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Abstract

Purpose

Congenital muscular dystrophy (CMD) is a heterogeneous disease entity. The detailed clini-

cal manifestation and causative gene for each subgroup of CMD are quite variable. This

study aims to analyze the phenotypes and genotypes of Taiwanese patients with CMD as

the epidemiology of CMD varies among populations and has been scantly described in

Asia.

Methods

A total of 48 patients suspected to have CMD were screened and categorized by histochem-

istry and immunohistochemistry studies. Different genetic analyses, including next-genera-

tion sequencing (NGS), were selected, based on the clinical and pathological findings.

Results

We identified 17 patients with sarcolemma-specific collagen VI deficiency (SSCD), 6

patients with merosin deficiency, two with reduced alpha-dystroglycan staining, and two

with striking lymphocyte infiltration in addition to dystrophic change on muscle pathology.
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Fourteen in 15 patients with SSCD, were shown to have COL6A1, COL6A2 or COL6A3

mutations by NGS analysis; all showed marked distal hyperlaxity and normal intelligence

but the overall severity was less than in previously reported patients from other populations.

All six patients with merosin deficiency had mutations in LAMA2. They showed relatively uni-

form phenotype that were compatible with previous studies, except for higher proportion of

mental retardation with epilepsy. With reduced alpha-dystroglycan staining, one patient was

found to carry mutations in POMT1 while another patient carried mutations in TRAPPC11.

LMNA mutations were found in the two patients with inflammatory change on muscle pathol-

ogy. They were clinically characterized by neck flexion limitation and early joint contracture,

but no cardiac problem had developed yet.

Conclusion

Muscle pathology remains helpful in guiding further molecular analyses by direct sequenc-

ing of certain genes or by target capture/NGS as a second-tier diagnostic tool, and is crucial

for establishing the genotype-phenotype correlation. We also determined the frequencies of

the different types of CMD in our cohort which is important for the development of a specific

care system for each disease.

Introduction

Congenital muscular dystrophy (CMD) is a group of genetically and clinically heterogeneous

hereditary muscle diseases characterized by early-onset hypotonia and muscle weakness asso-

ciated with dystrophic change on muscle pathology. The current classification of CMD con-

sists of three major categories: Ullrich type CMD (collagen VI-related dystrophy), merosin-

deficient CMD (LAMA2-related dystrophy) and CMD with glycosylation defect in alpha-dys-

troglycan (alpha-dystroglycanopathy); as well as other minor subgroups, such as LMNA-

related CMD (L-CMD), megaconial type CMD, CMD with integrin alpha-7 defect, and CMD

without genetic diagnosis [1].

The incidence of each type of CMD varies among different ethnic populations. Fukuyama

type CMD (FCMD), with defective glycosylation of alpha-dystroglycan, is the most common

type of CMD in Japan due to a 3-kb insertion founder mutation in the FKTN 3’ untranslated

region [2]. Merosin-deficient CMD (MDCMD) accounts for around 40% of CMD patients in

European countries [3], but is relatively uncommon in Asia. By contrast, the incidence of Ull-

rich type CMD (UCMD) is similar among different populations [3–5].

In addition to early-onset hypotonia and weakness, each type of CMD has its specific clini-

cal manifestations. Patients with UCMD typically present with distal joint hyperlaxity and

early proximal joint contracture. Associated features including developmental dysplasia of the

hip (DDH), torticollis and keloid are also often observed. As mentioned above, UCMD is

often caused by heterozygous de novo mutation in one of the COL6A1, COL6A2, and COL6A3
genes, encoding alpha-1, 2 and 3 chains of collagen VI, respectively [1, 6]. These three collagen

VI chains assemble to form extracellular matrix [7]. MDCMD is inherited with autosomal

recessive trait and characterized by floppiness in infancy, early joint contracture and cerebral

white matter lesion. MDCMD is caused by mutations in the LAMA2 gene, which encodes the

human laminin α2 chain (merosin) to form the long-arm coiled coil around skeletal muscle

fibers[7]. The characteristic phenotype of MDCMD includes congenital hypotonia, no
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acquisition of walking ability and white matter signal abnormalities on brain MRI [8]. CMD

with defective glycosylation of alpha-dystroglycan is a disease entity involving several enzymes

with clinical syndromes ranging from the most severe Walker-Warburg syndrome (WWS) to

milder hypotonia without congenital anomaly of the eye or the brain [9]. To date, more than

17 genes have been found to be responsible for this disease [10–17]. LMNA mutations have

been associated with variable diseases including Emery-Dreifuss muscular dystrophy

(EDMD), neuropathy, lipodystrophy, and progeria [18]. L-CMD is often characterized clini-

cally by early joint contracture and neck flexion limitation, and pathologically by marked

inflammatory change [19, 20]. Cardiomyopathy or conduction defects are not usually present

at early stage. Of note, almost all these causative genes of CMD could also result in a milder

phenotype mimicking limb-girdle muscular dystrophy.

In this study, we report the detailed phenotype and genotype of Taiwanese patients with

CMD, as confirmed by various mutation analyses, including target capture/next-generation

sequencing (NGS).

Patients and methods

Patients

A total of 48 patients with a suspected diagnosis of CMD at Kaohsiung Medical University

Hospital (KMUH) between 1996 and 2016 were enrolled. All had muscle biopsy analyzed at

KMUH. The diagnosis of CMD was based on early-onset of hypotonia and proximal muscle

weakness (age of onset < 2 years) with dystrophic change on muscle pathology defined as

necrotic and regenerating process together with endomysial fibrosis. The following histochem-

istry and immunohistochemistry studies and genetic analyses were performed based on diag-

nostic purpose. Genomic DNA was extracted from whole blood using the Puregene DNA

Isolation Kit (Gentra, Minneapolis, MN, USA) according to the manufacturer’s instructions.

This study was approved by the institutional review board of Kaohsiung Medical University

Hospital. Written informed consent was obtained from all participants undergoing molecular

analysis.

Histochemistry

Biopsied muscle specimens were snap-frozen in isopentane cooled in liquid nitrogen. A serial

frozen section was stained by a battery of histochemical methods including hematoxylin and

eosin (H&E), modified Gomori-trichrome (mGt) and NADH-tetrazolium reductase

(NADH-TR).

Immunohistochemistry (IHC)

Muscle biopsy cryosections of 6 μm thickness were immunostained with commercially avail-

able antibodies against collagen VI (Biomedicals, USA), alpha-dystroglycan (VIA4) (Upstate

Biotechnology, USA) and laminin α2 (5H2) (Chemicon, USA) according to the standard pro-

tocols with a Ventana Benchmark automated stainer [21].

Next-generation sequencing (NGS) analysis

The capture probe library contains 247 genes related to a broad spectrum of neuromuscular

diseases (NMDs) [22], such as congenital myopathy, congenital muscular dystrophy, congeni-

tal myasthenic syndrome, motor neuron disease, arthrogryposis multiplex congenita, and

other myopathies.[23] Among them, 25 genes (S1 Table) are known to be responsible for

CMD. All coding exons and at least 20 bp of flanking intronic sequences of target genes were
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captured and sequenced on Illumina HiSeq2000. Sequence alignment, analytical pipeline and

variant calling have been previously published [22].

DHPLC analysis

Equal volumes of the amplified PCR products from a patient and a wild-type (male) control

were mixed, denatured at 95˚C for 5 minutes, and then incubated at 65˚C for 30 minutes to

obtain heteroduplexes. Mutational screening, performed for all amplified fragments from each

patient, was carried out by DHPLC on a Wave DNA Fragment Analysis System (Transge-

nomic Inc., San Jose, CA, USA) using a DNASep column (Transgenomic Inc.). DNA mole-

cules eluted from the column were detected by scanning with a UV detector at 260 nm. For

DHPLC analysis, heterozygous profiles were identified by visual inspection of the chromato-

grams [24]. The PCR information for DHPLC analysis was available in S2 Table.

RT-PCR analysis

First strand cDNA synthesis was performed using Advantage RT-for-PCR Kit (Clontech,

Mountain View, CA, USA). Briefly, the reaction mixture, containing 1 ug of total RNA, 1 uM

of oligo(dT)18, 500 uM of each dNTP, 20 units of RNase inhibitor, 200 units of MMLV reverse

transcriptase, and 4 ul of 5x reaction buffer (250 mM Tris-HCl, pH 8.3, 375 mM KCl, 15 mM

MgCl2), was incubated at 42˚C for 1 hr followed by 5 min at 94˚C. PCR amplifications of

LAMA2 cDNAs were performed using the primers and conditions described by [25]. The 12

overlapping primer sets cover most (>99%) of the coding sequence of LAMA2 mRNA.

Results

By using histochemistry and IHC studies, we identified 17 patients with sarcolemma-specific

collagen VI deficiency (SSCD), 6 patients with partial/complete merosin deficiency, two with

reduced alpha-dystroglycan staining, and two with marked inflammatory change in addition

to dystrophic change on muscle pathology (Fig 1A~1H). In the following, we describe the

detailed phenotype and genotype of each type of CMD. Among the remaining 21 patients with

intact IHC staining on muscle pathology, five had NGS analysis but no known mutation has

been identified, and the other 16 received no further molecular analysis.

UCMD

Fifteen of the 17 patients with SSCD received further mutation analysis using NGS due to the

large number of exons of the COL6A genes. The phenotype and genotype of these 15 patients

were summarized in Table 1. All 15 patients exhibited mild hypotonia in their first years and

distal hyper-extensibility in addition to proximal muscle weakness. Proximal joint contracture

was observed in 9 patients at the first visit. Two have died due to respiratory failure. All had

normal intelligence and cardiac function. Spine deformity was observed in all patients older

than 10 years old even though some of them are still ambulant. Thirteen patients were able to

reach the milestone of independent walking although 5 in 13 deteriorated later and became

confined to a wheelchair. The CK levels ranged from 200 to 600 IU/L. Muscle CT showed pref-

erential involvement in the peripheral part of vastus lateralis and central part of rectus femoris

clearly in 5 patients and equivocally in 4 patients of the 13 patients whose muscle images were

available for analysis (Fig 2A and 2B).

Seven patients harbored de novo heterozygous missense mutations in COL6A1; all muta-

tions have been reported and located in the triple helix domain. The most frequent mutation

was c.868G>A, p.Gly290Arg in 3 patients, followed by c.815G>T, p.Gly272Val in 2 patients.

Congenital muscular dystrophy in Taiwan
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Likely pathogenic variants in COL6A2 were identified in 3 patients. Patient 8 carried a variant

at the consensus splicing site (c.955-2A>G), patient 14 carried an out-of-frame deletion,

c.1043_1051delCTGGAAACC, p.Pro348_Asn350del (in-frame), and patient 16 had exon 5

deletion, most likely all leading to a truncated protein. As for COL6A3, patient 5 and 6 who are

siblings, each harbored a homozygous c.1676_1677insT, p.Lys560� frame shift variant result-

ing in truncated protein. A c.6309+2T>A in COL6A3 was identified in patient 11. Patient 15

Fig 1. Histochemistry and immunohistochemistry. Sarcolemma specific deficiency of collagen VI was

observed in skeletal muscle sample of patent 14 with UCMD (A) compared with the intact staining of collagen

VI in control sample (B) Merosin staining was absent in skeletal muscle sample of patient 21 with MDCMD (C)

while the staining is well preserved in control sample (D) Alpha-dystroglycan staining was very faint in the

patient with glycosylation defect (E) in contrast with the intact staining in control muscle sample (F) Marked

inflammatory cell infiltration in some fascicles (G) in addition to dystrophic changes with fibrosis (H) was seen

in the patient with L-CMD.

doi:10.1371/journal.pone.0170517.g001
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harbored a c.6157G>T, p.Gly2053Cys missense variant that has been reported in collagen-VI

related myopathy [26].

Probable pathogenic variants in COL6A genes were not identified in Patient 10 except for

the presumably benign variant, c.2503G>A (p.Val835Ile) in COL6A2 which has been reported

as a SNP with allele frequency of 0.008.

MDCMD

Six patients from 5 families were diagnosed with MDCMD by IHC in this study and received

further mutation analysis. The phenotype and genotype of these 6 patients were summarized

in Table 2. All 6 patients showed floppiness by the age of 6 months and marked motor develop-

ment delay. The CK levels ranged from 1,500 to 7,000 IU/L. Only one was able to walk without

assistance for some while. Brain MRI identified typical white matter hyperintensity in all

patients. Three patients developed epilepsy and had mild to moderate mental retardation, as

assessed by Wechsler Intelligence Scale for Children (WISC). All patients developed marked

Table 1. Summary of the patients with UCMD.

Sex Age

(Y)

Proximal

joint

contracture

Distal

hyperlaxity

Keloid Scoliosis DDH Torticollis Walk

independently

Loss of

ambulation

(Y)

Pathogenic variants in the

COL6A genes (all

heterozygous unless

otherwise indicated)

P1 M 17# p p ? p n n Yes (>2y) 7y COL6A1: c.850 G>A (p.

Gly284Arg)

P2 M 22 p p n p p n Yes (1y6-7m) 12y COL6A1: c.815 G>T (p.

Gly272Val)

P3 F 22 p p n p n n Yes (1y1-2m) not yet COL6A1: c.868 G>A (p.

Gly290Arg)

P4 F 15 p p p p n n Yes (<2y) not yet COL6A1: c.868 G>A (p.

Gly290Arg)

P5^ F 14 n p p p p p Yes (1y2m) not yet COL6A3: c.1676_1677insT

(p.Lys560*) (homo)

P6^ M 13 n p n p n n Yes (1y2m) not yet COL6A3: c.1676_1677insT

(p.Lys560*) (homo)

P7 M 10 p p p n n n Yes (1y6-7m) 8y COL6A1: c.815 G>T (p.

Gly272Val)

P8 M 17 p p n p n n Yes (1y6m) 10y COL6A2: c.955-2A>G

P9 F 14 p p p p n n Yes (1y2m) not yet COL6A1: c.868 G>A (p.

Gly290Arg)

P10 M 6 n p Equivocal n n n Yes (1y2m) not yet Not found

P11 M 14# p p ? p n n Yes (<2y) 12y COL6A3: c.6309+2 T>A

P12 M 7 n p p n n n Yes (1y6m) not yet COL6A3: c.6157G>T (p.

Gly2053Cys)

P13 M 6 p p p n p p Yes (2y) not yet COL6A1: c.886G>A (p.

Gly296Arg)

P14 M 1y11m n p Equivocal p p n no no COL6A2:

c.1043_1051delCTGGAAA,

(p.Pro348_Asn350del)

P15 M 5y1m p p p n n n no no COL6A2: exon5 deletion

#: the age of death;

^: siblings;
?: no record;

p: present; n: nil

doi:10.1371/journal.pone.0170517.t001
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spine deformity and joint contracture by the age of 10 years, and five patients required respira-

tory support starting from their teens. Only one patient had mild left ventricle dilatation and

valve regurgitation.

Ten different sequence variants in LAMA2 were identified in all 6 patients using DHPLC

followed by direct sequencing for confirmation. As Patients 17 and 18 were siblings, they car-

ried the same two variants. All these variants were inherited from their parents except for the

nonsense mutation (c.1303C>T, p.Arg435�) in patient 21. Three frameshift deletions or inser-

tions (c.624 delC, c.2049_2050delAG, c.2945insG), four splice site variants (c.2209-3_2209-

2delCA, c.2451+6A>G, c.4311G>A, c.8989-12 C>G), and one nonsense mutation

(c.1303C>T, p.Arg435�) were expected to produce truncated proteins. One in-frame deletion

(c.6513_6515delTGT) and one missense mutation (c.8654T>C, p.Leu2885Pro) might lead to

partial protein expression. The c.2049_2050delAG and c.6513_6515delTGT mutations have

previously been reported [27], while other mutations have not been reported before. None of

the newly identified mutations were found in a scan of 100 normal individuals. It appears that

the variants are widely distributed and have no hotspot region in the LAMA2 gene.

The synonymous change, c.4311G>A, p.Gln1437Gln identified in patient 19 is located at

the last nucleotide of exon 29, and 5 splice prediction algorithms predict this to be deleterious.

Further cDNA analysis using primers located at exon 26 and exon 33 revealed a normal cDNA

product of 911 bp in the control individual, while an aberrant product approximately 1,000 bp

in addition to the normal 911 bp band was observed in patient 4 (Fig 3A). Sequence analysis of

the aberrant DNA fragment showed that the mutation abolished the original 5’ splice donor

site of intron 29 and a cryptic site 89 bp downstream within the intron was used instead (Fig

3B). Our results clearly demonstrate that the c.4311G>A mutation is a splice site mutation.

Fig 2. Muscle CT findings. For UCMD, the periphery of vastus lateralis was predominantly affected (arrowhead) with variable involvement of rectus

femoris (arrow) (A from patient 7 and B from patient 8). For L-CMD, vastus lateralis was preferentially involved with hypertrophy of rectus femoris at thigh

level (C), and medial head of gastrocnemius was predominantly affected at calf level (D).

doi:10.1371/journal.pone.0170517.g002
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CMD with glycosylation defect in alpha-dystroglycan

In our cohort, reduced alpha-dystroglycan staining on IHC was found in two patients. The

first patient, a currently 16 year-old-girl showed floppiness and delayed motor development in

her infancy and the best motor function she could attain was walking with support. In addition

to progressive proximal muscle weakness, she also presented with myopathic face, pigeon

chest and moderate mental retardation (IQ 40, assessed by WISC). Neither white matter lesion

nor other structural abnormality was found on brain MRI. The CK level was 2,081 IU/L when

she was referred to our hospital at age 10. Lung function test showed rapid deterioration in the

following 4 years (FVC: 46.4% decreased to 23%) and she has now started non-invasive venti-

lation at night. Electrocardiogram and cardiac echo revealed normal findings at age 12; scolio-

sis gradually developed after age 10.

Compound heterozygous mutations in POMT1, encoding protein O-mannosyl transferase

1 for carrying out glycosylation on alpha-dystroglycan, were later identified by mutation analy-

sis and confirmed by parental study. The analysis was performed using NGS on account of the

considerable number of causative genes for alpha-dystroglycanopathy. The c.793C>T, p.

Arg265� is a nonsense mutation causing premature termination of translation; the other muta-

tion, c.1859G>C (p.Arg620Pro) has never been reported but computer-based algorithms

(SIFT and Polyphen2) have predicted it to be damaging. Taking the clinical and pathological

findings together, the mutation is most likely pathogenic.

Surprisingly, the other patient with mildly reduced alpha-dystroglycan staining on IHC was

found to have compound heterozygous mutations in TRAPPC11 which has previously been

reported to be responsible for LGMD2S [28]. This patient presented with infantile-onset

Table 2. Summary of the patients with MDCMD.

Sex Current age/

Age of onset

Hypotonia in

infancy

Walk

independently

Epilepsy Intelligence Brain MRI (abnormal

white matter signal)

Pathogenic variants in

LAMA2

P16 F 31y/6m p n p mild MR p c.624 delC (p.Leu209*) (m)

c.2209-3_2209–2 delCA (f)

P17^ M 27y/6m p n p moderate

MR

p c.8654 T>C (p.Leu2885Pro)

(m)

c.2945 insG (p.Ser982Arg

fs*16) (f)

P18^ M #12y/4m p n p mild MR p c.8654 T>C (p.Leu2885Pro)

(m)

c.2945 insG (p.Ser982Arg

fs*16) (f)

P19 M 18y/4m P n n borderline p c.6513_6515 delTGT (p.

Val2172del) (m)

c.4311 G>A (p.Gln437Gln)

(f)

P20 F 16y/4m P p n normal p c.8989-12 C>G (m)

c.2451+6 A>G (f)

P21 F 18y/5m p n n normal p c.2049_2050 delAG (p.

Arg683Ser fs*21) (m)

c.1303 C>T (p.Arg435*)

#: the age of death;

^: siblings;

p: present; n: nil; f: father; m: mother

doi:10.1371/journal.pone.0170517.t002
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cataracts and fatty liver in addition to proximal muscle weakness. The detailed information of

this patient has been published recently [29].

L-CMD

Two sisters, aged 5 and 7 respectively, were clinically diagnosed with CMD. Their parents

denied consanguinity. All IHC showed intact staining and routine histochemistry revealed dif-

fuse dystrophic changes with marked lymphocyte infiltration in only some fascicles. Both

patients displayed bizarre gait ever since they started walking independently at around age 1.5,

with frequent falls. The parents refused to acknowledge the floppiness during their infancy.

Progressive proximal weakness developed thereafter and the patients lost the ability to walk at

age 4 and 6, respectively. Physical examination showed markedly limited neck flexion and

joint contracture in elbow, hip and ankle. No cardiac involvement but mild ventilatory defect

was found. The CK level was around 600 IU/L. Taking clinical and pathological findings

together, L-CMD was highly suspected. At the thigh level of muscle CT, vastus lateralis showed

similar involvement at the periphery to that seen in UCMD, but rectus femoris was usually

spared and hypertrophic (Fig 2C). At the calf level, the medial head of the gastrocnemius was

preferentially affected (Fig 2D).

Direct sequencing identified a heterozygous mutation in LMNA, c.1072G>A, p.Glu358Lys

in these two patients (Fig 4), which has been reported as a frequent mutation in L-CMD [20].

Their parents were both asymptomatic and did not carry the same mutation. However, in

addition to these two patients, there were two other symptomatic children from the same

Fig 3. cDNA analysis for patient 19 to elucidate the pathogenicity of c.4311 G>A in LAMA2. (A) RT-PCR

analysis of LAMA2 mRNA of patient 4 and control individual. (B) Aberrant splicing of the mutant LAMA2 mRNA in

patient 4.

doi:10.1371/journal.pone.0170517.g003
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family who were later confirmed to carry the same mutation too. These results highly suggest

that one of the parents may have germline mosaicism.

Discussion

The target gene capture/deep sequencing approach can greatly facilitate the pace of genetic

diagnosis of muscle diseases. Confirmed molecular diagnoses of muscle diseases can assist in

genetic counseling and carrier detection as well as guide therapeutic options for individualized

treatment in the future. However, conclusively proving the pathogenic variant is the most diffi-

cult part after obtaining the NGS results, therefore, establishment of genotype-phenotype cor-

relation is crucial in making the final diagnosis. Detailed clinical and pathological

investigation remains the basis [22, 27, 29].

Our results suggest that the most common CMD in Taiwan might be the Ullrich type. Col-

lagen VI-related dystrophy is known to encompass a clinical continuum with UCMD and

Bethlem myopathy (BM) at each end of the spectrum. Intermediate phenotypes are not yet

well defined and the same mutation could cause either UCMD or BM [30]. Therefore, collagen

VI-related myopathy or VI-related dystrophy is now preferentially referred. In our cohort, all

patients are early-onset; two were categorized as “early severe”; six were “moderate progres-

sive”; the remaining 7 patients were “mild” according to phenotypic stratification [20, 31]. The

proportion of “early severe” group is around 13.3% which is much less than the previously

reported 19.4–25.7% [31, 32]. As “early severe” patients might present with arthrogryposis

multiplex congenita, they might not have been recognized as CMD and referred to our center.

Fig 4. Pedigree and sequencing results of the patients with L-CMD.

doi:10.1371/journal.pone.0170517.g004
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Nevertheless, proximal muscle weakness with distal hyperlaxity is characteristic for UCMD,

especially together with proximal joint contracture. The muscle CT findings of our patients

did not well correlate with the clinical severity especially in very young children, probably due

to early assessment and small muscle mass. Although muscle MRI has been reported to be

helpful for the diagnosis of collagen VI-related myopathy [33], some difficulty remains arrang-

ing muscle MRI in Taiwan, due to availability and cost. In addition, patients have to wait for

months for MRI and the children might need more sedation for it. However, the muscle CT

performed on our patients showed similar pattern to MRI, suggesting the possible compatibil-

ity between these two imaging methods.

In our cohort, a homozygous mutation in COL6A3, c.1676_1677insT, p.Lys560� was identi-

fied in patients 6 and 7, who are siblings. Both asymptomatic parents are heterozygous for this

variant. Homozygous mutation usually results in complete loss of protein and more severe

phenotype; however, the IHC staining on skeletal muscles from these two patients showed

only partial deficiency of collagen VI and their clinical phenotype was not “early severe”. Trac-

ing back to their family history, one paternal aunt also had similar symptoms and the mutation

screening showed that she carried the same homozygous mutation, hinting that both of her

parents (grandparents of patients 6 and 7) might be heterozygous and therefore most likely

also passed the variant to the father of patients 6 and 7. However, as their DNA samples were

not available, we could not confirm whether they were both carriers or not. Although the

patients’ parents denied consanguinity, further linkage analysis may be helpful to clarify the

haplotype of this family.

MDCMD is the most common CMD in many European countries [3]. In Asia, the largest

series with 43 patients has been reported from China [34] but no clear epidemiology has been

described in either China or other Asian countries. In our cohort, it accounts for the second

most frequent CMD in Taiwan, following UCMD. No recurrent mutation has been identified

in this study. The phenotype of our patients is relatively homogeneous, consistent with previ-

ous reports. It is worth noting that the proportion of our patients with mental retardation and

epilepsy seems to be larger than in previous description (50% versus around 15%) [35]. The

mutations identified here are distributed throughout the gene and there seems to be no clear

genotype-phenotype correlation. However, more patients should be studied for further

clarification.

In our series, only one patient was identified to have compound heterozygous mutations in

one of the alpha-dystroglycanopathy related genes, POMT1. Cardiomyopathy and respiratory

failure could occur in patients with POMT1 mutations but are uncommon [36]. Our patient

did not show cardiac involvement but severe restrictive respiratory defect had already

occurred by age 12. More patients should be studied to understand the natural course of Tai-

wanese patients. Interestingly, the incidence of CMD with glycosylation defect in alpha-dystro-

glycan has been increasing in European countries and Australia in recent years [5, 37]. As our

patients were enrolled based on clinical and muscle pathology findings, there might be a selec-

tive bias as some floppy babies with congenital brain/eye anomalies might not be recognized as

CMD or could not be referred for muscle biopsy due to critical clinical condition.

One of our patients with decreased staining of alpha-dystroglycan was identified to have

TRAPPC11 mutations by NGS. This implied that the defect of TRAPPC11 might result in the

perturbation of glycosylation occurring in the endoplasmic reticulum (ER) or the Golgi appa-

ratus as TRAPPC11 is important for TRAPPC complex assembly and membrane traffic specif-

ically between the ER and ER-to-Golgi intermediate compartment [28, 38]. Further studies are

necessary to clarify the relationship among TRAPPC11, glycosylation and ER-to-Golgi traf-

ficking system.
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The clinical, pathological and imaging features of patients with L-CMD presented in this

study are similar to previous reports of L-CMD except for head drop [19, 20]. Our patients

showed limited neck flexion reflecting rigid spine, one of classic EDMD phenotypes. As car-

diac involvement might not develop in the early stage, either head drop or cervical contracture

leading to neck flexion limitation together with inflammatory change on muscle pathology is

truly characteristic for L-CMD. In this family, germline mutation of one parent was suspected

as only one heterozygous mutation was identified and multiple children were symptomatic

but both parents were asymptomatic. A broader variety of tissue samples from the parents

could be tested to confirm the mosaicism [39].

In our cohort, we did observe that the CK level moved in different ranges for different

CMD subtypes. It was the highest in the patient with TRAPPC11 mutations which could be up

to 10,000 IU/L. In the patients with MDCMD and glycosylation defect with POMT1 muta-

tions, the CK level ranged in the thousands but did not reach 10,000 IU/L. The CK levels in

both L-CMD and UCMD were only mildly elevated, rarely over 1,000 IU/L. Taken together

with clinical and pathological features, the CK level might also be helpful for differentiating

the subtypes of CMD.

In conclusion, we have defined the frequencies of different types of CMD in a large patient

cohort and demonstrated the utility of histochemistry/IHC in categorization to further guide

molecular analyses. Molecular studies, with comprehensive target capture/NGS as a second-

tier, can confirm the disease subtype and provide accurate genetic counseling for the family,

while facilitating further studies for the understanding of the genetic basis and phenotypic var-

iability of the CMDs. Results presented here are also important for the establishment of the

national registry of patients with CMD in Taiwan.
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