation (9) and gross domestic product G in Equation (10).

3.2. Power-Law Distribution of pij

Figure 1 illustrates the four empirical distributions of the transportation probability pij
between two cities for the two radiation models with M = P and M = G, respectively. We
observe a nice power-law tail in each case and the exponents are the same for the four cases:

f (pij) ∼ p−α−1
ij , (11)
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Figure 1. Power-law tailed distribution of the transportation probability between two cities. The solid lines are power
laws with the same exponent of −1.5. (a) Population P is used in the raw radiation model with the geographic distance.
(b) Population P is used in the cost-based radiation model with the driving distance. (c) Gross domestic product (GDP) G
is used in the raw radiation model with the geographic distance. (d) Gross domestic product G is used in the cost-based
radiation model with the driving distance.
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where the tail exponents α ≈ 0.5 and the intercepts are almost the same. The power-law
relationship holds over three orders of magnitude. The smallest transportation probabilities
deviate from the power-law distributions with higher probability density. Theoretically, we
know that two cities with longer distance usually have a smaller transportation probability.
Indeed, it we plot pij with respect to dij, we find that the points fluctuate around a power-
law scaling with an exponent of −4:

pij ∼ d−4
ij , (12)

which corresponds to the case of uniform population (or GDP) density [14]. The standard
deviation of the data points from this reference power law quantifies the strength of
heterogeneity of the spatial distribution of population and GDP in mainland China.

3.3. Asymmetric Relationship between pij and pji

We illustrate in Figure 2 the asymmetric relationship between pij and pji for the two
radiation models using population. The results for GDP is very similar for each model.
It is striking that the predicted values of transportation probability span nine orders of
magnitude. We also find that the scatter points lies close to the diagonal pij = pji. The points
from the cost-based model in Figure 2b concentrate more to the diagonal than the points in
Figure 2a and thus the transportation probability matrix {pij} is less asymmetric. The two
dashed lines impose a restriction on the transportation probability values, requiring that

pij + pji = 1, (13)

which is more visible if we use linear coordinates. This restriction can be derived as follows.
According to Equation (9), the probability of transportation from city j to city i is

pji =
PiPj

(Pj + Sji)(Pi + Pj + Sji)
. (14)

For two given cities i and j, it is easy to notice that pij and pji reach their maxima when the
two cities are adjacent, that is

Sij = Sji = 0. (15)

In this case, we have

pij =
Pj

Pi + Pj
(16)

and
pji =

Pi
Pi + Pj

. (17)

The restriction shown in Equation (13) is thus obtained. This argument holds for both
of the radiation models, because the derivation is independent of the definition of the
distance between two cities. It also applies to the two models based on GDP, as expressed
in Equation (10).

3.4. Comparison between pgeo
ij and pcost

ij

We compare the predicted transportation probabilities from the two models. The
results are shown in Figure 3. We find that the points fluctuate around the diagonal line

pcost
ij = pgeo

ij . (18)

The insets show that there are many points that fall exactly on the diagonal. These points
correspond to the situations when

Sgeo
ij = Scost

ij . (19)
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Usually, this condition (19) is more likely to be fulfilled when the two cities i and j are close.
As a special case, when city j is the closest city of city i, we have Sgeo

ij = Scost
ij = 0. In this

case, the two transportation probabilities pgeo
ij and pcost

ij are identical.
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Figure 2. Asymmetric relationship between pij and pji. (a) Population P is used in the raw radiation model with the
geographic distance. (b) Population P is used in the cost-based radiation model with the driving distance. (c) Gross
domestic product G is used in the raw radiation model with the geographic distance. (d) Gross domestic product G is used
in the cost-based radiation model with the driving distance.

Figure 3. Comparison of the transportation probabilities pij from the two models based on geographic distance and driving
distance. The insets are the same data in linear coordinates. (a) The radiation models are based on population. (b) The
radiation models are based on GDP.
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4. Transportation Diversity

We now define the transportation diversity of a city i based on its transportation
probability pij as follows

Di = −∑
i 6=j

pij ln pij, (20)

where pij can be calculated from the two radiation models using either population P or
gross domestic product G. We calculate four sets of diversity DM,d

i , where M = P or
M = G and d = dgeo or d = dcost. Indeed, human mobility or communication diversity has
been proposed and studied [25–27].

4.1. Comparison of Diversity Based on Population and Gross Domestic Product

In Figure 4, we compare six pairs of any two diversity sets obtained. The two plots in
the top row show the influence of distance on diversity for fixed choice of M, while the two
plots in the bottom row illustrate the influence of the choice of M on diversity in a given
model. We find that, in each plot, there is a nice linear relationship:

DM(1),d(1)
i = DM(2),d(2)

i . (21)

It is found that the influence is weaker for the choice of model than for the choice of M.
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Figure 4. Comparison of the two transportation diversity measures DM(1) ,d(1)
i and DM(2) ,d(2)

i calculated using population
P and gross domestic product G for the raw radiation model and the cost-based radiation model. (a) M(1) = M(2) = P,
d(1) = dgeo and d(2) = dcost. (b) M(1) = M(2) = G, d(1) = dgeo and d(2) = dcost. (c) d(1) = d(2) = dgeo, M(1) = G, and
M(2) = P. (d) d(1) = d(2) = dcost, M(1) = G, and M(2) = P. The solid lines are the diagonal lines.
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4.2. Dependence of City Traits on Diversity

We further check the dependence of city traits (P, G, Fout, or Fin) on the truck trans-
portation diversity Di, where Fin

i is total in-flux arriving at city i

Fin
i = ∑

j 6=i
Fji. (22)

The results are depicted in Figure 5. In the four plots of Figure 5e–h for DP,cost
i , we observe

two outliers that seem isolated from other points. These outliers correspond to two same
cities, Shennongjia Forestry District and Ali District. The diversities of these two cities are
respectively 0.1496 and 0.1529.
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Figure 5. Dependence of city traits (P, G, Fout, and Fin) on truck transportation diversity (DP,geo). The diversity is calculated
from the raw radiation model based on population and geographic distance. The solid lines are power-law fits.

We observe power-law dependence in each plot. We can write that

Yi ∼ (DM,d
i )β(Y,M,d), (23)

where Y represents P, G, Fout or Fin, M stands for population P or gross domestic product
G in the radiation model, and d determines the geographic or driving distance. The power-
law exponents β(Y, M, d) are estimated with the ordinary least-squares regression, which
are presented in Table 1. For a given city trait and the chosen M, the two power-law
exponents are similar in the raw radiation model and the cost-based radiation model.
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In contrast, the power-law exponent is larger when we use population P as M in the
radiation models.

Table 1. Power-law exponents β(Y, M, d) for the cost-based radiation model.

Model Y = P Y = G Y = Fout Y = Fin

dgeo, P 1.8111 1.8063 2.1558 1.9829
dcost, P 1.8863 1.8890 2.2277 2.1775
dgeo, G 1.2384 1.6523 1.7299 1.5613
dcost, G 1.2838 1.7246 1.8990 1.6471

5. Discussion and Conclusions

In this work, we investigated the highway freight transportation diversity of 338 Chi-
nese cities based on the transportation probability pij from one city to the other. The
transportation probabilities are calculated from the raw radiation model based on geo-
graphic distance and the cost-based radiation model based on driving distance as the proxy
of cost.

We found that, in either the raw radiation model or the cost-based radiation model,
the results obtained with the population and the gross domestic product are quantitatively
similar. It is mainly due to the nice power-law scaling between population and GDP of
Chinese cities, where the power-law scaling exponent is estimated to be 1.15± 0.08 [6,28].

We investigated several important properties of the truck transportation probability
pij. It is found that the transportation probabilities are distributed broadly with a nice
power-law tail and the tail exponents are close to 0.5 for the four models. It is also found
that the transportation probability matrix in each model is asymmetric such that pij does
not necessary equal to pji, which is consistent with our intuition.

We also found that the population, the gross domestic product, the in-flux, and the
out-flux scale as power laws with respect to the transportation diversity in the raw radiation
model and the cost-based radiation model. It is intuitive that a city with higher GDP (often
with larger population) usually has higher diversity in its industrial structure. These cities
usually have higher diversity in highway freight transportation.

The strong correlation between transportation diversity and economic development
implies a strong association between industry diversity and economic development. Al-
though a causal direction of this relationship cannot be established through our analysis,
transportation diversity at least provides a structural signal for the economic development
of a city, highlighting the potential benefit of industry-targeted policies for economic devel-
opment. Further research is required to obtain reliable policy implications. In particular,
longitudinal data sets for transportation networks and economic development are required
to establish a possible causal relationship.
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