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Abstract

The TORC2 gene is responsible for nutrient metabolism, gluconeogenesis, myogenesis and

adipogenesis through the PI3K-Akt, AMPK, glucagon and insulin resistance signaling path-

ways. Sequencing of PCR amplicons explored three novel SNPs at loci g.16534694G>A,

g.16535011C>T, and g.16535044A>T in the promoter region of the TORC2 gene in the

Qinchuan breed of cattle. Allelic and genotypic frequencies of these SNPs deviated from

Hardy-Weinberg equilibrium (HWE) (P < 0.05). SNP1 genotype GG, SNP2 genotype CT and

SNP3 genotype AT showed significantly (P <0.05) larger body measurement and improved

carcass quality traits. Haplotype H1 (GCA) showed significantly (p<0.01) higher transcrip-

tional activity (51.44%) followed by H4 (ATT) (34.13%) in bovine preadipocytes. The diplo-

types HI-H3 (GG-CC-AT), H1-H2 (GG-CT-AT) and H3-H4 (GA-CT-TT) showed significant

(P<0.01) associations with body measurement and improved carcass quality traits. Analysis

of the relative mRNA expression level of the TORC2 gene in different tissues within two differ-

ent age groups revealed a significant increase (P<0.01) in liver, small intestine, muscle and

fat tissues with growth from calf stage to adult stage. We can conclude that variants mapped

within TORC2 can be used in marker-assisted selection for carcass quality and body mea-

surement traits in breed improvement programs of Qinchuan cattle.

1. Introduction

There are three members of TORC gene family: TORC1, TORC2 and TORC3, which is also

known as CRTC [CREB (cAMP response element binding protein)-regulated transcription
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coactivator]. The TORC2 gene is responsible for nutrient metabolism, gluconeogenesis, myo-

genesis and adipogenesis through the PI3K-Akt, AMPK, glucagon and insulin resistance sig-

naling pathways via promotion of the anabolic and inhibiting catabolic processes within the

cells [1]. Moreover, TORC2 is a coactivator gene that plays a key role in glucagon-mediated

activation of gluconeogenesis through a synchronized mechanism of glucocorticoid receptor

and glucagon-CREB pathways coordinated with PEPCK and G6P genes [2–6]. Additionally,

through the CREB pathway in coordination with peroxisome proliferator-activated receptor γ
(PPARγ), coactivator 1α (PGC1α) and NR4A (nuclear receptor subfamily 4 group A), CRTC2
promotes gluconeogenesis, adipogenesis [7] and myogenesis [8]. In adipose tissue, TORC2
plays a role in the anabolic processes of adipocytes in lipid metabolism, including lipogenesis,

adipogenesis and lipid esterification [9, 10]. TORC2 is one of the main inhibitors of lipolysis

by its regulation of PKA andHSL activities [11]. Moreover, all members of the TORC gene

family regulated cell proliferation through PII activity in human preadipocytes [12]. TORC2
modulates triglyceride synthesis and lipogenesis through regulation of SREBP1, which in turn

regulates other fat-related genes [13]. Additionally, the CREB pathway also performs an

important function in skeletal muscle. Transgenic mice with A-CREB negative gene exhibited

skeletal muscle dystrophy characterized by muscular wasting, muscular inflammation and

myonecrosis [14]. The above findings confirmed the role of TORC2 in adipocyte and myocyte

proliferation and differentiation. Therefore, investigation of TORC2 genetic polymorphisms

might contribute to breed improvement programs for carcass quality and body measurement

traits in beef cattle. Body measurement and carcass quality traits are used for the assessment of

animals’ production. The loin area muscle and intramuscular fat contents are the key indica-

tors of meat quality grading. These traits are mostly affected by the age of the animals, manage-

ment conditions such as nutrition and by the genetics of the animals [15, 16]. To achieve

sustainable improvement in these traits of economic importance, selective breeding is an effec-

tive strategy, but it takes a very long time to obtain efficient genetic gain due to the longer gen-

eration interval in cattle. Genomic selection increases the rate of genetic improvement and

reduces cost of progeny testing by allowing breeders to preselect animals that inherited chro-

mosome segments of greater merit [17, 18]. Single nucleotide polymorphism (SNP) markers

can now cover the genome with high density and are inexpensive to obtain. Evaluations based

on SNP genotypes can be computed as soon as DNA can be obtained, which allows selection

in both sexes early in life [19, 20]. Causal variants identification increase the accuracy of geno-

mic selection, which is considered an efficient way of analyzing the association between

genetic polymorphism and traits of economic importance [21].

Polymorphism in the promoter region is of great importance because the promoter region

contains cis-acting elements that bind with transcription factors and regulate the respective

gene [22–25]. For example, single nucleotide polymorphisms in the STAT3 [23], SIRT3 [26],

KLF3 [27] SIX1 [24] and SIX4 [28] genes promoter regions impacted body measurement and

meat quality traits in the Qinchuan cattle breed. Polymorphisms in the promoter region cause

the addition or loss of important transcription factor binding sites, which in turn leads to the

suppression or activation of target genes. We hypothesized that variants in the promoter

region of TORC2 gene may influence phenotype, especially body measurement and carcass

quality traits in Qinchuan cattle. Therefore, this study was designed with the objective of

exploring SNPs in the TORC2 gene promoter region, the impact of these SNPs on the

sequences of transcription factor binding sites and their association with body measurement

and carcass quality traits.

Hence, the findings of the present study will enhance our understanding of the TORC2
gene regulation pattern, and the genetic variants may contribute to marker-assisted selection

for breed improvement programs of Qinchuan cattle.

TORC2 -a candidate gene for beef production and quality
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2. Materials and methods

2.1 Ethical statement

The China Council on Animal Care guidelines were used when dealing with animals through-

out the experiments. Approval was also granted for all the experimental protocols by the

Experimental Animal Management Committee (EAMC) of Northwest Agriculture and For-

estry University, Yangling, China. For the approved protocols that were used when dealing

with animals notified vide Notification No. EAMC/20-23 dated 20.04.2013.

2.2 Phenotypic data and DNA sample collection

In total, 428 female cows aged 18 to 24 months were randomly selected from the National Beef

Cattle Improvement Center’s experimental farm (Yangling, China). The subject animals were

fed a total mixed ration (TMR) containing 25% concentrate and 75% roughages of dry straw

and corn silage, and water was offered ad libitum. The feeding was offered based on NRC stan-

dards (Nutrient Requirement of Beef Cattle) and in the similar rearing environment (similar

temperature, humidly etc.) [29]. Carcass quality traits, including IF% and ULA, were estimated

as per standard procedure [26, 30] using ultrasound technology (Sono-grader ultrasound

machine, Renco, USA). The carcass quality traits were estimated in live animals according to

the manufacturer’s instructions. The ultrasonic probe was placed between the 12 and 13th rib

area, and the carcass quality traits including ultrasound loin area (ULA) and intramuscular fat

percentage (IF%) were recorded. The blood samples were also collected from these animals

and transferred to the molecular laboratory of National Beef Cattle Improvement and Research

for DNA extraction. The phenol chloroform protocol was used for the extraction of genomic

DNA from the collected blood samples [31].

2.3 PCR amplification and genotyping

Primers (Table 1) were designed using Primer Premier 5 software (PREMIER Biosoft Interna-

tional, CA, USA) for the amplification of the -630 bp promoter region, upstream of the tran-

scription start site of the bovine TORC2 gene GenBank NC_037330.1. The KOD plus Neo

Enzyme Kit (TOYOBA, Japan) was used for PCR amplification according to the manufactur-

er’s instructions. Genomic DNA from 428 Qinchuan cattle was used as a template for PCR

amplification. Thermocycling (PCR) was performed using 3-step cycle conditions with pre-

denaturation temperature at 94.0˚C for 5 minutes followed by 34 cycles of denaturation tem-

perature at 97.0˚C for 30 seconds, annealing Tm of the primers used (see Table 1)˚C for 30 sec-

onds and final extension temperature at 72.0˚C for 45 seconds. The PCR products were

sequenced through Sangon (Shanghai, China) to screen for polymorphisms. All sequences

were checked using Seq Man (DNASTAR, Inc., USA) software, and the SNPs were identified.

Table 1. Primers used for the amplification and expression of TORC2 gene.

Name Purpose Primer sequence Tm (0C) Product length (bp)

Forward TORC2 SNPs detection TGGGATACAGCTGGGGATCA 58.18 945

Reverse TORC2 TCCAGCTTTAGGGCACACTG 57.71

Forward TORC2 Gene expression GAGGAGGTGATGATGGAC 52.05 138

Reverse TORC2 GCTCTGGAACTCGGCTAG 55.57

Forward GAPDH Housekeeping gene AGTTCAACGGCACAGTCAAGG 58.09 124

Reverse GAPDH ACCACATACTCAGCACCAGCA 58.98

Forward β- Actin Housekeeping gene ATCGGCAATGAGCGGTTC 60.00 144

Reverse β- Actin CGTGTTGGCGTAGAGGTC 60.00

https://doi.org/10.1371/journal.pone.0227254.t001
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2. 4 Potential cis-acting element identification

Genomatix Mathinspector software (http://www.genomatrix.com) was used for the identifica-

tion of the transcription factor (TF) binding sites in the promoter region of the bovine TORC2
gene with the cut off value of 90%. The mutations in the sequences of respective transcription

factor binding sites due to SNPs were also checked through the same Genomatix online suite

for their specific position and significance (Ci value), and the important transcription factor

binding sites that were altered due to respective SNPs were identified. The ci-vector (consensus

index vector) value of the respective cis-acting element indicate significance of the mutated

nucleotides (SNPs) in the sequences of the respective transcription factor binding sites [32].

2.5 Construction of plasmid, isolation, culture and transfection of

preadipocyte cells for luciferase reporter assay

The roles of TF binding sites, which are affected by the SNPs in the TORC2 gene promoter,

were assessed through a dual luciferase activity assay. The four selected haplotypes were ampli-

fied using specific primers with added enzyme site sequences of Sac I and Hind III enzymes to

forward and reverse primers, respectively (Table 1). The PCR amplicons were cloned into

pMD-19 T-Vector (Takara, Japan) and digested with Sac I and Hind III restriction enzymes

(Takara, Japan). The haplotype DNA was then extracted from the gel through the E.Z.N.A gel

extraction kit (Omega, Biotek, Inc, USA) and ligated through T4 ligation (Takara, Japan) into

pGL3 basic (luciferase reporter vector), which was also digested with Sac I andHind III
(Takara, Japan) restriction enzymes. The bovine preadipocyte cells were collected from healthy

newborn calves (5 days old) of Qinchuan cattle breed at the experimental farm of National

Beef Cattle Improvement Center of Northwest A&F University, located in Yangling, Shaanxi,

China [33]. The cells were cultured and maintained in HyClone™ Dulbecco’s Modified Eagle’s

Medium (DMEM)/F12 1:1 cell culture media (ThermoFisher Scientific, Inc. USA), supple-

mented with 10% FBS (fetal bovine serum) and 1% antibiotic (penicillin 100 IU/mL and strep-

tomycin 100 μg/mL) in an atmospheric incubator at 37˚C and 5% CO2. The cells were plated

in 24-well plates and transiently transfected at 70–90% confluence with Lipofectamine 3000

(Invitrogen, USA), and 10 ng of pRL-TK was used as a normalizing reporter vector along with

500 ng of luciferase reporter vector (pGL3-basic) harboring DNA of selected haplotypes.

Forty-eight hours post-transfection, the cells were lysed, and both firefly luciferase and Renilla

luciferase activities were measured as per the standard protocol of the dual luciferase reporter

assay (Promega, USA) using a Nano Quant Plate TM (TECAN, Infinite, M200 PRO System).

2.6 Estimates of conservation and biological evolution

The TORC2 gene is located on chromosome 3 of the bovine genome. The total length of

TORC2 is 9,554 bp, comprising the genomic coordinates starting from 16,477,661 to

16,487,214 (NC_037330.1, Reference genome bos taurus ARS-UCD1.2). This gene comprises

15 exons, the ORF which started from the start codon to the stop codon is 2082 bp, and the

putative protein contains 694 amino acids (Fig 1). The sequences of amino acids of the TORC2
gene were obtained from the NCBI search for the following 10 species (Bos taurus
NP_001069718.1; Bos indicus XP_019810560.1; Bubalus bubalis XP_006044208.1; Ovis aries
musimon XP_011987586.1; Capra hircus; XP_017901639.1;Homo sapiensNP_859066.1;Mus
musculusNP_001344081.1; Canis lupus familiaris XP_013970885.1; Sus scrofa P_005663462.1;

and Gallus gallus XP_015154073.1) (www.ncbi.nlm.nih.gov/protein). The sequences were

downloaded through TBtools (toolbox for biologists) v.0.58 software in fasta format. Protein

sequences of all ten (10) species (multiple sequence alignment) were aligned through MUSCLE

TORC2 -a candidate gene for beef production and quality
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sequencing alignment (multiple sequence comparison through log expectation), and the phyloge-

netic tree (neighbor-joining) was built. MEGA version 7.0.26 (Philadelphia, PA, USA) software

was used for both multiple sequence alignment and phylogenetic tree construction [34]. For the

analysis of protein structure and function, the motifs were searched, and conserved domains were

identified through the online MEME suite website [35], CDD NCBI and TBtools [36, 37].

2.7 Tissue collection, RNA extraction, preparation of cDNA and real-time

PCR

For tissue collection, three samples from Qinchuan calves (7 days old) and three samples from

mature Qinchuan cattle (two years old) were selected. The animals from the two groups (calf

and mature) were nonrelatives for at least three generations. The animals were dressed in a

local abattoir under standard procedure of animal stunning, exsanguination and skinning. To

measure the relative expression of the TORC2 gene, eight tissues, including dorsal muscle, fat,

heart, kidney, lung, liver, rumen and small intestine, were collected from both the calf and

mature Qinchuan groups. After collection from the carcass, the tissue samples were preserved

in liquid nitrogen and were transferred immediately in frozen form to the molecular labora-

tory for the extraction of total RNA. Total RNA was extracted from the tissue using TRIzol™
reagent (Invitrogen, ThermoFisher Scientific, Inc. USA) and subjected to reverse transcription

for synthesis of cDNA using the PrimeScriptTM RT Reagent Kit with gDNA eraser (Perfect

Real Time, Takara). Quantitative real time (RT-PCR) was performed using the Sybr Premix

EX Taq Kit (Takara, Dalian, China). The prepared cDNA of each tissue was used as a template,

and gene-specific primers (Table 1) were used in a 20 μL reaction mixture. Two bovine genes,

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and β-actin, from NCBI website, with

mRNA GenBank accession numbers NM_001034034.2 and NM_173979.3, respectively, were

used as endogenous control genes. The thermocyclic reaction was performed using a thermo-

cycler 7500 system SDS V 1.4.0 (Applied Biosystems, USA), with cyclic reaction conditions of

preheating at 95˚C for 5 minutes, a total of 34 cycles of denaturation temperature at 95˚C for

30 seconds, annealing temperature at 60˚C for 30 seconds and extension temperature at 72˚C

for 30 seconds. The thermocylic reactions were run in triplicate for each tissue sample, and the

mRNA relative expression levels were calculated using the 2−ΔΔCt method [38].

2.8 Data analyses

The general linear model (GLM) using SPSS 20.0 software (SPSS, Inc., Chicago, USA) was

used for the association analysis between SNPs and selected traits of carcass quality. The linear

Fig 1. Structure of TORC2 gene, the source of information was (https://www.ncbi.nlm.nih.gov/gene/540959).

https://doi.org/10.1371/journal.pone.0227254.g001
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model was the same as that used in previous publications of our research group [23, 39, 40].

The statistical linear model was Yijkm = u+Gi = Aj+Ak+Sm+Eijkm, where Yijkm are the traits

measured on each animal; u is the overall mean for each trait; Gi is the fixed effect associated

with jth genotype; Aj is the fixed effect of the jth age; Ak is the fixed effect due to the age of the

dam; Sm is the random effect with themth sire; and Eijkm is the standard error.

A similar statistical linear model to the model above with slight modifications was used for

the association of combined genotypes; in this analysis, Gj represents the fixed effect associated

with the jth combined genotypes. The Bonferroni correction was made for the adjustment of

the p values.

The allelic and genotypic frequencies for all three SNPs were calculated. Estimation of

Hardy-Weinberg equilibrium (HWE) was measured through the chi square test in Pop Gene soft-

ware version 3.2 [41]. Population genetic indicators, such as gene heterozygosity (He) and poly-

morphism information content (PIC), were measured through established methods [42]. The

haplotypes and the D’ and r2 linkage disequilibrium (LD) were determined through Haploview

(http://analysis.bio-.cn/myAnalysis.php) [43]. GraphPad Prism (6.0) was used to perform Dun-

nett’s multiple comparisons test for the analysis of dual luciferase reporter transcriptional activities

of selected haplotypes normalized against the activity of blank luciferase reporter vector.

The TORC2 gene mRNA relative expression levels were calculated using the 2−ΔΔCt method

[38]. The data were expressed as the means ± SE, and p<0.05 was considered an accepted

value for statistical significance.

3. Results

3.1 SNP identification

Three SNPS at loci g.16534694G>A, g.16535011C>T and g.16535044A>T in the promoter

region of the TORC2 gene were identified. SNP1 yielded two genotypes, including GA and

GG, while SNP2 produced CC, CT and TT. The genotypes produced by SNP3 were AA, AT

and TT (Table 2). Allelic and genotypic frequencies analysis exhibited that all three SNPs devi-

ated from the Hardy-Weinberg equilibrium (HWE) (Table 2, p< 0.05). In the present study,

SNP1 showed a low PIC value, while the PIC classification of SNP2 and SNP3 were found to

be moderately polymorphic (0.25< PIC < 0.50) [44].

3.2 Linkage disequilibrium and haplotype identification of the bovine

TORC2 gene

The LD (D’/γ2) was highest between SNP2 and SNP3 (0.856/0.399). The LD between SNP1

and SNP2 was 0.748/0.136, while SNP1 and SNP3 was 0.843/0.095. Eight haplotypes were

Table 2. Genotype frequencies (%) of TORC2 gene SNPs in the Qinchuan cattle population.

Site Genotypic frequencies Total Allelic frequencies HWE PIC He Ne

SNP1G>A GG GA AA 428 G A 5.126 0.173 0.192 1.237

0.785 0.215 0.000 0.893 0.107

SNP2C>T CC CT TT 428 C T 3.720 0.345 0.443 1.794

0.470 0.400 0.130 0.669 0.331

SNP3A>T AA AT TT 428 G T 0.890 0.374 0.499 1.995

0.287 0.474 0.238 0.525 0.475

HWE Hardy- Weinberg equilibrium; X0.052 = 5.991 and X0.012 = 9.210; He denotes gene heterozygosity; Ne denotes effective allele numbers and PIC stands for

Polymorphism information contents

https://doi.org/10.1371/journal.pone.0227254.t002
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found, but four haplotypes with a frequency of<5% were excluded, and the frequencies of the

remaining (four) haplotypes are presented in Table 3.

3.3 Association of genotype and diplotype with physical measurements and

carcass quality traits

Three SNPs located in the promoter region of the bovine TORC2 gene exhibited associations

with body measurement and carcass quality traits of economic importance in the Qinchuan

breed of cattle (Table 4). In SNP1, the cattle with genotype GG showed significantly (P<0.01

and P<0.05) larger body length (BL), hip height (HH), chest depth (CD), chest circumference

(CC), ultrasound loin area (ULA) and intramuscular fat percentage (IF%) than genotype GA,

while no significant variation was found in the hip width (HW) body measurement trait in

both genotypes of SNP1. In SNP2, the cattle with genotype CT exhibited significantly (P< 0.01

and 0.05) larger body length (BL), hip width (HW), chest depth (CD), chest circumference

(CC) and intramuscular fat percentage (IF%) than genotypes CC and TT, while no significant

variation was found in hip height (HH) and ultrasound loin area (ULA) traits in all three geno-

types of SNP2. In SNP3, the cattle with genotype AT showed significantly (P< 0.01 and P<

0.05) larger body length (BL), chest depth (CD) and ultrasound loin area (ULA) than geno-

types AA and TT.

These four haplotypes produced five diplotypes (haplotype combinations), which showed

significant (P< 0.01 and P< 0.05) associations with body measurement and carcass quality

traits (Table 5). Qinchuan cattle with diplotype HI-H3 (GG-CC-AT) showed significantly

Table 3. Bovine TORC2 gene haplotypes and their frequencies in Qinchuan cattle.

Haplotype g.SNP1G>A g.SNP2C>T g.SNP3A>T Frequency (%)

Hap1 G C A 0.485

Hap2 G T T 0.216

Hap3 G C T 0.161

Hap4 A T T 0.081

The remaining (04) haplotypes with frequency<0.05 were omitted, hence sum of the frequencies of these four selected haplotypes is not equal to 1.0

https://doi.org/10.1371/journal.pone.0227254.t003

Table 4. Genotype association of TORC2 gene with body measurement and carcass quality traits of Qinchuan cattle.

Locus Genotype BL(cm) HH(cm) HW(cm) CD(cm) CC(cm) ULA(cm2) IF(%)

SNP1 (g.16534694) GA(92) 132.054±0.272 121.880±0.392 38.467±0.469 57.005±0.336 160.109±0.531 44.167±0.448 7.001±0.124

GG(336) 133.957±0.216 122.894±0.205 38.973±0.246 59.025±0.266 162.693±0.391 46.048±0.429 7.998±0.123

P-value P<0.01 P<0.05 NS P<0.05 P<0.01 P<0.01 P<0.05

SNP2 (g.16535011) CC(201) 133.393±0.273 122.410±0.266 38.537±0.316 58.672±0.343 161.353±0.361 45.839±0.308 7.122±0.083

CT(171) 134.082±0.536 123.111±0.289 39.503±0.343 59.383±0.372 163.333±0.278 45.443±0.334 7.482±0.090

TT(56) 132.473±0.338 122.304±0.504 38.089±0.599 57.527±0.650 161.304±0.684 45.560±0.584 7.462±0.065

P-value P<0.05 NS P<0.05 P<0.05 P<0.01 NS P<0.01

SNP3 (g.16535044) AA(117) 132.308±0.363 122.368±0.350 39.034±0.417 58.560±0.449 161.179±0.478 45.229±0.401 7.206±0.110

AT(209) 134.521±0.414 122.818±0.262 38.871±0.312 59.392±0.509 162.627±0.358 46.226±0.300 7.279±0.082

TT(102) 132.975±0.389 122.740±0.375 38.657±0.447 57.887±0.481 162.235±0.512 44.928±0.234 7.494±0.118

P-value P<0.01 NS NS P<0.05 P<0.05 P<0.01 NS

The bonferroni correction was used for the adjustment of p values. BL (Body length); HH (Hip height); HW (Hip width); CD (Chest depth); CC (Chest circumference);

ULA (Ultrasound loin area) and IF% (intramuscular fat percentage)

https://doi.org/10.1371/journal.pone.0227254.t004
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(p<0.01) larger body length (BL) and ultrasound loin area (ULA). Cattle with diplotype

H1-H2 (GG-CT-AT) exhibited significantly larger chest depth (CD) and chest circumference

(CC). Significantly (P<0.05) larger hip width and intramuscular fat percentage (IF%) were

found in cattle having diplotype H3-H4 (GA-CT-TT).

3.4 Transcription factor binding site prediction

In silico analysis showed that mutations due to SNPs caused gains and loss of transcription fac-

tor binding sites (Table 6 and Table 7). The G> A in SNP1 caused the loss of three important

transcription factor binding sites, E2F7, PRDI and ARP1. In SNP2, the T>C also caused the

loss of three important transcription factor binding sites (AREB6, FOXP1, and NFAT). How-

ever, none of the cis-acting element binding sites were changed due to SNP3 (Table 7). Simi-

larly, with G>A in SNP1, six (6) new potential cis-acting element binding sites (KLF6, KLF1,

MAZ, HSF2, MZF1, and SPI1) were gained, while in SNP2, the C>T causes a gain of one tran-

scription factor binding site KLF2 (Table 7).

3.5 Luciferase reporter assay

To determine the transcriptional activities of different haplotypes, a dual luciferase reporter

assay was conducted. The results analyzed with Dunnett’s multiple comparisons test showed

significant (p<0.01) variation in the transcription activities of these selected haplotypes (Fig

2). The mean difference in the transcriptional activity of H1 was 51.44 (p<0.01) followed by

H4 (34.13) (p<0.01) compared to the transcription activity of the pGL3-Basic vector.

3.6 Bioinformatics study of the TORC2 gene

The multiple sequence alignment of the TORC2 protein was performed for 10 species (S1 Fig).

The protein structure was highly conserved among the 7 mammalian species but was up to

40% different inMus musculus, Canis lupus familiaris, and Gallus gallus. A phylogenetic tree

Table 5. Association of diplotype combination of TORC2 gene with body measurement and carcass quality traits of Qinchuan cattle.

Diplotype (Nos) BL(cm) HH(cm) HW(cm) CD(cm) CC(cm) ULA(cm2) IF (%)

H1-H1(GG-CC-AA) (104) 132.135±0.382 122.159±0.372 38.846±0.427 58.356±0.464 161.642±0.566 44.996±0.413 7.162±0.225

H1-H3(GG-CC-AT) (81) 135.191±0.433 122.735±0.421 37.926±0.401 59.220±0.436 161.464±0.963 47.253±0.468 6.960±0.132

H1-H2(GG-CT-AT) (118) 134.000±0.359 122.873±0.349 39.536±0.484 59.644±0.526 163.051±0.469 45.706±0.388 7.432±0.110

H3-H4(GA-CT-TT) (28) 134.018±0.736 123.268±0.716 39.585±0.823 58.286±0.894 161.058±0.500 45.050±0.796 7.604±0.117

H2-H4(GA-TT-TT) (41) 132.134±0.608 122.073±0.592 37.805±0.680 57.220±0.739 161.073±0.796 45.455±0.658 7.459±0.186

P value P<0.01 NS P<0.05 P<0.05 P<0.05 P<0.01 P<0.05

https://doi.org/10.1371/journal.pone.0227254.t005

Table 6. Loss of transcription factors binding sites due to changes in promoter sequence through SNP1 (G to A) and SNP2 (T to C).

SNP Variation loci Name of TF TF Binding site Sequence Strand Score� ci-value

SNP1 g -618 G>A E2F transcription factor 7 (E2F7.02) ggggggaGGGAaaggct + 90.9 >60

PRDI (positive regulatory domain I element) binding factor 1(PRDM1.02) ggggaggGAAAggctcacc + 84.1 >60

Nuclear receptor subfamily 2 factors (ARP1.01) ggggggagggaaagGCTCaccccca + 84.0 >60

SNP2 g -300 C>T Two-handed zinc finger homeodomain transcription factors (AREB6.04) tccctGTTTccac + 99.1 >60

Fork head domain factors (FOXP1.01) ggggtggAAACagggag - 94.0 >60

Nuclear factor of activated T-cells (NFAT.01) aggggtGGAAacagggagg - 97.4 >60

�Core Similarity score; red colored alphabets reflect the core sequence nucleotides within the TF binding site; encircled nucleotide represents mutated nucleotide

https://doi.org/10.1371/journal.pone.0227254.t006
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was constructed using MEGA 7 software (Fig 3A). The MEME online suit was used to find

common significant motifs in the super secondary protein structure of the TORC2 gene in 10

target species (Fig 3B). Bos indicus, Bubalus bubalis, Ovis aries musimon and Capra hircus were

the most closely related species with Bos taurus. Sus scrofa,Mus musculus, Canis lupus famil-
iaris andHomo sapiens species branches were found far away from the Bos taurus sequence.

Protein tertiary structures of the TORC2 gene were searched for all the tested species through

NCBI CDD (Conserved Domains Database) and found 6 specific conserved domain hits of

super families (TORC_M, TORC_ super family, TORC_C, TORC_ super family, TORC_N

and TORC_N super family) in tested species (Fig 3C). The two domains hits (TORC_N and

TORC_N super family) were not conserved inMus musculus. For the rest of the species, all

domains hits were conserved. A total of 20 significant motifs were found among 10 species

(Fig 4), which indicated functional similarity among the selected species at the protein super

secondary structure level.

3.7 Relative mRNA expression of the TORC2 gene at different ages

Relative mRNA expression was identified in eight different tissues (muscle, fat, liver, lung,

heart, rumen, small intestine, and kidney) and within two different age groups (calf and

mature) of Qinchuan cattle (Fig 5A and 5B). In the calf group, the highest mRNA expression

was found in lung, followed by kidney, rumen, muscle, small intestine, heart, and fat, and the

lowest expression level was found in liver. In the adult age group, the highest expression was

found in the liver, muscle, small intestine, fat, lung, heart, kidney and rumen tissues,

Table 7. Gain of new transcription factors binding sites due to changes in promoter sequence through SNP 1(A to G) and in SNP2 (C to T).

SNP Variation loci Name of TF TF Binding Sequence Strand Score ci-value

SNP1 g -618 G>A Krueppel like transcription factors (KLF6.01) caagggGGGGaggggaagg + 95.7 <60

Krueppel like transcription factors (KLF.02) agggggGGAGgggaaggct + 98.9 <60

Myc associated zinc fingers (MAZ.01) ggggGAGGggaag + 97.0 >60

Heat shock factors (HSF2.01) aagggggggagggGAAGgctcaccc + 88.1 >60

Myeloid zinc finger 1 factors (MZF1.02) gaGGGGaaggc + 100 >60

Human and murine ETS1 factors (SPI1.02) gggggaggGGAAggctcaccc + 96.5 >60

SNP2 g -300 C>T Krueppel like transcription factors (KLF2.01) ggaagGGGTggagacaggg - 100 >60

https://doi.org/10.1371/journal.pone.0227254.t007

Fig 2. Transcriptional activities of haplotypes reported as relative luciferase activity using dual luciferase reporter

assay in bovine preadipocyte cells. Significant variation (p<0.01) of the Firefly luciferase activity normalized against

Renilla luciferase activity of respective haplotypes are shown as (��).

https://doi.org/10.1371/journal.pone.0227254.g002
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respectively. The heat map shows that in the calf group, the expression level of the TORC2
gene was low in all tissues except in the lung, which exhibited moderate expression levels. In

mature Qinchuan cattle, the expression levels were high in the small intestine, liver, fat, and

muscle; moderate in the lung; and low in the rumen. Significant increases (p<0.01 and

p<0.05) in the relative mRNA expression level of TORC2 in liver, small intestine, muscle, fat,

and kidney tissues were found with growth from the calf stage to the adult stage group. No sta-

tistically significant variation was found in the expression of the TORC2 gene in lung and

rumen tissues during growth from calf to adult stage. The results obtained in the present study

suggest the role of TORC2 in growth and fat deposition traits in Qinchuan cattle.

4. Discussion

The results of the present study showed a significant association of genotypes, haplotypes and

diplotypes with body measurement and carcass quality traits. The genotypes GG and TT

showed better phenotypes for body measurement and carcass quality traits; similarly, the

diplotypes H1-H3 (GG-CC-AT) and H1-H2 (GG-CT-AT) contained the same genotypes GG

and AT from SNP1 and SNP3. Moreover, findings of the dual luciferase reporter assay also

explored highest transcriptional activity of the haplotype H1 (GCA) in bovine preadipocytes.

The probable reason of exhibiting significant association of genotype GG (SNP1), haplotype

Fig 3. The Phyolgenetic tree (A), conserved structural motifs (B) of ten species. The p- value shows the significance of the motif

site. The length of the color block shows the position, strength and significance of a particular motif site. The motif sites length is

proportional to the negative logarithm of the p-value of the motif site. These colors are given through motif analysis performed

through MEME suit system. (C) Conserved domain families of TORC2 protein in ten different species represented by different

color blocks, reflects specific hit of different domain family in different species. Twenty significant TORC2 protein motifs within

10 different selected species, identified through MEME suit. The different colors within the motifs represent abbreviation of

different amino acids.

https://doi.org/10.1371/journal.pone.0227254.g003
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GCA (H1) with meat quality and body measurement traits; and highest transcriptional activity

in bovine preadipocytes may be the gain of transcription factor binding sites due to genotype

GG. As in SNP1, genotype GG caused a gain of six new transcription factor binding sites,

including KLP6, KLF2,Myc zinc finger,Myeloid zinc finger 1,Heat shock factor 2 and SPI1. In

Fig 4. Twenty significant TORC2 protein motifs within 10 different selected species, identified through MEME suit. The different colors

within the motifs represent abbreviation of different amino acids.

https://doi.org/10.1371/journal.pone.0227254.g004
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SNP2, the substitution of nucleotide C with T caused a gain of only one new TF binding site

and a loss of three important TF binding sites. This may be the probable cause of lower body

measurement and carcass quality traits shown by the animals with SNP2. Moreover, the logic

behind the better phenotypic performance of the individuals possessing genotypes AT in

SNP3 may be no alteration in the binding site sequences of the important transcription factors.

In silico analysis revealed that SNP3 neither gained nor loss of any new transcription factor

binding site in the DNA sequence; however, this locus already contained binding sites for the

MZF1, KLF1 and ZNF263 transcription factors, which remained intact as no loss occurred at

this position. Moreover, previously, we confirmed the role of ZNF263 transcription factor in

the regulation of TORC2 gene as transcriptional activator [10] Furthermore, SNP3 is located

in the proximal minimal promoter region; therefore, these transcription factors may have a

substantial role in the regulation of the TORC2 gene. In previous experiments conducted by

our research group in the same breed of Qinchuan cattle, we demonstrated the role of the KLF

transcription factor family and theMZF1 transcription factor in the regulation of genes

responsible for adipogenesis and myogenesis [45, 46]. The KLFs (Kruppel-like factors) are

members of the zinc finger transcription factor group, which binds to the consensus 5’-C(A/T)

CCCC-3’ motif in the promoter of various genes that regulates adipogenesis and myogenesis

[47–51]. Hence, the role of this location may be due to these transcription factor binding sites

in the regulation of the TORC2 gene. Transcription factor binding sites are the actual control-

ling factor of gene function. Binding of transcription factors with their respective binding sites

at specific locations in the genome regulates gene function [52]. Therefore, genotypes AT and

GG at loci SNP3 (g.16535044) and SNP1 (g.16534694), respectively, were the best variants of

the TORC2 gene. Haplotype H1 (GCA) was the most frequent haplotype. The probable cause

could be artificial selection in the Qinchuan cattle population, particularly the genomic regions

influencing traits of economic importance [53, 54]. Moreover, the evolutionary conservation

analysis conducted for 10 species exhibited close homology within the protein sequences of

common livestock species, which predicts functional similarity of TORC2 gene in these target

species. In addition, to further exploit the function of the TORC2 gene in the growth and

development of Qinchuan cattle, spatiotemporal mRNA expression was investigated in calf

Fig 5. Heat map figure of different tissues mRNA expression level in calf and mature Qinchuan cattle (A), Changes in tissues

mRNA expression level with age in Qinchuan cattle (B).

https://doi.org/10.1371/journal.pone.0227254.g005
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and adult tissues. High expression in the liver is in line with findings of previous studies [6, 55,

56], where its core function is glucagon-mediated activation of hepatic gluconeogenesis [3, 5,

6] to maintain energy balance in vital tissue of the body [57, 58]. Second, a significant

(p<0.01) increase in the mRNA expression level of the TORC2 gene in the small intestine is in

line with the findings of Liuqin et al., 2017. They further concluded that the AMP-activated

protein kinase (AMPK) pathway, which is regulated by the TORC2 gene, is mainly responsible

for water and ionic homeostasis in the small intestine in pigs [59]. After the small intestine, we

found a significant increase in the TORC2 gene mRNA relative expression in muscle and fat

tissue. The role of TORC2 through the CREB pathway is responsible for skeletal muscle func-

tioning and myogenesis, glucose homeostasis and lipid metabolism in adipocytes [60, 61].

Moreover, the TORC2 gene regulates adipogenesis and glucose homeostasis and monitors

insulin sensitivity [62]. Previous literature has shown that the TORC2 gene functions as a

nutrient transporter and regulates adipogenesis through regulation of the transcriptional activ-

ity of PPARγ [63]. Various findings [2, 3, 6, 61, 64, 65] confirmed the significant roles of the

TORC2 gene in cell growth, nutrient metabolism, gluconeogenesis, myogenesis and adipogen-

esis. Therefore, we can conclude that variants in TORC2 gene might be good markers for body

measures and carcass quality traits in the breed improvement program of Qinchuan cattle.

Based upon the findings of the present study, we mapped variants as genotypes GG and AT

in SNP1 at locus g.16534694 and SNP3 at locus g.16535044, respectively; haplotypes H1

(GCA) and H4 (ATT); and diplotypes H1-H3 (GG-CC-AT) and H1-H2 (GG-CT-AT) within

TORC2 can be used in marker-assisted selection for body measurement and carcass quality

traits in breed improvement programs of Qinchuan cattle.
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