
 International Journal of 

Molecular Sciences

Review

Hydrogen Sulfide Metabolite, Sodium Thiosulfate: Clinical
Applications and Underlying Molecular Mechanisms

Max Y. Zhang 1,2, George J. Dugbartey 1,2,3, Smriti Juriasingani 1,3 and Alp Sener 1,2,3,4,*

����������
�������

Citation: Zhang, M.Y.; Dugbartey,

G.J.; Juriasingani, S.; Sener, A.

Hydrogen Sulfide Metabolite,

Sodium Thiosulfate: Clinical

Applications and Underlying

Molecular Mechanisms. Int. J. Mol.

Sci. 2021, 22, 6452. https://

doi.org/10.3390/ijms22126452

Academic Editor:

Marcin Magierowski

Received: 28 May 2021

Accepted: 11 June 2021

Published: 16 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Center,
Western University, London, ON N6A 5A5, Canada; yzha493@uwo.ca (M.Y.Z.); profduu@yahoo.com (G.J.D.);
sjuriasi@uwo.ca (S.J.)

2 London Health Sciences Center, Multi-Organ Transplant Program, Western University,
London, ON N6A 5A5, Canada

3 London Health Sciences Center, Department of Surgery, Division of Urology, Western University,
London, ON N6A 5A5, Canada

4 Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry,
University of Western Ontario, London, ON N6A 3K7, Canada

* Correspondence: alp.sener@lhsc.on.ca; Tel.: +1(519) 6633352

Abstract: Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen
sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family.
STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer
therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant
and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can
target multiple molecular pathways in various diseases and drug-induced toxicities. This review
discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical
usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these
clinical applications and a future perspective in kidney transplantation.

Keywords: sodium thiosulfate (STS); thiosulfate; hydrogen sulfide (H2S); ischemia–reperfusion injury
(IRI); sulfide oxidation pathway

1. Introduction

Sodium thiosulfate (STS) is an odorless, inorganic, and water-soluble compound
with the chemical formula Na2S2O3 and a molecular weight of 158.11g/mol. It is a major
oxidation production of hydrogen sulfide (H2S) and is typically available as a white crys-
talline or powdered substance in the form of pentahydrate (Na2S2O3·5H2O) [1]. Currently
on the World Health Organization’s list of essential medicines, STS has several other
uses including as a common food preservative, a water dechlorinator, a photographic
fixative, and a bleaching agent for paper pulp [2]. It possesses therapeutic properties such
as antioxidant, anti-inflammatory, and antihypertensive properties [3–7]. It is approved
by Food and Drugs Administration (FDA) and is currently clinically useful in the treat-
ment of acute cyanide poisoning, carbon monoxide toxicity, cisplatin toxicities in cancer
therapy, and calcific uremic arteriolopathy (calciphylaxis) in dialysis patients [8–11]. STS
is administered intravenously or topically because it is rapidly degraded in the stomach.
Emerging reports also suggest its potential application in ischemia–reperfusion injury (IRI)
in solid organ transplantation [12–14]. In this review, we first present hydrogen sulfide
(H2S) as an endogenous signaling molecule and a third member of the gasotransmitter
family. Next, we describe the biochemical and molecular pathways of H2S from which
thiosulfate is generated. Finally, we discuss the clinical usefulness and potential clinical
applications of STS and its underlying molecular mechanisms, with a future perspective
on kidney transplantation.
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2. Hydrogen Sulfide as a Gasotransmitter

Hydrogen sulfide (H2S) is a colorless, flammable, and water-soluble gas with the charac-
teristic smell of rotten eggs [15,16]. For several centuries, H2S was notoriously known for its
toxic effects and death among agricultural and industrial workers at high concentrations. The
mechanism underlying the toxic effect of H2S involves reversible antagonism of cytochrome c
oxidase (complex IV), the terminal complex of the mitochondrial electron transport chain [17].
In the past two decades, however, this obnoxious-smelling, membrane-permeable gas has
risen above its negative public image and is now known to play several important functions
in physiological processes at low concentrations. Additionally, it exhibits diverse therapeutic
potential with the ability to target several molecular pathways in several diseases and drug-
induced toxicities [18–22]. H2S is also established among researchers as the third member
of the family of gasotransmitters, endogenous gaseous signaling molecules, next to nitric
oxide and carbon monoxide [15]. It has the ability to alter activity of proteins from many
cellular signaling pathways involved in apoptosis, angiogenesis, inflammation, metabolism,
proliferation, and oxygen sensing. It can also play a detoxifying role during oxidative stress
by increasing the development of glutathione [23–25], the most abundant naturally occurring
antioxidant in the body, and by reacting directly with peroxynitrite (ONOO−) as a direct
scavenging property of H2S toward cellular ROS. H2S is endogenously produced in all mam-
malian cells through metabolic pathways that use the sulfur-containing amino acid L-cysteine
and 3-mercaptopruvate via 3 enzymes: cystathionine β-synthase (CBS), cystathionine γ-lyase
(CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) (Figure 1). It has also been found
that H2S can be produced from D-cysteine using the peroxisomal enzyme, D-amino acid oxi-
dase [26]. Besides its endogenous production, H2S is also administered exogenously through
a number of its donor compounds, including STS and GYY4137 [27–29].
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Figure 1. Generation of thiosulfate from H2S in the mitochondrial sulfide oxidation pathways. Hydrogen sulfide (H2S) is
produced by enzymes cystathione γ-lyase (CSE) and cystathionine β-synthase (CBS) in the trans-sulfuration pathway. A
third enzyme, 3-mercaptopyruvate sulfurtransferase (MST), also produces endogenous H2S in the presence of the substrate
3-mercaptopyruvate. A membrane-bound sulfide, quinone oxidoreductase (SQR), oxidizes H2S to persulfide, which is
transferred to a glutathione (GSH). A persulfide dioxygenase (PDO) in the mitochondrial matrix oxides one glutathione
persulfide (GSSH) to sulfite (H2SO3), which is then used in a sulfurtransferase reaction catalyzed by the enzyme rhodanase
(Rhd) to form thiosulfate (S2O3

2−) by transferring a second glutathione persulfide from SQR to sulfite. Sulfite can be further
oxidized by sulfite oxidase (SO) to form sulfate (SO4

2−) and is subsequently excreted in urine. PDO and SO are oxygen
dependent enzymes.
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2.1. Generation of STS from H2S

At a physiological level, thiosulfate can be generated in tissues from the mitochondrial
sulfide oxidation pathway, using H2S as the substrate. This process involves three mito-
chondrial enzymes: quinone oxidoreductase, sulfur dioxygenase, and sulfur transferase
(Figure 1). Using an isolated mitochondria rat model, Hildebrandt et al. [30] proposed a
method into the biochemical pathway of H2S oxidation to thiosulfate. Firstly, as illustrated
in Figure 1, H2S can react with a membrane-bound disulfide on quninone oxidoreductase
(SQR) to generate a membrane-bound persulfide group (SQR-SSH). A persulfide dioxyge-
nase in the mitochondrial matrix oxidizes one persulfide molecule to sulfite (H2SO3), which
is then used in a sulfurtransferase reaction catalyzed by the enzyme rhodanase to form
thiosulfate [30]. Rhodanase is a mitochondrial enzyme that transfers a sulfur atom from
sulfane-containing donor to the thiophilic acceptor substrate [31]. The catalytic activity of
rhodanase occurs via a double displacement mechanism, where the active site, a cysteine
residue (Cys247), accepts a sulfur atom from the persulfide intermediate state, followed by
the transfer of sulfide sulfur from the enzyme to the nucleophilic acceptor sulfite, which
produces thiosulfate (Figure 1) [32]. Although human mitochondria also utilize this sulfide
oxidation pathway, recent evidence suggests that glutathione (GSH) functions as a persul-
fide acceptor for human SQR to produce the persulfide intermediate [33,34]. Most recently,
Libiad et al. [35] found that the kinetic behavior of these enzymes favors SQR by using
GSH as an acceptor to form glutathione persulfide (GSSH), which is then converted to
thiosulfate by human rhodanase (Figure 1). This is further confirmed by kinetic simulations
in previous rat liver mitochondria studies with or without GSH, which supports GSSH as
the first intermediate formed in the flow of the sulfide oxidation pathway [34].

After learning that H2S can generate thiosulfate via the sulfide oxidation pathway, it
is important to understand that the reverse reaction also occurs at a physiological level
in tissue. In a study using recombinant human SQR in Escherichia coli, Jackson et al. [33]
showed that the metabolism of thiosulfate is catalyzed by thiosulfate reductase, as it consumes
two GSH molecules and results in the generation of sulfite, oxidized glutathione, and H2S.
Further evidence of the ability of thiosulfate to produce H2S via a glutathione-dependent
reduction was confirmed by a study in which exogenous thiosulfate treatment significantly
decreased GSH/GSSG ratio to total sulfide ratio in a dose-dependent manner [36]. In addition,
Olson et al. [37] found that H2S generation from thiosulfate can also occur under the presence
of 1,2-Dithiole-3-thiones, an exogenous reducing agent. However, regardless of the exact
mechanism of how sulfur is transferred, thiosulfate appears to be a key intermediate. Thus,
thiosulfate (in the form of STS) is a major oxidation product of H2S.

2.2. Biological Properties of Thiosulfate

In addition to thiosulfate being a stable, nontoxic metabolite of H2S [38], it is also a
sulfane sulfur, which is defined as sulfur atoms covalently bonded to other sulfur atoms,
making it unstable and readily oxidizing in air and reducing with thiols [39,40]. Com-
pounds containing sulfane sulfur are known to possess cell regulatory effects through the
activation or inactivation of enzymes and changing protein activities [41,42]. The functions
of sulfane sulfur include antioxidant regulation, tRNA sulfuration, and iron-sulfur protein
formation [41,43,44]. The ability of mitochondrial enzymes to generate thiosulfate from
H2S and vice versa could have misinterpretations on which sulfur molecule conducts the
biological signalling. In a mouse model of heart failure, Sen et al. [12] demonstrated that
3 mg/mL of oral thiosulfate can increase depleted H2S levels. In addition, Tokuda et al. [45]
observed the impact of H2S gas on lipopolysaccharide (LPS)-induced inflammation in mice.
They found that H2S inhalation after LPS challenge increased plasma thiosulfate level and
rhodanase activity, which prevented LPS-induced inflammation. The authors’ opinion
that thiosulfate may contribute to beneficial effects of H2S inhalation was verified after
they found that administering thiosulfate improved survival after LPS challenge in a
dose-dependent manner. This suggests that it is thiosulfate, not H2S, that participates as a
signalling molecule in cellular regulatory processes [46].
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3. Clinical Usefulness of STS
3.1. STS in the Treatment of Cyanide Poisoning

The clinical usefulness of STS was first identified in the 1930s, when it was co-
administered with sodium nitrite to treat acute cyanide poisoning. As cyanide is a cytotoxic
agent that binds to cytochrome oxidase and thereby inhibits cellular respiration, STS serves
as a donor of sulfur, which is used as a substrate by the enzyme rhodanase (a sulfur trans-
ferase) to covert cyanide to thiocyanate, a nontoxic cyanide molecule, which is then excreted
in urine [8,47]. This occurs after sodium nitrate removes cyanide from the mitochondrial
electron transport chain by inducing the formation of methemoglobin [8,47]. Since then,
there has been several pieces of evidence in preclinical and clinical studies validating STS as
an antidote to cyanide poisoning and other chemical poisoning, such as carbon monoxide–
cyanide toxicity in patients for whom sodium nitrite is contraindicated [48,49]. The United
States, for example, has a standard cyanide antidote kit, which first uses 10mL intravenous
sodium nitrite, followed immediately by 50mL intravenous STS [50]. Taken together, these
results show that the mechanism of action underlying the use of STS as an antidote to
cyanide poisoning is due to its ability to serve as a sulfur donor.

3.2. STS in the Treatment of Cisplatin Toxicities in Cancer Therapy

Besides being an antidote to cyanide poisoning, STS is also a neutralizing agent that
protects against cisplatin toxicity. Cisplatin is one of the most widely used agents to treat solid
tumors. However, it has adverse effects on renal, auditory, neurological, and hematological
systems [9]. Laplace et al. [51] showed that administering STS protects against renal impair-
ment following cisplatin chemotherapy. Moreover, administration of high-dose cisplatin over
the last 2 h of STS infusion prevented possible cisplatin-induced nephrotoxicity, as there were
no observed changes in elimination rate constant, volume distribution and total body clear-
ance compared to patients who received low-dose cisplatin without STS [52]. This observation
suggests that STS allows higher doses of cisplatin to be administered before dose-limiting
toxicity occurs. This protection is thought to be related to STS binding to free platinum, result-
ing in total clearance of inactive metabolite and limiting renal tubular cell necrosis [53]. In
addition, the use of cisplatin to effectively treat childhood hepatoblastoma can cause severe
and permanent ototoxicity, leading to eventual hearing loss. Interestingly, treatment with STS
6 h after cisplatin chemotherapy resulted in a lower incidence of cisplatin-induced hearing
loss among children with standard-risk hepatoblastoma without jeopardizing overall and
event-free survival [54]. Furthermore, STS was shown to inhibit oxidative stress-induced
ototoxicity in the cochlea [54]. Following these positive outcomes and after two successful
clinical trials, Fennec Pharmaceuticals is currently waiting on FDA approval on the first
potential prevention of platinum induced-ototoxicity in pediatric patients.

3.3. STS in the Treatment of Calciphylaxis in Dialysis Patients

The clinical usefulness of STS has grown over the years to include treatment of
calciphylaxis, which is a severe complication in patients with advanced chronic kidney
disease in which calcium accumulates in blood vessels [27,55,56]. Predominantly seen in
people with end-stage kidney disease, calciphylaxis is a predictor of cardiovascular death
in long-term hemodialysis patients [57]. It is characterized by systemic medial calcification
of the arterioles, leading to ischemia and subcutaneous necrosis. Promising results have
been obtained through the use of intralesional STS. Areas of clinically active disease were
treated with 250 mg/mL STS, resulting in the resolution of calciphylaxis lesions over
a period of weeks with no recurrence of the disease [9]. Most recently, Peng et al. [11]
conducted a systematic review of several cases on the use of STS for calciphylaxis and
found that STS has a promising role as an effective therapy for calciphylaxis by acting as
a calcium-chelating agent, binding to Ca2+ and increasing its solubility. The authors also
reported that STS possesses vasodilatory and antioxidant properties. Their findings were
in agreement with previous reports that suggested that STS could combine with insoluble
tissue calcium salts to form calcium thiosulfate, a salt that can later be dialyzed [11,58–60].
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Thus, treatment of calciphylaxis with STS is partly due to its antioxidant and calcium-
chelating and vasodilatory properties.

4. Potential Clinical Applications of STS
4.1. STS in the Treatment of Renovascular Hypertension

As an H2S donor molecule, STS is thought to have unexplored therapeutic potential
in the context of many diseases. Over the past few years, a number of independent
groups have discovered the beneficial effects of STS in animal models of disease (Table 1).
For example, a recent study examined the protective properties of STS in angiotensin
II-induced renovascular hypertension in rats [4]. The authors observed that 1 g/kg dose of
STS treatment per day induced a lower plasma urea, proteinuria, and improved creatinine
clearance through its antioxidant property. They also attributed the protective effect of
STS partly to its anti-inflammatory property, preventing angiotensin II-induced influx of
macrophages [4]. This finding supports several previous reports that highlighted anti-
inflammatory property of STS in downregulating pro-inflammatory genes such as IL-1β,
TNF-α, and MAP-1 and reduced macrophage recruitment [5,61,62]. In a recent experimental
rat model of hyperoxaluria and renal injury, 0.4 g/kg dose of STS treatment scavenged
reactive oxygen species (ROS) in a dose-dependent manner, mitigated cellular hydrogen
peroxide levels, and maintained superoxide dismutase activity [6]. It is important to note
that thiosulfate has two lone electron pairs: one at the single bonded sulfur moiety of
the disulfide bond and the other at the single bonded oxygen [60]. This characteristic
allows thiosulfate to act as an effective antioxidant by donating electrons to unpaired
damaging electrons associated with mitochondrial ROS [37,63,64]. Further evidence of the
antioxidant property of thiosulfate was confirmed in a mouse model of congestive heart
failure by Sen et al. [12], where they reported that thiosulfate scavenged superoxide in
myocardial tissue. In addition, thiosulfate can react with superoxide to form glutathione, a
thiol-dependent antioxidant system in mammalian cells [3]. In conclusion, STS possesses
potent antioxidant and anti-inflammatory properties, which protect against renovascular
hypertension and other models of renal injury.

Table 1. Summary of mechanisms of action of STS in animal models of human diseases.

Experimental Model STS Concentration Effect of STS References

BCAO-induced cerebral IRI in mice 10 mg/kg
- Improved neurological function and survival

- Inhibitedcaspase-3 activity
- Mitigated apoptosis via JNK blocking

[65]

AVF-induced heart failure in mice 3 mg/mL

- Protected against cardiac dysfunction
- Elevated endogenous production of H2S

- Prevented the increase in MMP-2, MMP-9, and
TIMP-1 expression levels

[12]

Hyperoxaluria in rats 0.4 g/kg/b.w.t - Preserved superoxide dismutase activity [6]

Ethylene glycol-induced nephrolithiasis in rats 400 mg/Kg b.w.t

- Increased renal protection by modulating the
mitochondrial KATP channel

- Showed normal serum creatinine and renal tissue
architecture

[66]

Angiotensin II-induced heart disease in rats 1 g/kg/day
- Attenuated hypertensive cardiac disease

- Regulated blood pressure
- Reduced ANP mRNA levels

[45]

Angiotensin II-induced hypertension,
proteinuria, and renal damage in rats 1 g/kg/day

- Increased GSH levels
- Reduced influx of macrophages to near-control levels

- Improved creatinine clearance
[4]

L-NNA-induced hypertension in rats 2 g/kg/day
- Enhanced GFT and ERPF

- Protected against glomerulosclerosis
- Lowered plasma urea and renal vascular resistance

[67]
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Table 1. Cont.

Experimental Model STS Concentration Effect of STS References

Myocardial IRI in rats 1 mM
(Postconditioned)

- Reduced myocardial infarct size
- Lowered expression of caspase-3 and PARP [68]

Renal mitochondrial IRI in rats 400 mg/kg - Maintained mitochondrial function
- Increased NADH hydrogenase activity [14]

Myocardial IRI in rats 1 mM
(Preconditioned)

- Preserved mitochondrial ATP synthesis
- Increased PGC-1α expression

- Improved ETC complex enzyme activities
[69]

LAD occlusion model of cardiac IRI in rats 0.1–1 mM
- Reduced apoptosis associated with mitochondrial

dysfunction
- Lowered levels of cardiac injury markers LHD and CK

[70]

Cardiac IRI with PAG in rats 1 mM - Preserved protective mechanisms in presence of PAG [71]

GalN/LPS-induced liver injury in mice 2 g/kg - Increased Nrf2 and Akt-dependent signaling
- Inhibited JNK phosphorylation [21]

BCAO, bilateral common carotid artery occlusion; STS, sodium thiosulfate; JNK, c-Jun N-terminal kinase; IRI; ischemia–reperfusion injury;
GSH, glutathione; AVF, arteriovenous fistula; MMP, matrix metalloproteinases; TIMP, tissue inhibitors of matrix metalloproteinases; ANP,
atrial natriuretic peptide; GFR, glomerular filtration rate; L-NNA, N-u-nitro-L-arginine; ERPF, effective renal plasma flow; ETC, electron
transport chain; LAD, left anterior descending artery; LHD, lactate dehydrogenase; CK, creatine kinase; PAG, D, L-propargylglycine; GalN,
D-galactosamine; LPS, lipopolysaccharide; Nrf2, nuclear factor erythroid related-factor 2.

4.2. STS in Ischemia–Reperfusion Injury

An additional area in which STS has been reported to show protective effects is in
animal models of ischemia–reperfusion injury (IRI) (Table 1). IRI is defined as tissue injury
due to temporary cessation of blood flow (ischemia) and subsequent restoration of blood
flow to the ischemic tissue [72]. Chronic inflammation, excessive ROS production, ATP
depletion, accumulation of succinate, and induction of cellular apoptotic pathways are
major molecular events associated with IRI [73–75]. The first major molecular event of IRI
occurs when cells are deprived of adequate oxygen due to cessation of blood flow. Lack of
oxygen results in energy depletion, since the cells are unable to synthesize ATP [76]. The
depletion of ATP causes a rise in inorganic phosphate and inhibition of Na+/K+ pumps,
resulting in increased intracellular Ca2+ concentration and mitochondrial inner membrane
permeability [77]. Additionally, prolonged ischemic time can damage multiple complexes
in the electron transport chain (ETC), causing it to be more prone to electron leakage [78].
The second molecular event in IRI occurs when blood flow is restored to the ischemic tissue.
Reperfusion is often characterized by increased formation of ROS, decreased ATP produc-
tion, and cell death [79]. Previous studies have shown that overproduction of ROS occurs
from the mitochondrial ETC when oxygen is reintroduced to the cell, with the oxygenation
of succinate as a main superoxide generating species via reverse electron transport [74,75,79].
ROS can damage proteins of the ETC complexes, which further inhibits ATP production
and increases electron leakage [80]. Cellular ATP depletion initiates translocation of pro-
apoptotic proteins such as BAX, which causes mitochondrial swelling and induces efflux of
cytochrome c and apoptosis-inducing factor [81]. These factors in turn activate caspase 3
apoptotic signalling cascade, initiating cellular apoptosis.

In an experimental model of renal IRI, in which isolated rat mitochondria were sub-
jected to physiological oxidative stress by nitrogen gas purging, treatment with STS induced
renal protection and maintained mitochondrial functional integrity by markedly reducing
oxidative stress and deteriorated mitochondrial enzyme activities compared to untreated
groups [14]. In addition, Ravindran et al. [70] observed in in vitro and in vivo models of
cardiac IRI that STS preconditioning significantly increased NADH dehydrogenase activity
and decreased oxidative stress due to increased activities of antioxidant enzymes such
as catalase and superoxide dismutase. The authors further showed in an in silico model
that STS has higher binding affinity for caspase-3 because of its perfect fit in the active
site Cys-163, which is stabilized via strong hydrogen bonds. This results in inactivation of
caspase-3 by preventing access of natural substrate to caspase-3 binding site, ultimately
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halting apoptosis [70]. Further evidence of the higher binding affinity of STS for caspase-3
was confirmed in a mouse cerebral IRI study by Marutani et al. [65], where the authors
observed that 10 mg/kg dose of STS inhibits caspase-3 activity via persulfidation of the
same active site, Cys-163, and protects against neuronal IRI in mice. Additionally, STS
was shown to activate Erk 1/2 and block the c-Jun N-terminal kinase (JNK), which led to
inhibition of apoptosis by preventing dephosphorylation of the pro-apoptotic protein, Bad,
and downregulation of anti-apoptotic protein, Bcl-2 [82–84].

The protective effect STS observed in different experimental models of IRI is partly
attributable to its ability to activate mitochondrial adenosine triphosphate (ATP)-sensitive
potassium (KATP) channels, suggesting that the opening of these channels may have inhibited
mitochondrial permeability transition [12,13]. This observation confirms previous studies
in which H2S stimulated the opening of KATP channels by blocking phosphorylating of
the transcription factors fork head box O (FOXO1 and FOXO3a) in rat vascular smooth
muscle cells, leading to reduced Ca2+ influx and preventing the opening of mitochondrial
permeability transition pores [85,86]. Further evidence of STS maintaining mitochondrial
integrity was confirmed in a study by Mohan et al. [14], where isolated rat mitochondria were
subjected to physiological oxidative stress. The results showed that the pretreated STS group
had higher renal mitochondrial enzyme activity due to its increased NADH dehydrogenase
activity compared to the nontreated group [14]. More recently, Ravindran et al. [69] reported
in a rat model of cardiac IRI that preconditioned with 1 mM STS exhibited similar ATP
synthase activity and mitochondrial enzyme activity compared to sham [69]. The same authors
conducted another rat model of cardiac IRI study, but this time, the rats were postconditioned
with 1 mM STS [68]. The STS-treated group improved activities of mitochondrial ETC complex
enzymes I-IV and showed significantly increased expression of PGC-1α, a positive regulator
of mitochondrial biogenesis, ATP production, and ROS-detoxifying system [68]. In summary,
STS modulates several molecular pathways in the mitochondria, leading to protection against
IRI in various tissues.

5. Future Direction
5.1. Future Direction in the Use of STS as an H2S Donor Molecule

Considering that STS is already a clinically viable H2S donor drug approved by
FDA and is also in clinical trials along with other H2S donor drugs such as GIG-1001,
SG1002, ATB-436, and Zofenopril for cardiovascular diseases, intestinal disorders, and other
conditions, [87] it is important to translate these promising experimental findings about STS
to clinical practice. As such, STS-related therapeutic research is a rapidly emerging field,
with many studies done on H2S-related cytoprotective effects. One example is signaling
mechanism of the antioxidant and transcription factor nuclear factor erythroid-related
factor 2 (Nrf2), which is partly attributable to H2S effects [88] (Figure 2). Previous studies
have shown that H2S activates Nrf2-dependent signaling, which produces antioxidant
proteins to mitigate animal models of inflammatory acute liver failure and cardiovascular
disease [89–92]. Under normal conditions, Nrf2 is captured by Keap1 proteins in the
cytoplasm [93]. However, when exposed to oxidative stress, Nrf2 avoids Keap1 and is
translocated into the nucleus in order to bind to antioxidant response elements (ARE)
to induce expression of various antioxidant gene clusters [88,92,94]. In a recent study
by Koike et al. [95,96], they discovered that addition of sulfane sulfurs increased Nrf2
accumulation in the nucleus of neuroblastoma cells through the structural change of Keap1
protein. Specifically, the sulfane sulfurs triggered a persulfidation reaction of the cysteine
residue in Keap1, which led to Keap1 forming homodimers with another Keap1 protein or
heterodimers with another protein (Figure 2). It has also been reported that persulfidated
proteins are protective against oxidative stress-induced damage and thereby preserve the
function of the persulfidated cysteine residues [97]. The authors further reported that the
polysulfide induced AKT phosphorylation, which triggered the phosphorylation of Nrf2,
resulting in nuclear translocation. This suggests that sulfane sulfurs, such as thiosulfate,
activate Nrf2 signaling pathway through the structural change of Keap1 protein and
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phosphorylation of AKT (Figure 2). These findings support a recent study about a mice
model of acute liver failure, where administration of 2 g/kg STS attenuated liver injury by
enhancing AKT phosphorylation and inducing Nrf2-dependent antioxidant proteins [21].
In addition, the authors showed that STS treatment also inhibited phosphorylation of JNK,
a protein that is upregulated by inflammatory cytokines and extracellular stresses and
plays a critical role in apoptotic signaling [98]. A proposed mechanism of how thiosulfate
interacts with Nrf2 signaling pathway to induce cytoprotective effects against oxidative
stress is shown in Figure 2.
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Figure 2. Proposed overview of cytoprotective effects of thiosulfate against oxidative stress. Thiosulfate (S2O3
2−) is

produced from hydrogen sulfide (H2S) via sulfide oxidation pathway. The bound sulfur on thiosulfate activates the Nrf2
system through the structural change of Keap1 proteins and induction of phosphorylated AKT. The nuclear translocation of
phosphorylated Nrf2 binds to ARE to promote expression of various antioxidative gene clusters. Thiosulfate also contributes
to anti-apoptotic signaling via inhibition of JNK phosphorylation. ROS, reactive oxygen species; GSH, glutathione; HO-1,
heme oxygenase-1; Bcl-2, B-cell lymphoma-2; ARE, antioxidant response element; Nrf2, nuclear factor erythroid-related
factor 2; Keap1, Kelch-like ECH-associated protein 1; AKT, protein kinase B; JNK, c-Jun N-terminal kinases.

Many of the biochemical characteristics of H2S signaling that provide cytoprotective
effects, such as persulfidation of signaling proteins, can be accomplished with thiosulfate
instead. For example, a study by Giovinazzo et al. [99] showed that H2S donor molecule
GYY4137 inhibits Tau hyperphosphorylation by persulfidation of kinase GSK3β, ultimately
ameliorating cognitive and motor deficits in Alzheimer’s disease. STS, as we previously
mentioned, has been shown to trigger persulfidation reactions in the sulfur oxidation
pathway [37] and in the Nrf2 signaling pathway [95]. Multiple studies on H2S prodrugs
reported to be beneficial in cardiovascular systems also involve similar biochemical mecha-
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nism to STS, such as persulfidation in SP1-medated transcription to preserve endothelial
function [100,101], persulfidation in regulation of PYK2-mediated eNOS phosphorylation
to mediate cardioprotection [102], and persulfidation in ERK/MEK1/PARP-mediated DNA
damage repair and cell survival [103]. It is possible but remains to be studied whether
modulation of STS pathways may contribute to the therapeutic actions of the experimental
H2S prodrugs. Since STS is widely available as a key metabolite of H2S with similar bio-
chemical signaling effects and as a clinically approved drug, further studies are warranted
on the protective effects of STS in central nervous system, cardiovascular system, and many
other system pathologies.

5.2. Future Direction in the Use of STS in Organ Transplantation

Following our compelling success in different animal models of kidney transplanta-
tion with the use of H2S-supplemented University of Wisconsin (UW) solution for static
cold storage, it is important to translate these promising experimental findings to clinical
practice using STS. Hence, we decided to investigate whether STS-supplemented UW
solution would be suitable for renal graft preservation. In recent rat syngeneic transplant
experiments, we found that kidneys stored and perfused with STS-supplemented UW
solution showed better survival, improved acute tubular necrosis scores, and improved
graft function compared to UW-stored kidneys without STS treatment [104]. Serum cre-
atinine levels also showed that, while STS-treated rats exhibited significantly decreased
serum creatinine at postoperative day 3 compared to UW-treated rats (without STS), serum
creatinine levels in the former group were not statistically different from that of sham-
operated rats [104]. Overall, supplementing organ preservation solutions with STS may
be a promising approach, as it requires minimal modification of existing clinical protocols
and is also cost-effective. However, mechanistic properties of STS on renal IRI need to be
studied further.

6. Conclusions

Although H2S is a major contributor to altering cellular physiology in various ways,
STS appears to play a significant role in biological signaling as well. Several studies
have elucidated the ability of mitochondrial enzymes to generate thiosulfate from H2S
through a sulfide oxidation pathway. Emerging data on the biological effects of STS and its
close chemical relationship with H2S support the development of STS-based therapeutics.
Besides its clinical usefulness, STS has also been shown experimentally to effectively
protect against renovascular hypertension and other models of renal injury. In the context
of kidney transplantation, modification of the preservation solutions with STS may be a
simple, inexpensive, and nontoxic novel therapeutic strategy to mitigate cold IRI in donor
organs to ultimately improve graft outcomes and minimize posttransplant complications.
However, the underlying protective molecular mechanisms of this novel approach will
need further investigation.
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