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ABSTRACT
Obesity is a growing worldwide problem that generally starts in the early years of life and affects 
minorities more often than Whites. Thus, there is an urgency to determine factors that can be used 
as targets as indicators of obesity. In this study, we attempt to generate a profile of gut and oral 
microbial clades predictive of disease status in African American (AA) and European American (EA) 
children. 16S rDNA sequencing of the gut and saliva microbial profiles were correlated with salivary 
amylase, socioeconomic factors (e.g., education and family income), and obesity in both ethnic 
populations. Gut and oral microbial diversity between AA and EA children showed significant 
differences in alpha-, beta-, and taxa-level diversity. While gut microbial diversity between obese 
and non-obese was not evident in EA children, the abundance of gut Klebsiella and Magasphaera 
was associated with obesity in AA children. In contrast, an abundance of oral Aggregatibacter and 
Eikenella in obese EA children was observed. These observations suggest an ethnicity-specific 
association with gut and oral microbial profiles. Socioeconomic factors influenced microbiota in 
obesity, which were ethnicity dependent, suggesting that specific approaches to confront obesity 
are required for both populations.
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Introduction

Childhood obesity is a growing worldwide health 
problem that disproportionately affects ethnic 
minorities.1 In the United States, nearly 
13.7 million children and adolescents are 
obese.2 Childhood obesity can lead to several 
health problems, including cardiovascular dis-
ease, type 2 diabetes, certain types of cancer, 
and coronavirus disease 2019 (COVID-19).3,4 

The incidence of childhood obesity in African 
Americans (AAs) (22%) is higher than that of 
European Americans (EAs) (14.1%). Although 
the exact cause of this difference is not well 
established, physical and dietary habits could 
contribute to changes in the microbial composi-
tion and lead to obesity. Additionally, obesity 
has high heritability, suggesting that genetic fac-
tors, in addition to environmental factors, may 
be involved.5 We ascertained various factors that 
can impact obesity to define disparate rates in 

AA compared to EA populations in the United 
States.

The microbiome is influenced by numerous fac-
tors, including the environment, geographic loca-
tion, genetics, and diet. A Western diet, comprised 
of low fiber, high sugar, and animal fat, influences 
the intestinal microbiome and has been linked to 
obesity.6,7 The salivary amylase gene (AMY1) helps 
in the digestion of starch by hydrolyzing the ∝-1,4 
glycosidic bonds.8 AMY1 accounts for 40% to 50% 
of total protein in human saliva9,10 The salivary 
amylase protein level is correlated with the copy 
number.11 According to one study, variation in 
copy numbers (CNV) of AMY1 is directly depen-
dent on the consumption of starch in a diet.8 AMY1 
CNV is inversely associated with body mass index 
(BMI) and obesity.12 A recent study showed that 
AMY1 CNV is correlated with the composition and 
function of oral and gut microbiome.13

In another recent study, evaluation of gut micro-
biota differences across ethnicities of US 
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populations revealed that a strong association 
between ethnicity and abundance of certain taxa 
was shown where Christensenellaceae was asso-
ciated with BMI.14 High BMI has been associated 
with a decrease in gut microbial diversity.15 The 
obesity-associated gut microbiome can lead to 
altered colonic gene expression, suggesting an 
interaction between gene-environmental factors 
and obesity, as well as other diseases.16

There is a paucity of information to understand 
the factors influencing ethnic disparity in child-
hood obesity. In the present study, we compared 
socioeconomic factors such as maternal education, 
family income, and AMY1 CNV association with 
salivary and fecal microbiota in non-obese and 
obese AA and EA children.

Results

We evaluated differences in gut and oral micro-
biomes of 60 children with AA (n = 30) and EA 
(n = 30) ethnicity. Equal numbers of male and 
female children were included in both ethnic 
groups. Participants included non-obese and 

obese children with median mean age of 
8.6 years. There were no significant differences 
in overall weight, height, BMI z-score, and 
AMYI CNV between the 2 groups. However, 
family income and parental education were sig-
nificantly different (P < .001) between AA and 
EA populations. The characteristics of the study 
population are shown in Table 1.

Gut Microbial Diversity Associated with Ethnicity

As ethnicity plays a vital role in microbial dif-
ferences in the human microbiome, we first 
evaluated differences between the microbiome 
of AA and EA children. Also, a comparison of 
oral and gut microbiota showed differential 
structure and composition, with most taxa 
being differentially expressed in both sites 
(Figure S1). We compared gut microbial diver-
sity between AA and EA participants. There 
were significant differences in the alpha and 
beta diversity between AA and EA participants 
(Figure 1a and b), supporting the previously 
published observations that microbial 

Table 1. Characteristics of the study population.
Characteristica AA (n = 30) EA (n = 30) Total (N = 60) P value

Sex (No.) 
Female (%) 
Male (%)

18 (60) 
12 (40)

17 (56.7) 
13 (43.3)

35 (58.3) 
25 (41.7)

1.00

Age (y) 
Mean (SD) 8.56 (1.57) 8.56 (1.27) 8.56 (1.41) .83
Body weight (lb) 
Mean (SD) 81 (32.3) 73.3 (17.2) 77.2 (26) .25
Height (cm) 
Mean (SD) 135 (14) 133 (9.37) 134 (11.8) .61
BMI 
Mean (SD) 19.6 (4.19) 18.6 (3.05) 19.1 (3.67) .29
Non-obese 
5th – 95th percentileb (%)  
Mean BMI (SD) 
Obese 
≥95th percentile 
Mean BMI (SD)

21 (70) 
17.47 (1.81)  

9 (30) 
24.50 (4.07)

22 (73.3) 
17.27 (2.27)  

8 (26.7) 
22.16 (1.73)

43 (71.7) 
17.37 (2.04)  

17 (28.3) 
23.40 (3.32)

.75   

.15
BMI z-score 
Mean (SD) 1.237 (1.11) 0.992 (1.35) 1.11 (1.23) .45
AMY1 CNV 
Mean (SD) 6.89 (2.58) 7.33 (2.36) 7.11 (2.46) .49
Annual income ($USD) 
< 25,000 (%) 
25,001–50,000 (%) 
50,001–75,000 (%) 
>75,001 (%)

23 (76.7) 
0 (0) 

2 (6.67) 
5 (16.7)

2 (6.67) 
7 (23.3) 
8 (26.7) 

13 (43.3)

25 (41.7) 
7 (11.7) 

10 (16.7) 
18 (30)

<.001

Maternal education 
No higher education (%) 
Higher education (%)

13 (43.3) 
17 (56.7)

6 (20) 
24 (80)

19 (31.7) 
41 (68.3)

<.001

Abbreviations: AA, African American; BMI, body mass index; CNV, variation in copy number; EA, European American. 
aData expressed as mean (SD) and P < .05 is considered as statistically significant. 
bNo participants were recruited with less than 5th percentile BMI.
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differences were dependent on race.7,17,18 

Differential abundance analysis showed 
a higher abundance of Ruminococcaceae in AA 
children compared to EA children (Figure 1c). 

Race-associated bacterial differences were 
observed in many genera, including 
Anaerotruncus, Desulfovibrio, Marvinbryantia, 
Oxalobacter, Prevotella, Senegalimassilia, and 

Figure 1. Gut microbiota variability, defined by 16S rDNA sequencing, between children of African American (AA) and European 
American (EA) ethnic populations (n = 60) showed significant differences between the 2 populations. A, Comparison of species 
richness, alpha diversity, defined by observed amplicon sequence variants (ASV) of AA and EA populations showed significant 
differences (p ≤ .05). B, Principal coordinate analysis (PCoA) plot based on the bray-curtis distance matrix constructed using ASVs. 
The percentage of variability explained by the corresponding coordinate is indicated on the axes. Each point represents a sample – red 
symbols indicate aa population and blue symbols indicate ea population. The lines indicate vectors representing the relationships 
between ASVs and each sample category. The ellipses serve a visual guide to group differences. Comparison of beta diversity between 
aa and ea populations showed significant differences in community structure (p ≤ .05). C, Differential abundance of taxa in AA and EA 
populations at 10% false discovery rate. Each dot represents a participant. The relative abundances were plotted on the square-root 
scale to better visualize the low abundance taxa.

GUT MICROBES e1882926-3



Slackia, all showing higher abundance in AA 
children than EA children (Figure 1c, at FDR 
[false discovery rate] <0.1).

Oral Microbiota Differs By Ethnicity

Next, we determined whether oral microbiota 
has any ethnic specificity. The alpha diversity 
was similar between the AA and EA groups 
(Figure 2a and b). But comparison of oral bac-
terial diversity and composition showed 
a considerable difference in beta diversity 
between AA and EA ethnicity (Figure 2b). 
Differential abundance analysis showed an 
increased abundance of genera belonging to 
Firmicutes and Actinobacteria in the AA group 
and a higher abundance of Proteobacteria, 

Fusobacteria, and Tenericutes in the EA group 
(Figure S2). Streptococcus was present with an 
increased abundance in AA children compared 
to EA children, whereas Butyrivibrio, 
Capnocytophaga, Fusobacterium, Haemophilus, 
and Prevotella were reduced in AA compared 
to EA children (Figure 2c). Prevotella is a key 
bacterium that showed high abundance in the 
stool samples of AA children, but were at low 
levels in the oral microbiome of EA children.

Gut Microbiota is Associated With Obesity in AA 
Population

The initial groups of normal and overweight 
participants did not show any substantial differ-
ences (Figure S3), so they were divided into only 

Figure 2. Oral microbiota comparison between AA and EA populations (n = 60) showed similar alpha diversity with considerable 
difference in beta diversity with ethnicity-specific taxa. Oral microbiota was sequenced using saliva samples. A, Alpha diversity was 
analyzed by observed ASVs. No significant difference in alpha diversity of oral microbiota was observed between AA and EA groups. B, 
Bray-curtis distance matrix for beta diversity between AA and EA populations was analyzed using permanova. Comparison between AA 
and EA groups showed a significant difference in beta diversity (p ≤ .05). C, Genus-level differentially abundant taxa in AA and EA 
groups at 10% false discovery rate were presented. The relative abundances were plotted on the square-root scale to better visualize 
the low abundance taxa. Streptococcus was present with an increased abundance in AA children compared to EA children, and 5 
genera, butyrivibrio, capnocytophaga, fusobacterium, haemophilus, and prevotella, were abundant in EA but no in AA groups.
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obese and non-obese groups (normal and over-
weight groups were combined into non-obese). 
When both groups were analyzed individually, 

a substantial difference in alpha diversity (num-
ber of observed ASVs [amplicon sequence var-
iants]) and beta diversity between obese and 

Figure 3. Microbiota differences between obese and non-obese children showed ethnicity-dependent associations. Oral microbial 
diversity was associated with obesity in EA children and gut microbial diversity in aa children. A-C, Gut microbiota differences in stool 
samples between obese and non-obese AA children. A, Alpha diversity measured by observed ASVs showed increased diversity in 
obese children compared to non-obese children. B, Beta diversity (bray-curtis distance) showed significant differences in gut 
microbiota between obese and non-obese AA children (p ≤ .05). C, Differentially abundant taxa in obese and non-obese AA children 
(n = 30). Children from the EA group did not show major differences in gut microbiota alpha and beta diversity as well as differences in 
taxa abundance between obese and non-obese participants (not shown). D-E, Oral microbial diversity was associated with obesity in 
EA children only (n = 30). D, Salivary microbial alpha-diversity comparison between obese and non-obese EA children showed obesity 
was associated with increased diversity. E, Genera Aggregatibacter and Eikenella abundance was increased in obese compared to non- 
obese EA children. Children from the AA group did not show significant differences in alpha, beta, and taxa diversity in salivary 
microbiota (not shown).
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non-obese children was observed only in AA 
children (Figure 3a and b). The major micro-
biota difference was observed in the presence of 
rare and less abundant taxa. Differential abun-
dance analysis of the AA group revealed the 
association of obesity with the abundance of 
taxa from Actinobacteria, Proteobacteria, and 
Firmicutes and notably Klebsiella and 
Magasphaera in obese AA children (Figure 3c, 
at FDR <0.1). Children from the EA group did 
not show a substantial difference in taxa abun-
dance between obese and non-obese participants, 
suggesting that obesity-associated gut micro-
biome may be race dependent.

Oral Microbiota is Associated With Obesity in EA 
Children
An analysis on the association of oral microbiota 
with obesity did not show any considerable differ-
ence in alpha and beta diversity, and no taxa were 
found to be substantially associated in the AA 
group. On the other hand, a considerable difference 
in alpha diversity (observed ASV numbers) 
between obese and non-obese children was 
observed in the EA group (Figure 3d). Abundance 
of Aggregatibacter and Eikenella in the EA group 
were associated with obesity (Figure 3e, at FDR 
<0.1). These results suggest that obesity-associated 
oral microbiota may also be race dependent.

Figure 4. Correlation of AMY1 copy numbers (CNVs) with body mass index (BMI) and gut microbiome. AMY1 is not associated with BMI. 
A, AMY1 and BMI z-score did not show any correlation in EA and AA populations (n = 60). B, Alpha diversity measured by inverse 
simpson index (inv simpson) showed a significant difference in gut microbial diversity between low and high levels of AMY1 in AA 
children (p = .01) but not EA children. C, AMY1 levels reflected taxa diversity in the gut microbiome with low abundance of 
Bifidobacteriaceae representing Actinobacteria in AMY1-high children when compared to amy1-low children in both populations 
(p ≤ .05).
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AMY1 Copy Numbers Not Correlated With Obesity
Recently, some studies have shown an association 
between salivary amylase enzyme and obesity, 
while others did not confirm this 
association.11,12,19,20 In this data set, there was no 
significant correlation between BMI z-score and 
AMY1 CNV in either population (Figure 4a). 
Also, no significant association was observed 
between oral microbiota and AMY1 CNV in either 
population. However, an increase in alpha diversity 
of gut microbiota was observed in children with 
low AMY1 CNV compared to high CNV (Figure 
4b). Higher abundance of Bifidobacteriaceae repre-
senting Actinobacteria was present in children with 
low AMY1 CNV compared to high AMY1 in both 
populations (Figure 4c). These data suggest an 

association of gut microbiota with AMY1 even 
though there was no correlation between the BMI 
z-score and AMY1 CNV in the present data.

Role of Socioeconomic Factors in Obesity and 
Correlation to Microbiota

A report by The Centers for Disease Control and 
Prevention (CDC) in 2017 suggested that the pre-
valence of obesity can differ based on race, income, 
and education.21 Generally, lower-income groups 
and non-college graduates have a higher prevalence 
of obesity.21 Here, we tested whether obesity in the 
children of AA and EA groups is dependent on the 
income and education status of parents. Families 
with at least 1 parent with a college degree or any 

Figure 5. Educational status of parents did not impact BMI but did influence gut microbial diversity. Families with 1 parent with college 
degree were categorized as higher education. A, Correlation between educational status of parents and BMI z-score of children was not 
significant in either populations. B, Education levels of parents correlated with a nonsignificant but an increased trend of gut 
microbiota alpha diversity. C, Beta diversity in children of both groups showed significant differences associated with their parent’s 
educational status (P = .02). However, no abundance of specific taxa in gut microbiota was observed based on the educational status of 
the parents in both populations. No significant associations between educational status and oral microbiota were observed between 
populations (not shown).
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degree after high school were classified as having 
higher education. There was no significant differ-
ence in the BMI z-score in the 2 populations based 
on the education of parents (Figure 5a). As shown 
in Table 1, 77% of the AA group and 7% of the EA 
group had an annual household income of less than 
$25,000, showing a considerable difference in over-
all income between the 2 populations. Using 
a cutoff of $50,000 as low annual income allowed 
us to classifying 30% of children in the EA group as 
low income. Both AA and EA groups did not show 
a significant association of higher BMI z-score with 
an annual household income of more than $50,000 
(Figure S4).

A comparison of gut microbial composition 
based on the education of parents showed that 
a higher education status of parents was associated 
with a nonsignificant trend toward an increase in 
microbial diversity as measured by the Shannon index 
(P = .06) (Figure 5b). Interestingly, higher education 
was more strongly associated with beta diversity in the 
AA group than the EA group (Figure 5c). However, no 
abundance of specific taxa was observed based on the 
educational status of parents. Also, no associations 
between the education status and the oral microbiota 
were found.

Next, we determined whether income had any 
correlation with gut or oral microbiota in both 
populations. While there was no significant dif-
ference in the gut microbiota’s alpha diversity, 
the beta diversity was significantly associated 
with income (Figure 6a). Children from low- 
income families from both AA and EA popula-
tions had lower levels of Faecalitalea and higher 
Phascolarcobacterium, both belonging to the 
Firmicutes phylum (Figure 6b, at FDR <0.1). 
For the oral microbiota, no significant associa-
tion was observed in the alpha diversity, though 
the microbial community structure was signifi-
cantly different, as observed by a difference in 
beta diversity (Figure 6c). Interestingly, a strong 
association was evident only in the EA group. 
Differential abundance analysis showed an asso-
ciation of a higher abundance of Streptococcus in 
the EA group with low income only (Figure 6d). 
These data suggest that a microbial association 
between obesity and socioeconomic factors is 
dependent on ethnicity.

Discussion

he recent COVID-19 pandemic has brought into 
focus the disproportionate burden of illness, with 
higher mortality rates in minority populations than 
the White population, according to the CDC.22 

Even though the cause of this major disparity 
remains unclear, comorbidities have been sug-
gested as the primary reason. An association 
between gut microbiota and obesity has been 
documented.16,23,24 There is an evidence of 
increased obesity prevalence in minorities, which 
starts during childhood. Hence, an insight into the 
factors that strongly influence oral and gut micro-
biome is essential to understand the cause of the 
variation in obesity.

There is limited information available on the gut 
and oral microbial profile in obese children of AA and 
EA ethnicity, and reports have not been 
consistent.25,26 One study reported an increase in 
Enterobacteriaceae in obese children compared to 
children of healthy weight, while another reported 
an increase in Bacteroides in obese Mexican children. 
In a study of a small adult AA population, a variability 
of gut microbiota was observed according to ethni-
cities with heritable taxa.14 A recent study suggested 
that heritability of certain microbes from an over-
weight mother to infant predisposes to obesity in 
adulthood.27 Magasphaera, a vaginal microbe, has 
been associated with obesity in adults.23 We observed 
an increased abundance of Magasphaera in 
obese children of AA descent. Similarly, 
Coriobacteriaceae and Runmicoccaceae observed in 
infants born to overweight mothers were increased 
in obese AA children.27 Whether the presence of these 
microbes in obese children is hereditary or due to 
mode of delivery is unclear, as birth mode was not 
collected in this study. The differences in BMI- 
associated taxa in children of AA and EA descent 
could also be due to the fact that heritable taxons of 
bacteria vary by ethnicity.14 Indeed, children of EA 
and AA descent showed variability in gut micro-
biome, as observed by alpha and beta diversity. AA 
children had a higher abundance of Anaerotruncus, 
Desulfovibrio, Marvinbryantia, Prevotella, Slackia, 
Senegalimassilia, Runmicoccaceae, and Oxalobacter, 
and the final 2 have been associated with obesity.27,28 

Slackia spp are gut-associated bacteria that have been 
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suggested to play a role in host lipid xenobiotic 
metabolism,29 and its abundance may be dependent 
on diet. Sulfate-reducing bacteria, Desulfovibrio, are 
reported to be associated with a high-fat diet,30 and its 
co-occurrence in the gut with Prevotella has been 
speculated to work synergistically for degrading 

mucin.31 Desulfovibrio has been reported in autistic 
children.32 A study on colorectal cancer showed that 
the richness of Desulfovibrio in the gut was associated 
with AA patients.33 In the present study, Desulfovibrio 
did not markedly correlate with obesity. Also, the 
abundance of Anaerotruncus, Marvinbryantia, and 

Figure 6. Family income strongly influences gut and oral microbiota based on ethnicity. A cutoff of $50,000 per family was used as low 
annual income. A, In both AA and EA children belonging to higher income families, an increased beta diversity in gut microbiota was 
shown (P = .03). No correlation between income and gut microbial alpha diversity was observed in both groups. B, Both groups had 
increased abundance of gut Phascolarcobacteria, with a decrease in Faecalitalea (both belonging to the phylum Firmicutes) in families 
with low income (P ≤ .05). Oral microbial diversity differed based on the income of the EA and AA families. C, Beta diversity as 
determined by Bray-Curtis distance was associated with income in both groups (P = .001). D, Differentially abundant taxa analysis of 
oral microbiota showed increased abundance of Streptococcus in EA children from low-income families. No differentially abundant taxa 
were associated with income in AA children (not shown).
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Senegalimassilia, not known to be related to obesity, 
in AA children was a novel observation. However, no 
major difference in the taxa between obese and non- 
obese EA children was somewhat surprising. Reasons 
for this could include mode of birth and diet. 
A previous study in AA and EA populations did 
show an increase in Prevotella in AAs, although that 
study was dependent on diet.7 An increase in 
Prevotella has been correlated with enhanced glucose 
metabolism in the gut.34 A recently published study 
showed that the association between gut Prevotella 
and BMI was most noticeable among AA adults.35 

However in the present study, Prevotella in the gut of 
AA children did not associate with BMI, suggesting 
that the Prevotella-BMI association may be dependent 
on age.

Interestingly, the oral microbiome of EA children 
showed microbial variability between obese and non- 
obese children, whereas AA children did not show that 
variability. Salivary microbiota in obese EA children 
showed an abundance of Aggregatibacter and 
Eikenella, both associated with periodontitis and 
obesity.36–38 Aggregatibacter has been described as an 
oral pathogen associated with obesity in AA and 
Japanese adults.37 Eikenella was found to be increased 
in obese Brazilian patients with chronic periodontitis.38 

Hence, the changes in oral microbiome may also have 
regional specificity. Gupta et al39 showed how geogra-
phy, ethnicity, and subsistence play a role in the diver-
sity of human microbiome composition. While many 
opportunistic pathogenic species, such as Streptococcus, 
Butyrivibrio, Capnocytophaga, Fusobacterium, 
Haemophilus, and Prevotella,40,41 showed differences 
in salivary microbiome between AA and EA children, 
Streptococcus are the only bacteria that differentiated 
with higher abundance in AA children, supporting 
a previous study of its increased presence in low- 
income AA populations.38 The present data suggest 
that the oral microbiome in obesity is much more 
relevant for EA children than AA children.

Reduced AMY1 copy numbers have been asso-
ciated with increased BMI and obesity risk in 
European and Asian populations.11,42 In this 
study, no association between AMY1 CNV and 
BMI was observed in either population. The sali-
vary microbiome in obese children has shown low 
diversity similar to obese children with type 2 
diabetes.43 We did not observe any association 
between AMY1 CNV and oral microbiome in either 

population. However, there was an inverse relation 
between copy numbers and gut microbial diversity. 
Low AMY1 CNV was associated with increased gut 
microbial diversity in the AA population and obese 
AA children, supporting previous observations of 
low CNV association with gut diversity. Low AMY1 
CNV has been associated with obesity and an 
increased abundance of Prevotella in Mexican 
children.44 In this study, a higher abundance of 
Bifidobacteriaceae was associated with low AMY1 
CNV, suggesting that these associations could be 
ethnic-specific. Even though no association 
between AMY1 and oral microbiome was observed, 
salivary microbiota differed between the 2 popula-
tions and was markedly different between obese 
and non-obese children.

We then determined whether microbial variability 
can be explained by differences in socioeconomic fac-
tors within the 2 studied populations. A racial disparity 
in obesity has been reported, with a higher incidence of 
obesity in Blacks than Whites among individuals with 
higher education levels.45 In this study, families with 
parents having a college degree showed an increase in 
beta diversity in AA children. It is assumed that educa-
tion would help parents pick healthier dietary options. 
However, since education levels were not associated 
with BMI, it suggests that increased awareness about 
obesity and diet is required.

Poverty has been associated with an increased 
burden of obesity.46 In this study, AA families 
with a higher annual income showed an association 
with obesity in children. However, 76% of the AA 
families had low income; thus, more families with 
higher income need to be studied. On the other 
hand, income had no correlation with obesity in 
the EA group, though increased beta diversity was 
associated with families with a higher annual 
income. Low income was associated with increased 
abundance of Phascolarcobacterium, a microbe pre-
sent in the human gastrointestinal tract.47 This 
bacterium uses succinate produced by other bac-
teria and leads to production of propionate; thus, it 
is a microbe of health. However, when increased in 
abundance due to a high-fat diet, it has been asso-
ciated with metabolic disorders in rats.48 On the 
other hand, Faecalitalea, a butyrate-producing 
Firmicute and reported to be 1 of the baseline 
species in healthy human gut,49 was decreased in 
children from low-income families. This suggests 
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that income-based choice of diet may have 
a substantial influence on gut microbiota. 
However, the study is limited by low numbers of 
children in each category as well as differences in 
income and education levels between the 2 studied 
ethnic groups, impacting the ability to detect asso-
ciations. Further limitations include a lack of other 
data, including metagenomics, transcriptomics, 
and metabolomics, that can provide an in-depth 
insight into ethnic-specific factors associated with 
obesity. Further studies are required to confirm 
these associations in ethnic populations.

Conclusions

Observations from this study suggest that, while 
children of AA descent show an association with 
gut microbiota and obesity, children of EA descent 
show an association between salivary microbiome 
and obesity. This means that in order to more 
accurately show that gut microbes are associated 
with obesity, different ethnic groups need to be 
studied, and any solution should be adapted to 
different ethnic populations. The study has limita-
tions in the numbers of participants in various 
associations tested. Thus, further studies with 
increased numbers of children from the 2 popula-
tions are required to determine specific associations 
to provide ethnic-specific solutions to the obesity.

Materials and Methods

Participants and Anthropometric Parameters

All patients fulfilled the established exclusion and inclu-
sion criteria. The study was approved by the institu-
tional review board of Auburn University. Written 
informed consent was received from all participants 
and their parents prior to inclusion in the study. The 
inclusion criteria to admit participants in the study were 
age between 6 and 10 years and either EA or AA 
ethnicity. The exclusion criteria included children 
with major health problems associated with obesity, 
including cardiovascular disease or type 2 diabetes, 
and children who were taking antibiotics. The AA 
children (n = 30; 18 female, 12 male) and EA children 
(n = 30; 17 female, 13 male) residing in the state of 
Alabama, USA, were enrolled with the consent of their 
parents. Children with the major health problems 

outlined above were excluded from the study. The 
characteristics of the study population are given in 
Table 1.

Participants’ height was measured to the nearest 
1/8 inch and weight to the nearest 4 ounces,26 and 
measurements were used to calculate BMI z-score,12 

to assess for obesity, and to approximate the ideal 
weight for a person, considering both sex and age.50 

The children were classified as normal weight, over-
weight, and obese based on CDC guidelines (https:// 
www.cdc.gov/obesity/data/childhood.html). Based 
on BMI cutoff, non-obese groups are from the 5th 
to 95th percentile derived by combining the normal 
weight (5th to <85th percentile) and overweight 
(85th to <95th percentile) categories. Participants 
with a BMI ≥95th percentile were considered obese.

Sample Collection

Saliva collection was done using a saliva collection kit 
(DNA Genotek Inc., Ontario, Canada). Before the col-
lection of saliva, children were asked to briefly rinse 
their mouth to avoid the influence of any food particles 
present. Fecal samples were collected using a stool col-
lection kit (LPCO diagnostics, MS). Both saliva and 
fecal samples were transported immediately to the 
laboratory (using a temperature-controlled container) 
and stored at – 80°C.

AMY1 Gene Copy Number

DNA was extracted from saliva using the PrepIT.L2P 
method (DNA GenoTek, Ontario, Canada). Copy 
numbers for the AMY1 gene were done by polymer-
ase chain reaction (PCR) (eMethods).12 Briefly, using 
a digital PCR (QuantStudio 3D Digital PCR) com-
prising 2 TaqMan assays (Hs07226361_cn FAM- 
labeled and Hs07226361_cn, FAM-labeled). For the 
PCR reaction, 14.5 μL of reaction mixture containing 
7.25 μL of PCR Master Mix, 6 μL of diluted DNA (10 
ng/μL), 0.725 μL of 20× RNase P, and 0.725 μL of 
20× AMY1 were loaded into the PCR chip. PCR was 
performed by setting the appropriate parameters 
(initial denaturation at 96°C for 10 min, 39 cycles of 
60°C for 2 min, and 98°C for 30 sec, followed by 1 
cycle of 60°C incubation for 2 min, and then 4°C 
hold). After PCR reaction, the PCR chip was sub-
jected to QuantStudio 3D Digital scanning and ana-
lysis (QuantStudio 3D Analysis Suite Software).

GUT MICROBES e1882926-11

https://www.cdc.gov/obesity/data/childhood.html
https://www.cdc.gov/obesity/data/childhood.html


16S rDNA Sequencing

Fecal and oral samples were subjected to genomic 
DNA isolation using the MoBio PowerSoil Kit 
(QIAGEN, USA). Genomic DNA was subjected to 
PCR amplification of the V3-V5 region of 16S rDNA 
using 50 ng cDNA and 0.3 µM barcoded primers 
(V3_F: TCGTCGGCAGCGTCAGATGTGTATAA 
GAGACAGCCTACGGGAGGCAGCAG; V5_R: 
GTCTCGTGGGCTCGGAGATGTGTATAAGAG-
ACAGCCGTCAATTCMTTTRAGT) with Kapa 
HiFi Hotstart Ready Mix (Kapa Biosystems). 
Samples were pooled to equal concentrations, then 
sequenced for 16S rRNA using the MiSeq 600 cycle 
v3kit (Illumina Inc.). Sequence files were denoised by 
DADA2 into ASVs;51 the SILVA database52 was used 
to assign taxonomy to ASVs using Naïve Bayes classi-
fier, and FastTree53 was used to construct the phylo-
genetic tree among ASVs. Following quality control, 
we obtained 7,243,786 high-quality reads and a total of 
12,842 ASVs. The median (range) of the sequencing 
depths for fecal and oral samples were 56,439 (9,099–-
118,425) and 56,559 (3,033–133,629), respectively.

Statistical Analysis

Anthropometric Data Analysis
Growth in children occurs until approximately 
20 years of age. Therefore, the BMI z-scores were 
calculated using SPSS macro-based World Health 
Organization growth reference 2007 data adjusted 
for age and sex.54

AMY1 CNV
Calculation of AMY1 gene CNV was analyzed by 
the ratio between AMY1 and the RNAase P gene 
CNV obtained from 3D digital PCR analysis in an 
excel spreadsheet. The anthropometric data were 
compared between mean values of EA and AA 
groups by independent sample t test using SPSS 
(version 24, IBM, Armonk, NY, USA). The results 
in Table 1 are expressed as mean (SD), and P < .05 
was considered statistically significant.

Microbiome Analysis
The microbiome data analysis was conducted for 
alpha diversity, beta diversity, and taxa abundances. 
We have tested the association between race, BMI, 
AMY1 CNV, parental education and parental 

income (referred as “variables of interest”), and 
oral and stool microbiomes. To improve statistical 
power, we first pooled both EA and AA participants 
in association tests adjusting for race. Next, we 
conducted association tests in both the EA group 
and the AA group to identify potential race- 
dependent associations.

Alpha Diversity Analysis
Three alpha diversity metrics – observed ASV 
number,53 Shannon index, and Inverse Simpson 
index – were calculated based on the rarefied ASV 
counts to control for sequencing depth difference (“esti-
mate richness” function in Bioconductor package 
phyloSeq).55 Observed ASV number is a species rich-
ness measure, while the Shannon index and Inverse 
Simpson index measure overall diversity, taking into 
account both species richness and evenness, with the 
latter putting more emphasis on abundant species. 
A simple linear model was used to test the association 
between alpha diversity measures and variables of inter-
est, adjusting for other covariates when necessary.

Beta Diversity Analysis
Unweighted and weighted UniFrac and Bray-Curtis 
(BC) distances were constructed using the ASV table 
and the phylogenetic tree (R package, GUniFrac).56 

Rarefaction was performed on the ASV table before 
calculating distances. Based on these distance 
matrices, Permutational Multivariate Analysis of 
Variance (PERMANOVA) was used to test for an 
association between variables of interest and the 
overall microbiota composition, adjusting for other 
covariates when necessary (R package, vegan).57

Differential Abundance Analysis
Only taxa with a presence in more than 10% of the 
samples and with a relative abundance greater than 
0.2% in at least 1 sample were tested. This reduced 
the total number of tests. The count data was nor-
malized by the geometric mean of pairwise ratios 
size factor.58 To identify differentially abundant 
taxa, permutation tests (999 permutations) were 
performed for each taxon, using the F-statistic of 
a linear model (square-root transformed, normal-
ized abundance as the outcome) as the test 
statistic.59 FDR control (B-H procedure) was used 
to correct for multiple testing at each taxonomic 
level, and FDR-adjusted P values or Q values <.10 
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were considered significant (“p.adjust” in R). For 
non-multiple hypothesis testing,   P<.05 was con-
sidered statistically significant.
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