DOI: 10.1002/clc.23593

REVIEW

The impact of underweight and obesity on outcomes in anticoagulated patients with atrial fibrillation: A systematic review and meta-analysis on the obesity paradox

Maxim Grymonprez MD¹ | Andreas Capiau PharmD¹ | Tine L. De Backer MD, PhD² | Stephane Steurbaut PhD³ | Koen Boussery PhD¹ | Lies Lahousse PhD^{1,4}

¹Department of Bioanalysis, Pharmaceutical Care Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium

²Department of Cardiology, Ghent University Hospital, Ghent, Belgium

³Centre for Pharmaceutical Research, Research group of Clinical Pharmacology and Clinical Pharmacy, Vrije Universiteit Brussel, Jette, Belgium

⁴Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands

Correspondence

Maxim Grymonprez, Department of Bioanalysis, Pharmaceutical Care Unit, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, Ghent 9000, Belgium.

Email: maxim.grymonprez@ugent.be

Funding information Fonds Wetenschappelijk Onderzoek, Grant/ Award Number: 11C0820N

Abstract

Although obesity is associated with the development and progression of atrial fibrillation (AF), an obesity paradox may be present, illustrated by seemingly protective effects of obesity on AF-related outcomes. Body mass index (BMI) has an impact on outcomes in AF patients using oral anticoagulants. After searching Medline and Embase, metaanalysis of results of four randomized and five observational studies demonstrated significantly lower risks of stroke or systemic embolism (RR 0.80, 95%CI [0.73-0.87]; RR 0.63, 95%CI [0.57-0.70]; and RR 0.42, 95%CI [0.31-0.57], respectively) and all-cause mortality (RR 0.73, 95%CI [0.64-0.83]; RR 0.61, 95%CI [0.52-0.71]; and RR 0.56, 95%CI [0.47-0.66], respectively) in overweight, obese and morbidly obese anticoagulated AF patients (BMI 25 to <30, \geq 30 and \geq 40 kg/m², respectively) compared to normal BMI anticoagulated AF patients (BMI 18.5 to <25 kg/m²). In contrast, thromboembolic (RR 1.92, 95%CI [1.28-2.90]) and mortality (RR 3.57, 95%CI [2.50-5.11]) risks were significantly increased in underweight anticoagulated AF patients (BMI <18.5 kg/m²). In overweight and obese anticoagulated AF patients, the risks of major bleeding (RR 0.86, 95%CI [0.76-0.99]; and RR 0.88, 95%CI [0.79-0.98], respectively) and intracranial bleeding (RR 0.75, 95%CI [0.58-0.97]; and RR 0.57, 95%CI [0.40-0.80], respectively) were also significantly lower compared to normal BMI patients, while similar risks were observed in underweight and morbidly obese patients. This meta-analysis demonstrated lower thromboembolic and mortality risks with increasing BMI. However, as this paradox was driven by results from randomized studies, while observational studies rendered more conflicting results, these seemingly protective effects should still be interpreted with caution.

KEYWORDS

anticoagulants, atrial fibrillation, body mass index, meta-analysis, obesity, underweight

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2021 The Authors. Clinical Cardiology published by Wiley Periodicals LLC.

1 | INTRODUCTION

⊥WILEY_

Obesity is defined as a body mass index (BMI) of \geq 30 kg/m² by the World Health Organization (WHO).¹ It has been established as an independent risk factor for new-onset atrial fibrillation (AF) and for the progression from paroxysmal to permanent AF.²⁻⁴ Potential synergistic effects of other obesity-related AF risk factors have been proposed, such as diabetes mellitus, hypertension, obstructive sleep apnoea, left atrial enlargement, and heart failure with preserved ejection fraction.²⁻⁴ Likewise, underweight (BMI <18.5 kg/m²)¹ has been independently associated with new-onset AF and AF-recurrence post-ablation.^{5,6} A potential U-shaped relationship between BMI and incident AF has been suggested.⁵ Intriguingly, there seems to be a protective effect of obesity on AF-related outcomes, despite its association with other cardiovascular diseases, mortality, and stroke risk factors such as diabetes mellitus, metabolic syndrome and hypertension, leading to the controversial concept called the 'obesity paradox.⁷⁻¹⁰

CLINICAL

Aiming to explore the 'obesity paradox,' this systematic review provides an overview of the literature regarding the impact of extreme BMIs on AF-related outcomes. A meta-analysis investigates the impact of underweight, overweight (BMI 25 to <30 kg/m²),¹ obesity, and morbid obesity (BMI \geq 40 kg/m²)¹ compared to normal BMI on AF-related outcomes in anticoagulated AF patients.

2 | METHODS

An extensive literature search was performed using the Medline and Embase databases (see supplemental materials, eTable 1) by two independent reviewers (M. G. and A. C.). Discrepancies were resolved by a consensus meeting with a senior researcher (L. L.). Longitudinal studies investigating the impact of underweight (BMI <18.5 kg/m²),¹ overweight (BMI 25 to $<30 \text{ kg/m}^2$),¹ obesity (BMI $\ge 30 \text{ kg/m}^2$),¹ Class II obesity (BMI 35 to <40 kg/m²),¹ and morbid/Class III obesity (BMI \geq 40 kg/m²)¹ on clinical outcomes in adult patients with non-valvular AF compared to normal BMI AF patients (BMI 18.5 to <25 kg/m²)¹ during a mean/median follow-up of at least 6 months were included. Studies investigating outcomes in AF patients with low body weight (≤50-60 kg) compared to normal weight AF patients were also included and discussed in the supplemental materials, but were not considered for the meta-analysis. Studies investigating AF subjects undergoing interventions (e.g., cardioversion, ablation) were excluded, given the associated thromboembolic risk. Outcomes of interest were stroke or systemic embolism (stroke/SE), all-cause mortality and major bleeding (overall, intracranial and/or gastrointestinal). Phase III randomized controlled trials (RCTs) (original trial or secondary analyses), longitudinal observational cohort studies and meta-analyses were included for the systematic review, whereas case reports, cross-sectional studies, conference proceedings, reviews or editorials were not considered. No restriction on publication date or language was used.

For the meta-analysis, results from Phase III RCTs (original trial or secondary analyses) and longitudinal observational cohort studies examining the risk of stroke/SE, all-cause mortality, major bleeding and intracranial bleeding in underweight, overweight, obese and Class II–III obese AF patients using oral anticoagulants (namely vitamin K antagonists [VKAs] or non-vitamin K antagonist oral anticoagulants [NOACs]) compared to normal BMI anticoagulated AF patients were selected, with the BMI subgroups categorized according to the WHO BMI classification.¹ If studies included non-anticoagulated AF patients, results were excluded from the meta-analysis, given the significantly lower thromboembolic but potentially higher bleeding risks of anticoagulated AF patients compared to non-anticoagulated patients, which may influence results independent from BMI.¹¹ However, these results were included as a sensitivity analysis.

Up to February 1, 2021, 6553 articles were identified. Additional articles of interest were selected by screening the reference list of studies. If secondary analyses of Phase III RCTs did not report outcome data in specific BMI subgroups (only the case for the RE-LY trial), the FDA (U.S. Food and Drug Administration) Advisory Committee briefing documents on regulatory submissions for drug approval of NOACs by the pharmaceutical company (e.g., Boehringer Ingelheim) were searched for the gray literature.¹² After screening title and abstract, 65 articles were selected. After reading the full-text, 37 articles were selected for the systematic review, of which nine were used for the meta-analysis (four Phase III RCTs, five observational studies) (Figure 1). An overview of the included studies with study design, patient characteristics and outcome measures is displayed in eTable 2.

The meta-analysis was performed using a random effects model with the Mantel-Haenszel method. Data of the study methodology (setting, design and duration), patient characteristics (total number and age), comparison (e.g., obesity versus normal BMI), and the aforementioned outcomes of interest were extracted from the original publications, supplemental materials or documents from regulatory submissions for FDA approval. If the number of events was not reported, this was calculated based on the event rate and/or risk estimate. The effect measures of each included study were calculated and reported as the risk ratio (RR) with 95% confidence interval (CI), visually presented in forest plots. A two-sided p-value of <.05 was considered statistically significant. Heterogeneity was tested using the I²-statistic. The risk of bias of studies included in the meta-analysis was assessed using the quality assessment tool 'QUALSYST' from the "Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields" (eTable 3).¹³ Fourteen items of each study were scored on the study quality and outcome levels depending on the degree to which the specific criteria were met or reported ("yes" = 2, "partial" = 1, "no" = 0, "n/a" if not applicable). For each study, a percentage was calculated by dividing the total score obtained across rated items by the total possible score. Studies were included if scoring \geq 75% on the quality assessment tool. Furthermore, the risk of publication bias at the outcome level was evaluated through funnel plot asymmetry. Analyses were performed with Review Manager (RevMan) version 5.3 (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, 2014) and R (R version 3.6.1 with RStudio version 1.2.5001). This work has been performed according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines (PRISMA checklist included in supplemental materials, eTable 4).

FIGURE 1 PRISMA flow diagram. AF: atrial fibrillation; BMI: body mass index; NOAC: non-vitamin K antagonist oral anticoagulant; OAC: oral anticoagulant; PRISMA, preferred reporting items for systematic reviews and meta-analyses; SE: systemic embolism; VKA: vitamin K antagonist; VTE: venous thromboembolism; WHO: World Health Organization

3 | RESULTS

3.1 | Systematic review

3.1.1 | Thromboembolism

In RCTs investigating oral anticoagulants in AF patients, lower thromboembolic risks have been observed with increasing BMI, corroborating the 'obesity paradox' (eTable 2). Indeed, lower thromboembolic rates were observed in obese versus normal BMI AF patients in the ROCKET AF,⁷ ARISTOTLE,⁸ ENGAGE AF-TIMI 48,⁹ RE-LY,¹² and AMADEUS trial (which investigated the unapproved factor Xa inhibitor idraparinux),¹⁴ whereas higher stroke/SE risks were observed in underweight AF patients (BMI <18.5 kg/m²) included in the ENGAGE AF-TIMI 48 trial⁹ (not reported in other RCTs). After pooling these results, the meta-analyses of Proietti et al. (based on three Phase III RCTs)¹⁰ and Zhou et al. (based on five RCTs including the SPORTIF trial, which investigated the unapproved direct thrombin inhibitor Ximelagatran)¹⁵ demonstrated a lower stroke/SE risk in (morbidly) obese versus normal BMI AF patients. Likewise, the Korean WILEY-CARDIOLOG

observational cohort study by Lee et al.¹⁶ illustrated that obese AF patients were associated with significantly lower ischemic stroke risks compared to normal BMI patients, while underweight was identified as an independent predictor of ischemic stroke¹⁷ and stroke/SE/mortality¹⁸ in five Japanese AF registries (64% VKA-treated, 10% NOAC-treated)¹⁷ and the Fushimi AF registry (investigating non-anticoagulated subjects).¹⁸

However, in other observational studies, the impact of BMI on AFrelated outcomes was not or less clear, illustrating the general controversy regarding the topic. For example, obesity was associated with similar stroke,¹⁹ stroke/SE,^{4,20-23} stroke/SE/myocardial infarction,²⁴ or stroke/ SE/venous thromboembolism^{25,26} risks compared to normal BMI AF patients included in the FANTASIIA registry¹⁹; ORBIT-AF registry (69%– 75% VKA-treated)⁴; J-RHYTHM registry (86%–91% VKA-treated)²⁰; Danish Diet, Cancer and Health study (19%–24% VKA-treated)²¹; XAPASS study²⁴; PREFER in AF (PROLONGATION) registries²⁶; the Korean retrospective cohort study by Park et al.²²; and two U.S. retrospective cohort studies by Kaplan et al.²³ and Netley et al.²⁵ Similarly, no significant differences in the risk of ischemic stroke,¹⁶ stroke/SE,^{20,22} or stroke/SE/myocardial infarction²⁴ could be demonstrated in underweight versus normal BMI AF patients in two Korean studies by Lee et al.¹⁶ and Park et al.,²² the J-RHYTHM registry²⁰ and the XAPASS study.²⁴

In contrast, two observational studies illustrated worse outcomes in obese AF patients. A Croatian cohort study by Lucijanic et al. observed a significantly shorter time to stroke/SE in obese versus non-obese AF patients.²⁷ Likewise, in a Chinese cohort study by Wang et al., the risk of stroke/SE/myocardial infarction was 9% higher per 1 kg/m² increase in BMI, although only 19% were OAC-treated and analyses were not adjusted for confounders.²⁸

3.1.2 | Mortality

In line with the impact on the thromboembolic risk, (morbid) obesity was associated with significantly lower all-cause mortality risks compared to the normal BMI subgroup in the ARISTOTLE⁸ and ENGAGE AF-TIMI 48 trial,⁹ whereas significantly higher mortality risks were demonstrated in underweight AF patients⁹ (eTable 2). Likewise, significantly lower mortality risks^{4,16,20,29,30} in overweight or obese and significantly higher risks^{16,20,22,24,30} in underweight AF patients were observed in most observational studies. However, in some observational studies, no impact of increasing BMI on the mortality risk was observed.^{19,22,24} Moreover, significantly higher mortality risks were observed in obese versus normal BMI AF patients in the Danish Diet, Cancer and Health study, although it should be noted that only a quarter of patients was anticoagulated at baseline, BMI was measured at the time of study entry (whereas follow-up started on the date of incident AF) and analyses were only adjusted for the CHA₂DS₂-VASc score.²¹

3.1.3 | Major bleeding

As opposed to the lower thromboembolic and mortality risks with increasing BMI, the impact on bleeding outcomes is less evident

(eTable 2). Similar major bleeding risks were observed in (morbidly) obese versus normal BMI patients in the ROCKET AF,⁷ ARISTOTLE⁸ and ENGAGE AF-TIMI 48 trial,⁹ as well as in underweight AF patients.⁹ After pooling results, a significantly lower odds of major bleeding in obese versus normal BMI AF patients was observed in the meta-analysis of Proietti et al.,¹⁰ while this was not the case in the meta-analysis of Zhou et al.¹⁵ Similar conflicting results were also present in observational studies, with no impact of (morbid) obesity^{4,16,19,20,22-26} or underweight^{16,20,24} on bleeding outcomes observed in most studies. However, the risk of major bleeding was significantly lower per 1 and 5 kg/m² increase in BMI in a Taiwanese³¹ and Korean¹⁶ study, respectively.

Conversely, significantly higher bleeding risks in obese versus normal BMI AF patients were observed in the Chinese MISSION-AF study,³² as well as a significantly shorter time to major bleeding in the Croatian study by Lucijanic et al.²⁷ Similarly, underweight was identified as an independent predictor of bleeding in AF patients included in the Korean study by Park et al.,²² as well as in AF patients \geq 80 years old included in the Japanese cohort study by Shinohara et al.³³

In AF patients with low body weight (\leq 50–60 kg) compared to normal weight, worse thromboembolic and mortality outcomes have also been observed, while bleeding risks were mostly comparable (see additional systematic review in supplemental materials).³⁴

3.2 | Meta-analysis

Results on AF-related outcomes in anticoagulated AF patients categorized according to their BMI from four (post hoc analyses of) Phase III RCTs^{7-9,12} and five longitudinal observational cohort studies^{16,19,22-24} were pooled in a meta-analysis. However, as only one study¹⁶ provided data on the gastrointestinal bleeding risk, this outcome could not be included in the meta-analysis.

Compared to normal BMI (18.5 to $<25 \text{ kg/m}^2$) anticoagulated AF patients, the risk of stroke/SE was significantly higher in underweight (BMI <18.5 kg/m²) anticoagulated AF patients (RR 1.92, 95%CI [1.28–2.90], p-value .002), whereas significantly lower risks were seen in overweight (BMI 25 to <30 kg/m²), obese (BMI \geq 30 kg/m²) and morbidly obese (BMI \geq 40 kg/m²) anticoagulated AF patients (RR 0.80, 95%CI [0.73–0.87], p-value <.001; RR 0.63, 95%CI [0.57–0.70], p-value <.001; and RR 0.42, 95%CI [0.31–0.57], p-value <.001, respectively) (Figures 2(A), 3(A), eFigure 1A-3A).

Likewise, the risk of all-cause mortality was significantly higher in underweight versus normal BMI anticoagulated AF patients (RR 3.57, 95%CI [2.50–5.11], p-value <.001), while significantly lower risks were demonstrated in overweight, obese and morbidly obese anticoagulated AF patients (RR 0.73, 95%CI [0.64–0.83], p-value <.001; RR 0.61, 95%CI [0.52–0.71], p-value <.001; RR 0.56, 95% CI [0.47–0.66], p-value <.001, respectively) (Figures 2(B),3(B), eFigure 1B-3B).

Moreover, overweight and obese anticoagulated AF patients were associated with significantly lower major bleeding (RR 0.86, 95%

FIGURE 2 Forest plot of the risk of (A) stroke or systemic embolism, (B) all-cause mortality, (C) major bleeding, and (D) intracranial bleeding for underweight (BMI <18.5 kg/m²) versus normal BMI (18.5 to <25 kg/m²) AF patients receiving anticoagulation, categorized according to randomized and observational studies. AF: atrial fibrillation; BMI: body mass index; CI: confidence interval; ENGAGE AF-TIMI 48: the effective anticoagulation with factor Xa next generation in atrial fibrillation-thrombolysis in myocardial infarction 48 trial; M–H: Mantel-Haenszel (statistical method); RCT: randomized controlled trial

	Study of Subara	Obesity	Normal E	BMI	Risk Ratio	Risk Ratio		
(A)	3.1.1 RCTs	Events fot	ai Events	rotai Weight	m-rt, Kandom, 95% CI Year	м-п, капоот, 95% Сі		
	Boehringer Ingelheim (RE-LY)	144 627	9 181	4697 19.7%	0.60 [0.48, 0.74] 2010			
	Sandhu et al. (ARISTOTLE) Balla et al. (ROCKET AF)	150 713 179 520	1 142 6 166	4038 17.9% 3289 21.4%	0.60 [0.48, 0.75] 2016 0.68 [0.55, 0.841 2017			
	Boriani et al. (ENGAGE AF-TIMI 48)	316 845	7 273	4491 36.7%	0.61 [0.52, 0.72] 2019			
	Subtotal (95% CI) Total events	789	3 1 762	6515 95.6%	0.62 [0.56, 0.69]	-		
	Heterogeneity: Tau ² = 0.00; Chi ^a = 1.04, df = 3 (P = 0.79); I ^a = 0% Test for overall effect: Z = 9.53 (P < 0.00001)							
	3.1.2 Observational studies Kaplan et al.	16 311	8 10	1720 1.5%	0.88 [0.40, 1.94] 2020			
	Bertomeu-Gonzalez et al.	34 72	7 18	358 2.9%	0.93 [0.53, 1.62] 2020			
	Total events	384 50	5 28	2078 4.4%	0.91 [0.58, 1.44]			
	Heterogeneity: Tau ² = 0.00; Chi ² = 0.0 Test for overall effect: Z = 0.39 (P = 0	01, df = 1 (P = 0. .70)	92); I ² = 0%					
	Total (95% CI) Total events	3091 839	8 1 790	8593 100.0%	0.63 [0.57, 0.70]	•		
	Heterogeneity: Tau ² = 0.00; Chi ² = 3.6 Test for overall effect: Z = 9.40 (P < 0 Test for subgroup differences: Chi ² =	0.5 0.7 1 1.5 2 Favours obesity Favours normal BMI						
(B)	Study or Subgroup	Obesity Events Tot	Normal E al Events	3MI Total Weight	Risk Ratio M-H, Random, 95% CI Year	Risk Ratio M-H, Random, 95% Cl		
(-)	3.2.1 RCTs	000 740	4 007	1000 01 10	0.57/0.50.0.053.0040			
	Sandhu et al. (ARISTOTLE) Boriani et al. (ENGAGE AF-TIMI 48)	398 713 793 845	1 397 7 629	4038 31.4%	0.57 [0.50, 0.65] 2016 0.67 [0.61, 0.74] 2019			
	Subtotal (95% CI)	1558	8	8529 66.6%	0.62 [0.53, 0.73]	◆		
	Total events 1191 1026 Heterogeneity: Tau ² = 0.01; Chi ² = 3.81, df = 1 (P = 0.05); l ² = 74% Test for overall effect: Z = 5.80 (P < 0.00001)							
	3.2.2 Observational studies		0 70	4440 0.000	0.4010.40.4.040.0000			
	wurakawa et al. Bertomeu-Gonzalez et al.	4 49 84 72	9 /2 7 52	4410 2.2% 358 14.6%	0.49 [0.18, 1.34] 2020 * 0.80 [0.58, 1.10] 2020			
	Lee et al.	47 273	3 822 2	22507 16.6%	0.47 [0.35, 0.63] 2021			
	Total events Heterogeneity: Tau ² = 0.09; Chi ² = 6.0	135 03, df = 2 (P = 0.	9 2 946 05); I ² = 67%	.1215 55.4%	0.59 [0.36, 0.91]			
	Test for overall effect: Z = 2.40 (P = 0	.02)	7 2	E804 400 0%	0.61 (0.62, 0.74)			
	Total (95% CI)	1326	/ 3 1972	5604 100.0%	0.01 [0.52, 0.71]	-		
	Heterogeneity: Tau ² = 0.01; Chi ² = 10	.00, df = 4 (P = 0	0.04); l² = 60%	6		0.5 0.7 1 1.5 2		
	Test for overall effect: Z = 6.29 (P < 0 Test for subgroup differences: Chi ² =	.00001) 0.04, df = 1 (P =	0.83), l² = 0%	ò		Favours obesity Favours normal BMI		
	01	Obesity Events Tot	Normal E al Events	3MI Total Weight	Risk Ratio M-H, Random, 95% CI Year	Risk Ratio M-H, Random, 95% Cl		
C)	Study or Subgroup							
C)	3.3.1 RCTs Boehringer Ingelheim (RE-LY)	394 627	9 344	4697 24.5%	0.86 [0.75, 0.99] 2010			
C)	3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (ARISTOTE)	394 627 281 707	9 344 4 217	4697 24.5% 3984 20.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016			
(C)	3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (ARISTOTLE) Balla et al. (ROCKET AF) Boriani et al. (ENGAGE AF-TIMI 48)	394 627 281 707 279 519 521 845	9 344 4 217 9 179 7 283	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019			
(C)	3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (ARISTOTLE) Balla et al. (ROCKET AF) Boriani et al. (ENGAGE AF-TIMI 48) Subtotal (95% CI)	394 627 281 707 279 519 521 845 2700	9 344 4 217 9 179 7 283 9 1	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00]			
(C)	Study or subgroup 3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (ARISTOTLE) Balla et al. (ROCKET AF) Boriani et al. (ENGAGE AF-TIMI 48) Subtotal (95% C1) Total events Heteroseneity: Tarië = 0.01: Chië = 8.	394 627 281 707 279 519 521 845 2700 1475 20 df = 3 (P = 0	9 344 4 217 9 179 7 283 9 1 1023 04):1 ² = 63%	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00]			
<u>(</u> C)	Study of Subgroup 3.3.1 RCTB Boehringer Ingelheim (RE-LY) Sandhu et al. (RARISTOTLE) Balla et al. (ROCKET AF) Borani et al. (ROCKET AF) Bothotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Test for overall effect; Z = 1.90 (P = 0	394 627 281 707 279 519 521 845 2700 1475 20, df = 3 (P = 0. .06)	9 344 4 217 9 179 7 283 9 1 1023 04); I ² = 63%	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.96 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00]	→- →- →- ◆		
<u>(</u> C)	Study of Subgroup 3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (RARISTOTLE) Balla et al. (ROCKET AF) Boriani et al. (ROCKET AF) Boriani et al. (ROCKET AF) Boriani et al. (ROCKET AF) Boriani et al. (ROCKET AF) Holesongenetity: Tau'a = 0.01; Chi ² = 8.2 Test for overall effect: Z = 1.90 (P = 0 3.32 Observational studies	394 627 281 707 279 519 521 845 2700 1475 20, df = 3 (P = 0. .06)	9 344 4 217 9 179 7 283 9 1 1023 04); I ² = 63%	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00]			
C)	Study or Subgroup 3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandru et al. (RARISTOTLE) Balla et al. (ROCKET AF) Borlani et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Test for overall effect: Z = 1.90 (P = 0 3.3.2 Observational studies Berfomeu-Gonzalez et al. Murakawa et al.	394 627 281 707 279 515 521 845 2700 1475 20, df = 3 (P = 0. .06) 48 72 7 45	9 344 4 217 9 179 7 283 9 1 1023 04); I ² = 63% 7 23 9 70	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00]			
<u>(</u> C)	Study of Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (RARISTOTLE) Balla et al. (ROCKET AF) Bortani et al. (ROCKET AF) Bothatal (95% CL) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Test for overall effect: Z = 1.90 (P = 0 3.2 Observational studies Bertomeu-Gonzalez et al. Murakawa et al. Lee et al.	394 627 281 707 279 519 521 845 2700 1475 20, df = 3 (P = 0. .06) 48 72 7 45 24 273	9 344 4 217 9 179 7 283 9 1023 04); I ² = 63% 7 23 9 70 3 283 2	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 22507 5.8%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.16] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00]			
<u>(</u> C)	Study of Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (RACKET AF) Bolar et al. (RACKET AF) Borani et al. (ROKAGE AF-TIMI 48) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8; Test for overall effect. Z = 1.90 (P = 0 3.3.2 Observational studies Bertomeu-Conzalez et al. Murakawa et al. Lee et al. Subtotal (95% CI) Total events	394 627 281 707 279 519 521 845 2700 1475 20, df = 3 (P = 0. .06) 48 72 7 45 24 273 395 79	9 344 4 217 9 179 7 283 9 1 1023 04); I ² = 63% 7 23 9 70 3 283 2 9 2 376	4697 24.5% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 7275 12.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.41, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.62, 1.11]			
<u>(</u> C)	Study of Subgroup Study of Subgroup Bochringer Ingelheim (RE-LY) Bondhu et al. (ROCKET AF) Bortani et al. (ROCKET AF) Bortani et al. (ROCKET AF) Bortani et al. (ROCKET AF) Bortani et al. (ROCKET AF) Heterogeneily: Tau' = 0.01; Chi ² = 8.2 Test for overall effect: Z = 1.90 (P = 0 3.32 Observational studies Bertomeu-Gonzalez et al. Murakawa et al. Lee et al. Subtotal (9% CI) Total events Heterogeneily: Tau' = 0.00; Chi ² = 1. Test for overall effect: Z = 1.24 (P = 0	394 627 281 707 279 516 521 84 521 84 2700 1475 20, df = 3 (P = 0. .06) 48 72 7 45 24 27 395 79 46, df = 2 (P = 0. .21)	9 344 4 217 9 179 7 283 9 1 1023 04); l ² = 63% 7 23 9 70 3 283 2 9 70 3 283 2 9 2 376 48); l ² = 0%	4697 24.5% 3984 20.1% 3274 18.9% 6446 87.9% 358 4.5% 4410 1.9% 22507 5.8% 7275 12.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.41, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.62, 1.11]			
(C)	Study of Studgroup Study of Studgroup 3.3.7 RCTB Boehringer Ingelheim (RE-LY) Sandhu et al. (RARISTOTLE) Balla et al. (ROCKET AF) Bortani et al. (ROCKET AF) Bortani et al. (ROGKET AF) Bortani et al. (ENGAGE AF-TIMI 48) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Ch ² = 8.2 Retromeu-Gonzalez et al. Murakawa et al. Lee et al. Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Ch ² = 1.2 Total events	394 627 281 707 521 845 2700 1475 20, df = 3 (P = 0. .06) 48 72 7 46 24 27 395 79 46, df = 2 (P = 0. .21) 3096	9 344 4 217 9 179 7 283 9 1 1023 1023 1023 9 70 3 283 2 9 3 76 48); I ² = 0% 8 4	4697 24.5% 3984 20.1% 3274 18.9274 18.9274 18.94 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 25207 5.87 7275 12.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.41, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.62, 1.11] 0.88 [0.79, 0.98]	+ + +		
(C)	Study of Studgroup Study of Studgroup 3.3.7 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (RACKET AF) Borlani et al. (RACKET AF) Borlani et al. (RACKET AF) Borlani et al. (RACKET AF) Borlani et al. (RACKET AF) Heterogeneily: Tau' = 0.01; Chi ² = 8.2 Test for overall effect: Z = 1.90 (P = 0 3.3.2 Observational studies Bertomeu-Gonzalez et al. Murakawa et al. Lee et al. Subtotal (9% CI) Total events Heterogeneily: Tau' = 0.00; Chi ² = 1.7 Total (95% CI) Total events Heterogeneily: Tau' = 0.01; Chi ² = 9.8 Heterogeneily: Tau' = 0.01; Chi ² = 9.8	394 622 281 707 279 515 521 84 2 2700 1475 20, df = 3 (P = 0. .06) 48 72 7 45 24 275 39 46, df = 2 (P = 0. .21) 3096 1554 31, df = 6 (P = 0.	9 344 4 217 9 179 7 283 9 1 1023 1023 1023 9 70 3 283 2 9 2 376 48); ² = 0% 8 4 1399 13); ² = 39%	4697 24.5% 3984 20.1% 3984 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 2207 5.8% 7275 12.1% 3721 100.0%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.74, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.62, 1.11] 0.88 [0.79, 0.98]			
(C)	Study of Studgroup Study of Studgroup 3.3.1 RCTB Boehringer Ingelheim (RE-LY) Sandhu et al. (RACKET AF) Bornan et al. (RACKET AF) Bornan et al. (ROCKET AF) Bornan et al. (ROCKET AF) Bornan et al. (ROCKET AF) Stubtotal (95% CI) Total events Heterogeneily: Tau ² = 0.01; Chi ² = 8.2 Rottoneu-Concalize et al. Murakawa et al. Lee et al. Stubtotal (95% CI) Total events Heterogeneily: Tau ² = 0.01; Chi ² = 1.4 Test for overtall effect: Z = 1.24 (P = 0 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Chi ² = 9.4 Total events Heterogeneily: Tau ² = 0.01; Chi ² = 9.2 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Chi ² = 9.2 Test for svall effect: Z = 2.40 (P = 0 Test fo	394 622 281 707 279 515 521 844 2700 1475 48 72 7 45 24 277 395 79 48, df = 2 (P = 0. .21) 3096 1554 11, df = 6 (P = 0. .02)	9 344 4 217 9 79 7 283 9 1 1023 9 1 1023 9 70 3 283 9 70 9 70 3 283 9 70 9 70 3 283 9 70 9 70	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 22807 5.8% 3721 100.0%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.86] 2020 0.88 [0.41, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.62, 1.11] 0.88 [0.79, 0.98]	0.5 0.7 1.5 2 Favours obesity Favours normal BMI		
C)	Suby of Subgroup Suby of Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (ROKT6TLE) Balle et al. (ROKT6T AF) Bornani et al. (ROKAGE AF-TIMI 48) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8; Test for overall effect: 2 = 1.90 (P = 0 3.3.2 Observational studies Bertomeu-Conzalez et al. Murakawa et al. Lee et al. Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 1. Test for overall effect: Z = 2.40 (P = 0 Test for subgroup differences: Chi ² = Test for subgroup differences: Chi ² = Subtotal effect: Z = 2.40 (P = 0 Test for subgroup differences: Chi ² = Subtotal Subgroup differences: Chi ² = Subtotal Subgroup differences: Chi ² = Subtota Subgroup differences: Chi ² = Subtota Subgroup differences: Chi ² = Subtot of Subgroup differences: Chi ² = Subgroup differences: Chi ² = Subgroup differences: Chi ² = Substot of Subgroup differences: Chi ² = Subgroup differences: Chi ² = Subgroup differences: Chi ² = Substot of Subgroup differences: Chi ² = Substot of S	394 622 281 707 279 515 521 645 521 645 20, df = 3 (P = 0. 0.66) 488 72 79 48, df = 2 (P = 0. .21) 3096 1554 1, df = 6 (P = 0. .02) 0.13, df = 1 (P = esity No ts Totl I (P	9 344 4 217 9 179 9 179 9 3 1 1023 9 3 1 1023 1023 9 3 76 8 2 139 7 2 9 3 76 8 4 1399 13); I ² = 39% 0.72), I ² = 0%	4697 24.5% 3884 20.1% 3384 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 22507 5.8% 7275 12.1% 3721 100.0%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.71, 1.01] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.72, 0.98] 0.88 [0.79, 0.98] Risk Ratio 1. Random, 95% CI Year	0.5 0.7 1.5 2 Favours obesity Favours normal BMI Risk Ratio MHL Random 9% C (1		
<u>(</u> C)	Study of Subgroup Study of Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (RAISTOTLE) Balla et al. (RAISTOTLE) Balla et al. (RAISTOTLE) Balla et al. (RAISTOTLE) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.2 Test for overall effect: Z = 1.24 (P = 0) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.24 Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Test for subgroup Greenees: Chi ² = 9 Subtot (Signeity): Tau ² = 0.01; Chi ² = 9.2 Test for subgroup Greenees: Chi ² = 9 Study or Subgroup Even 3.4.1 RCT8 Balla et al (ROCKET 4F)	394 622 281 707 279 515 521 844 220, df = 3 (P = 0. .06) 488 72 7 4 45 24 273 395 1554 (P = 0. .06) 488 72 7 9 92 1554 (P = 0. .02) 0.13, df = 6 (P = 0. .02) 0.13, df = 1 (P	9 344 4 217 9 179 9 179 9 03 1023 1023 1023 9 70 9 70 9 70 9 70 9 70 9 70 9 70 9 70	4697 24.5% 3884 20.1% 3384 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 22507 5.8% 7275 12.1% 3721 100.0%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.71, 1.00] 2021 0.83 [0.62, 1.11] 0.88 [0.79, 0.98] Risk Ratio 1.Random, 95% C1 Year 0.60 [0.34, 1.08] 2017	0.5 0.7 1.5 2 Favours obesity Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
Ċ)	Study of Subgroup Study of Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (RARISTOTLE) Balla et al. (ROCKET AF) Bornain et al. (ROKAGE AF-TIMI 48) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Test for overall effect: Z = 1.90 (P = 0 3.3.2 Observational studies Berformeu-Gonzalez et al. Murakawa et al. Lee et al. Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 1.24 (P = 0 Total events Heterogeneity: Tau ² = 0.01; Chi ² = 2.40 (P = 0 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.01; Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.01; Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.01; Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.01; Total for subaroup differences: Chi ² = 9.01; Study or Subgroup Event Subtotal (95% CI) Zubtotal (95% CI)	394 622 281 707 279 515 521 945 220, df = 3 (P = 0. 0.66) 488 77 7 4 45 24 273 395 79 1554 (P = 0. .21) 3096 1554 1554 (P = 0. .02) 0.13, df = 1 (P = esity No ts Total Ever 22 5199	9 344 4 217 9 179 9 07 1023 1004); I ² = 63% 7 23 9 70 2 9 70 2 9 70 2 9 70 2 9 70 2 376 48); I ² = 0% 8 4 1399 13); I ² = 39% 0.72; I ² = 0% rms IDM rms Total 23 3274 23 3274	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 22507 5.8% 7275 12.1% 3721 100.0% 6 Weight M-I 35.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.71, 1.06] 2021 0.83 [0.79, 0.98] Risk Ratio 1.84	0.5 0.7 1.5 2 Favours obesity Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
C) D)	Study or Studgroup Study or Studgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (ROCKET AF) Bornan et al. (RARISTOTLE) Balla et al. (ROCKET AF) Bornan et al. (ROCKET AF) Bornan et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 8.2 Total events Heterogeneily: Tau ² = 0.00; Ch ² = 1.4 Test for overall effect: Z = 1.24 (P = 0 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.2 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.4 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.2 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.2 Study or Subgroup Event 3.4.1 RCTs Balla et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.2 Test for subgroup Event 3.4.1 RCTs Balla et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneily: Not applicable	394 622 281 707 279 515 521 846 2700 1475 270 1475 270 147	9 344 4 217 9 179 17 23 9 102 1023 04); $l^2 = 63\%$ 7 23 9 70 3 283 2 9 376 3 48); $l^2 = 0\%$ 8 4 1399 13); $l^2 = 39\%$ 0.72), $l^2 = 0\%$ read 1399 13; $l^2 = 39\%$ 0.72), $l^2 = 0\%$ read 1397 1	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 22007 5.8% 3721 100.0% 5 Weight M-1 35.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.74, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.88 [0.79, 0.98] Risk Ratio 1.Random, 95% CI Year 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08]	0.5 0.7 1.5 2 Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
(C) (D)	Study or Subgroup Study or Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (RACKET AF) Bonan et al. (RACKET AF) Bonan et al. (ROKAGE AF-TIMI 48) Subtotal (95% CI) Total events Heterogeneily: Tau ² = 0.01; Chi ² = 8,2 Test for overall effect: Z = 1.90 (P = 0 3.3.2 Observational studies Bertomeu-Conzalez et al. Murakawa et al. Lee et al. Bettomeu-Conzalez et al. Murakawa et al. Lee et al. Heterogeneily: Tau ² = 0.01; Chi ² = 1.2 Total events Heterogeneily: Tau ² = 0.01; Chi ² = 1.2 Total events Heterogeneily: Tau ² = 0.01; Chi ² = 2.2 Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Chi ² = 9.1 Total (95% CI) Total events Balla et al. (ROCKET AF) Subtotal (95% CI) Total events At RCT8 Balla et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneily: Not applicable Test for overall effect: Z = 1.70 (P = 3.4.2 Observational studies	394 622 281 707 279 515 521 846 2700 1475 270 48 72 7 44 24 24 273 7 44 24 27 7 44 24 273 7 64 154 1554 31 df = 6 (P = 0. 0.13, df = 1 (P = esity No ts Total Evec 25 5199 52 20 0.09)	9 344 4 217 9 179 7 283 9 17 1023 04); I ² = 63% 7 23 9 70 3 283 2 9 37 3 283 2 9 37 4 399 0, 72 3 9 32 376 8 4 1399 0, 72 3 9 32 376 8 4 1399 0, 72 3 9 32 376 8 4 1399 0, 72 3 9 32 376 8 4 1399 0, 72 3 3274 23 23	4697 24.5% 3884 20.1% 3384 20.1% 2374 18.9% 4491 24.4% 6446 87.9% 3588 4.5% 4410 1.9% 22507 5.8% 3721 100.0% 6 Weight M-1 35.9% 35.9%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.86] 2020 0.88 [0.41, 1.91] 2020 0.70 [0.46, 1.06] 2021 0.83 [0.62, 1.11] 0.88 [0.79, 0.98] Risk Ratio 1.Random, 95% CI Year 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08]	0.5 0.7 to 1.5 2 Favours obesity Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
C) D)	Study or Subgroup Study or Subgroup 3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (RACKET AF) Bornan et al. (RACKET AF) Bornan et al. (ROCKET AF) Bornan et al. (ROCKET AF) Bornan et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 8.2; Total events Heterogeneily: Tau ² = 0.00; Ch ² = 1.4; Total events Heterogeneily: Tau ² = 0.00; Ch ² = 1.4; Total events Heterogeneily: Tau ² = 0.00; Ch ² = 1.4; Total events Heterogeneily: Tau ² = 0.00; Ch ² = 1.4; Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.2; Total (95% CI) Total events Heterogeneily: Tau ² = 0.01; Ch ² = 9.2; Study or Subgroup Event 3.4.1 RCTs Balla et al. (ROCKET AF) Total events Heterogeneily: Not applicable Test for overall effect: Z = 1.70 (P = 3.4.2 Observational studies	$\begin{array}{cccc} 394 & 622\\ 281 & 707\\ 279 & 515\\ 521 & 844\\ 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 270 & 488 & 72\\ 7 & 48 & 72\\ 7 & 48 & 72\\ 7 & 48 & 72\\ 7 & 48 & 72\\ 7 & 48 & 72\\ 7 & 48 & 72\\ 7 & 48 & 72\\ 7 & 7 & 78 & 72\\ 7 & 7 & 72 & 72\\ 7 & 7 & 72 & 72\\ 7 & 7 & 72 & 72$	9 344 4 217 9 179 7 23 9 7 1023 04); $ ^2 = 63\%$ 7 23 9 70 9 72 3 283 2 376 48 4 1399 13); $ ^2 = 39\%$ 0.72), $ ^2 = 0\%$ 7 8 8 4 1399 1399 1399 1399 1399 1399 1392 1393 1395 139	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 358 4.5% 4410 1.9% 3721 100.0% 3721 100.0% 3721 100.0% 3721 3721 100.0%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] Risk Ratio 1.060 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017	0.5 0.7 Favours obesity Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
C) D)	Study of Subgroup Study of Subgroup 3.3.1 RCT8 Boehringer Ingelheim (RE-LY) Sandhu et al. (RAISTOTLE) Balla et al. (RAISTOTLE) Balla et al. (ROCKET AF) Bornain et al. (ROCKET AF) Bornain et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.2 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.2 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Test for overall effect: Z = 1.24 (P = 0) Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Test for overall effect: Z = 2.40 (P = 0) Study or Subgroup Even 3.4.1 (ROCKET AF) Zubtotal (95% CI) Total events Lee et al. Subtotal (95% CI)	$\begin{array}{ccccccc} 334 & 622\\ 281 & 707\\ 279 & 515\\ 521 & 844\\ 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 2700 & 487\\ 7 & 48\\ 24 & 270\\ 7 & 48\\ 14 & 48$	9 344 4 217 9 179 17 23 9 17 1023 04); $l^2 = 63\%$ 7 23 9 70 9 70 3 283 9 70 9 72 3 323 9 70 9 72 3 323 9 70 9 72 9 76 9 70 9 72 9 70 9 72 9 70 9 70 9 70 9 72 9 72 9 70 9 72 9 72	4697 24.5% 3884 20.1% 3384 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 3588 4.5% 4410 1.9% 7275 12.1% 3721 100.0% 6 Weight M-I 35.9% 35.9% 49.1% 15.0%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.80 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.65 [0.35, 0.94] 2020	0.5 0.7 1.5 2 Favours obesity Favours normal BMI M-H, Random, 95% Cl		
C)	Suby of Subgroup Suby of Subgroup 3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (ROCKET AF) Bolla et al. (ROCKET AF) Bornain et al. (ROGKET AF) Bornain et al. (ROGKET AF) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 4.2 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.4 (P = 0) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 2.4 (P = 0) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 2.4 (P = 0) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 2.4 (P = 0) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 2.4 (P = 0) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 2.4 (P = 0) Total events Subtotal (95% CI) Total events Ata RCTs Balla et al. (ROCKET AF) 2 Subtotal (95% CI) Total events Ata 2 Observational studies Kaplan et al. Subtotal (95% CI) Total events Subtotal (95% CI) Total events Ata 2 Observational studies Kaplan et al. Subtotal (95% CI) Total events Subtotal (95% CI)	$\begin{array}{ccccccc} 394 & 622\\ 281 & 707\\ 279 & 515\\ 521 & 944\\ 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 77 & 44\\ 24 & 273\\ 79 & 48\\ 24 & 273\\ 79 & 395\\ 155 & 48\\ 79 & 20\\ 155 & 27\\ 395\\ 155 & 20\\ 1318\\ 5 & 2733\\ 5851\\ 56\end{array}$	9 344 4 217 9 179 7 23 9 1023 1 023 1 023 1 023 9 70 9 70 9 70 2 32 9 70 9 70 2 32 9 70 9 70 2 32 9 70 9 70	4697 24.5% 3864 20.1% 3384 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 3368 4.5% 7275 12.1% 3721 100.0% 6 Weight M-1 35.9% 35.9% 35.9% 49.1% 15.0% 64.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.77, 1.06] 2021 0.83 [0.62, 1.11] 0.88 [0.79, 0.96] Risk Ratio 1.Random, 95% CI Year 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.65 [0.35, 0.94] 2020 0.48 [0.19, 1.18] 2021	0.5 0.7 1.5 2 Favours obesity Favours normal BMI M.H. Random, 95% CI		
(D)	Study or Studgroup Study or Studgroup 3.3.1 RCTs Boehringer Ingelheim (RE-LY) Sandhu et al. (ROCKET AF) Bornan et al. (ROCKET AF) Bortoneu-Conzalez et al. Murakawa et al. Lee et al. Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Ch ² = 0.4 Total events Heterogeneity: Tau ² = 0.00; Ch ² = 1.4 Test for overall effect: Z = 1.24 (P = 0 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Ch ² = 0.4 Total events Heterogeneity: Tau ² = 0.01; Ch ² = 0.4 Total events Heterogeneity: Tau ² = 0.01; Ch ² = 0.4 Total events Heterogeneity: Tau ² = 0.01; Ch ² = 0.4 Total events Subtotal (95% CI) Total events Subtotal (95% CI) Total events Subtotal (95% CI) Total events AL,1 RCTs Balla et al. (ROCKET AF) Subtotal (95% CI) Total events AL,2 Observational studies Subtotal (95% CI) Total events Subtotal (95% CI) Subtotal (95% CI)	$\begin{array}{c} 394 & 622\\ 281 & 707\\ 279 & 515\\ 521 & 844\\ 2700\\ 1475 & 2700\\ 1475 & 2700\\ 280 & df = 3 (P = 0, 0.6)\\ 488 & 72\\ 7 & 44\\ 24 & 273\\ 7 & 44\\ 24 & 273\\ 7 & 44\\ 24 & 273\\ 7 & 44\\ 24 & 273\\ 7 & 44\\ 24 & 273\\ 7 & 46\\ 1554 & 47\\ 1554 & 47\\ 1554 & 47\\ 100 & 100 & 10\\ 100$	9 344 4 217 9 179 17 23 9 17 1023 04); $ ^2 = 63\%$ 7 23 9 70 9 70 3 283 2 376 48); $ ^2 = 0\%$ 8 4 1399 13); $ ^2 = 0\%$ 8 4 1399 0.72), $ ^2 = 0\%$ 7 23 23 3274 23 30 1720 86 22507 24227 116 0.74); $ ^2 = 0$	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 3358 4.5% 4410 1.9% 22007 5.8% 7275 12.1% 3721 100.0% 6	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] Risk Ratio 1.060 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 0.57 [0.35, 0.94] 2020 0.48 [0.19, 1.18] 2021 0.55 [0.35, 0.85]	0.5 0.7 1.5 2 Favours obesity Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
C) D)	Study of Subgroup Study of Subgroup Study of Subgroup Solar ACTS Boehringer Ingelheim (RE-LY) Sandhu et al. (RAISTOTLE) Balla et al. (RAISTOTLE) Balla et al. (ROCKET AF) Bornain et al. (ROCKET AF) Bornain et al. (ROCKET AF) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 8.2 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.2 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Test for overall effect: Z = 1.24 (P = 0 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Total (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.01; Chi ² = 9.2 Subtotal (95% CI) Total events Lee et al. Subtotal (95% CI) Total events Lee st al. Subtotal (95% CI) Total events Lee st al. Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.7 Heterogeneity: Tau ² = 0.00; Chi ² = 1.7 Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.7 Total events Heterogeneity: Tau ² = 0.00; Chi ² = 1.7 Heterogeneity: Tau ² = 0.00; Chi ² = 1.7 Total (95% CI)	$\begin{array}{c} 394 & 622\\ 281 & 707\\ 279 & 515\\ 521 & 844\\ 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 2700 & 1475\\ 7 & 44\\ 24 & 275\\ 79\\ 165 & 472\\ 24 & 275\\ 79\\ 165 & 472\\ 24 & 275\\ 79\\ 165 & 472\\ 24 & 275\\ 79\\ 165 & 472\\ 165$	9 344 4 217 9 179 17 23 9 17 1023 04); $l^2 = 63\%$ 7 23 9 70 3 283 9 70 3 283 9 70 3 283 9 70 3 283 9 70 9 70 3 283 9 70 9	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 3358 4.5% 4410 1.9% 3721 100.0% 6 Weight M-I 35.9% 35.9% 49.1% 15.0% 64.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.74, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.65 [0.35, 0.94] 2020 0.48 [0.19, 1.18] 2021 0.55 [0.35, 0.94] 2020 0.55 [0.35, 0.85]	0.5 0.7 1.5 2 Favours normal BMI Risk Ratio M-H, Random, 95% Cl		
(C) [D)	Study of Subgroup Subject of Subgroup Subject Subjec	$\begin{array}{c} 394 & 622\\ 281 & 707\\ 279 & 515\\ 521 & 844\\ 2700\\ 1475 & 2700\\ 1475 & 2700\\ 1475 & 2700\\ 270 & 487\\ 7 & 44\\ 24 & 270\\ 7 & 44\\ 24 & 270\\ 7 & 44\\ 24 & 270\\ 7 & 44\\ 24 & 270\\ 7 & 44\\ 24 & 270\\ 7 & 44\\ 24 & 270\\ 7 & 46\\ 21 & 270\\ 140 & 270\\ 14$	9 344 4 217 9 179 7 23 9 179 1023 04); $l^2 = 63\%$ 7 23 9 70 9 70 3 283 9 70 9 72 3 76 4 1039 9 72 3 76 4 1399 10, $l^2 = 9\%$ 8 4 1399 10, $l^2 = 9\%$ 8 4 1399 10, $l^2 = 9\%$ 8 139 10, $l^2 = 9\%$ 8 139 10, $l^2 = 9\%$ 13, $l^2 = 9\%$ 14, $l^2 = 0\%$ 15, $l^2 = 0\%$ 16, $l^2 = 0\%$ 16, $l^2 = 0\%$ 17, $l^2 = 0\%$ 16, $l^2 = 0\%$ 17, $l^2 = 0\%$ 17, $l^2 = 0\%$ 16, $l^2 = 0\%$ 17, $l^2 = 0\%$ 16, $l^2 = 0\%$ 17, $l^2 = 0\%$ 17, $l^2 = 0\%$ 16, $l^2 = 0\%$ 17, $l^2 = 0\%$ 17, $l^2 = 0\%$ 16, $l^2 = 0\%$ 17, $l^2 = 0\%$ 17, $l^2 = 0\%$ 18, $l^2 = 0\%$ 19, $l^2 = 0\%$ 19, $l^2 = 0\%$ 10, l	4697 24.5% 3884 20.1% 3274 18.9% 4491 24.4% 6446 87.9% 3558 4.5% 4410 1.9% 3721 100.0% 6 Weight M-1 35.9% 35.9% 49.1% 15.0% 64.1%	0.86 [0.75, 0.99] 2010 0.73 [0.61, 0.87] 2016 0.98 [0.82, 1.18] 2017 0.98 [0.85, 1.12] 2019 0.88 [0.77, 1.00] 1.03 [0.64, 1.66] 2020 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.88 [0.79, 0.98] 0.80 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.60 [0.34, 1.08] 2017 0.65 [0.35, 0.94] 2020 0.48 [0.19, 1.18] 2021 0.55 [0.35, 0.94] 2020 0.55 [0.35, 0.94] 2020	0.5 0.7 1.5 2 Favours obesity Favours normal BMI M-H, Random, 95% Cl		

FIGURE 3 Forest plot of the risk of (A) stroke or systemic embolism, (B) allcause mortality, (C) major bleeding, and (D) intracranial bleeding for obese (BMI \geq 30 kg/m²) versus normal BMI (18.5 to < 25 kg/m²) AF patients receiving anticoagulation, categorized according to randomized and observational studies. AF: atrial fibrillation; ARISTOTLE: the apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation trial; BMI: body mass index; CI: confidence interval; ENGAGE AF-TIMI 48: the effective anticoagulation with factor Xa next generation in atrial fibrillationthrombolysis in myocardial infarction 48 trial; M-H: Mantel-Haenszel (statistical method): RCT: randomized controlled trial: RE-LY: the randomized evaluation of longterm anticoagulation therapy; ROCKET AF: the rivaroxaban once daily oral direct factor Xa inhibition compared with vitamin k antagonism for prevention of stroke and embolism trial in atrial fibrillation

CI [0.76–0.99], p-value .03; and RR 0.88, 95%CI [0.79–0.98], p-value .02, respectively) and intracranial bleeding risks (RR 0.75, 95%CI [0.58–0.97], p-value .03; and RR 0.57, 95%CI [0.40–0.80], p-value .001, respectively) compared to normal BMI AF patients, whereas similar major and intracranial bleeding risks were observed in underweight (RR 1.37, 95%CI [0.65–2.88], p-value .41; and RR 0.45, 95%CI [0.11–1.84], p-value .27, respectively) and morbidly obese anticoagulated AF patients (RR 0.73, 95%CI [0.38–1.42], p-value .36; no

data on intracranial bleeding risk) (Figures 2(C), 3(C) and 2(D), 3(D), eFigure 1C-3C and 1D).

Similar trends were observed in anticoagulated AF patients with Class II obesity (BMI 35- < 40 kg/m²) (eFigure 2). Moreover, additionally including data from four studies^{4,20,21,29} with non-anticoagulated AF patients as a sensitivity analysis rendered consistent results (eFigure 4).

No publication bias was suspected based on visual inspection of the funnel plots, although the interpretation may not have been reliable, as

less than 10 studies were included in the meta-analysis (eFigure 7). All included studies scored ≥75% on the quality assessment tool 'QUALSYST'¹³ (eTable 3). For most outcomes, no substantial heterogeneity was detected. However, regarding the risk of mortality in overweight (I² 62%) and Class II obese AF patients (I² 69%), and the risk of major bleeding in overweight (I^2 64%) and morbidly obese AF patients (I^2 88%), substantial heterogeneity was detected, probably caused by heterogeneous results from the included randomized studies. Indeed, overweight and Class II obese patients included in the ARISTOTLE trial⁸ had lower mortality risks than their peers included in the ENGAGE AF-TIMI 48 trial,⁹ which is likely the result of the inclusion of older overweight and Class II obese patients in the latter trial (e.g., median age of overweight AF patients in the ENGAGE AF-TIMI 48 trial⁹ was 73 years (67-79). whereas the mean age of overweight AF patients in the ARISTOTLE trial⁸ was 70.1 years +/- 9.3). Regarding the heterogeneous results of major bleeding in morbidly obese AF patients, the major bleeding risk was higher in morbidly obese AF patients included in the ENGAGE AF-TIMI 48 trial⁹ than in the ARISTOTLE trial.⁸ despite good INR control in warfarin-treated patients and no significant difference in the pharmacokinetics and -dynamics of edoxaban compared to apixaban. Also, the use of antiplatelets cannot (fully) explain these heterogeneous safety results, as 33.2% of morbidly obese patients in the ENGAGE AF-TIMI 48 trial⁹ and 33.1% of obese patients in the ARISTOTLE trial⁸ used antiplatelets. Lastly, substantial heterogeneity in the risks of mortality and major bleeding was detected in underweight AF patients (I² 81% and 80%, respectively), probably due to heterogeneous results of the included observational studies.^{16,22,24} Indeed, after one-by-one exclusion of these studies, results remained the same, but heterogeneity was generally lower (eFigure 5,6).

4 | DISCUSSION

As a vivid debate is still ongoing whether or not (morbid) obesity has a protective effect on AF-related outcomes, this meta-analysis based on four randomized^{7-9,12} and five observational^{16,19,22-24} studies explored the controversial 'obesity paradox' concept (Figure 4). In line with results from the meta-analyses of Proietti et al.¹⁰ and Zhou et al.,¹⁵ we demonstrated lower stroke/SE and mortality risks with increasing BMI, corroborating the 'obesity paradox.' On the contrary, underweight (BMI $<18.5 \text{ kg/m}^2$) was associated with higher thromboembolic and mortality risks, which may be suggestive of a 'lean paradox.' This is in line with results in AF patients with low body weight of \leq 60 kg compared to normal weight, illustrated by the meta-analysis by Boonyawat et al.³⁴ Moreover, the impact of BMI on major and intracranial bleeding risks was less evident, although significantly lower bleeding risks were observed in overweight and obese patients with AF compared to those with a normal BMI. Intriguingly, these trends appeared to be mostly driven by results from randomized studies, while subsequent observational studies rendered more conflicting results. However, these findings should not justify maintaining or neglecting a high BMI in AF patients. Clinicians should still direct their efforts on advocating weight control and on intensively tackling other cardiovascular risk factors in (morbidly) obese AF patients, as recommended by guidelines.^{9,35}

4.1 | Hypotheses on the 'obesity paradox'

Several considerations and hypotheses have been suggested in order to elucidate the apparent protective effect of obesity on AF-related outcomes. First, cardiovascular risk factors (e.g., hypertension, dyslipidaemia and diabetes) may have been tackled earlier in obese patients, resulting in faster and more intensive medical treatment.⁸ For example, in the ARISTOTLE trial, 50%, 68%, and 77% of obese AF patients were treated with statins, beta-blockers and ACE-inhibitors, compared to 34%, 56%, and 61% of normal BMI patients, respectively.⁸

CLINICAL CAPPIOLOGY-WILEY-

Second, the large metabolic reserves present in obese patients may help to cope with chronic diseases and help to survive complications or exacerbations.^{4,19} Conversely, poor nutritional status in frail underweight patients may increase their susceptibility to adverse outcomes such as hospitalizations and mortality.³⁶

Third, inflammation (mediated by interleukin-6, IL-6) and activation of the renin-angiotensin-aldosterone system (expression of angiotensin-II receptors which activate thromboxane A2 and induce IL-6) promote a prothrombotic state in AF.^{7,37,38} Obesity, independent from AF, has also been linked to systemic inflammation (elevated levels of C-reactive protein, IL-6 and tumor necrosis factor- α [TNF- α]), due to IL-6 and TNF- α production from (visceral) adipose tissue.^{39,40} In underweight and frail patients, an increase in systemic inflammation and higher levels of renin in response to stress have also been described, potentially leading to more adverse outcomes.^{41,42} On the contrary, other studies have suggested that a decreased reninangiotensin response to stress and more production of soluble TNF- α receptors in adipose tissue of obese patients may reduce inflammation and potentially result in a lower prothrombotic state.7,8,42,43 Overall, whether or not differences in systemic inflammation may influence thromboembolic outcomes in obese AF patients remains questioned.

Fourth, selection bias in randomized studies may have influenced results, illustrated by the difference in comorbidities and age between obese and normal BMI AF patients. Indeed, obese patients included in RCTs frequently had a better renal function and less prior stroke/SE, although the prevalence of hypertension and diabetes mellitus was higher.^{7,8} Moreover, obese patients tend to develop cardiovascular diseases such as AF earlier than normal BMI patients² and have therefore a greater proportion of life lived with cardiovascular morbidity.^{7,9} Indeed, obese AF patients in randomized studies were considerably younger than normal BMI patients (e.g., median age of normal BMI, obese and morbidly obese AF patients included in the ENGAGE AF-TIMI 48 trial was 75, 71, and 64 years, respectively),⁹ which may have resulted in lower all-cause mortality and thromboembolic risks in these younger obese AF patients. Similarly, underweight AF patients tended to be older than normal BMI patients (e.g., mean age of 78 and 74 years, respectively, in the XAPASS trial²⁴). Even though age-adjusted analyses were performed in most studies, residual confounding due to agerelated cardiovascular deterioration (e.g., systemic atherosclerosis) and other underlying age-related mechanisms may explain this 'obesity paradox.' Intriguingly, in two observational studies that included normal BMI and obese AF patients of comparable age, a higher mortality²¹ and

Outcome	RR	95%CI	Extreme vs normal BMI		
Stroke/SE					
Underweight	1.92	[1.28-2.90]	►		
Overweight	0.80	[0.73-0.87]			
Obesity	0.63	[0.57-0.70]			
Class II obesity	0.56	[0.48-0.65]	⊢− ■−−1		
Morbid obesity	0.42	[0.31-0.57]			
All-cause mortality					
Underweight	3.57	[2.50-5.11]			
Overweight	0.73	[0.64-0.83]	⊢ ∎→1		
Obesity	0.61	[0.52-0.71]	⊢		
Class II obesity	0.58	[0.46-0.74]	⊢		
Morbid obesity	0.56	[0.47-0.66]			
Major bleeding					
Underweight	1.37	[0.65-2.88]	F		
Overweight	0.86	[0.76-0.99]	⊢ ∎→		
Obesity	0.88	[0.79-0.98]			
Class II obesity	0.90	[0.79-1.04]			
Morbid obesity	0.73	[0.38-1.42]	·		
Intracranial bleeding					
Underweight	0.45	[0.11-1.84]	← ■		
Overweight	0.75	[0.58-0.97]			
Obesity	0.57	[0.40-0.80]			
Class II obesity	0.58	[0.35-0.95]	·		
Morbid obesity	NR	NR .			
-			I I I I 0.30 0.50 1.0 2.0 5.0 < Favours extreme BMI RR Favours normal BMI> 5.0 5.0		

FIGURE 4 Overview of the meta-analyzed risk estimates of stroke or systemic embolism, mortality, major bleeding and intracranial bleeding for underweight (BMI <18.5 kg/m²), overweight (25 to < 30 kg/m²), obese (\geq 30 kg/m²), Class II obese (35 to <40 kg/m²) and morbidly obese (\geq 40 kg/m²) versus normal BMI (18.5 to < 25 kg/m²) AF patients receiving anticoagulation, respectively. AF: atrial fibrillation; BMI: body mass index; CI: confidence interval; NR: not reported; RR: risk ratio; SE: systemic embolism

bleeding³² risk were documented in obese versus normal BMI AF patients. Therefore, the 'obesity paradox' may be less or not observed in observational studies, possibly due to the inclusion of older, more comorbid obese AF patients with potential off-label NOAC dosing and suboptimal adherence, than those included in randomized studies.

Lastly, in line with the fourth hypothesis, the observed worse outcomes in underweight versus normal BMI AF patients may have been the result of older age and a higher comorbidity burden, as underweight has been associated with frailty and chronic diseases in the elderly.^{16,33} Malnutrition and underlying conditions such as malignancies and COPD, may play a role in the increased risk of adverse outcomes, especially mortality.^{16,33}

4.2 | Strengths and limitations

Our systematic review and meta-analysis have several strengths, such as the inclusion of both Phase III RCTs, characterized by detailed methodologies and well-defined cohorts, and longitudinal observational cohort studies, which include large real-world patient subgroups with long follow-up. By pooling results, we have included large numbers of patients for each outcome, even in the subgroup of patients with underweight and morbid obesity, who were underrepresented in randomized studies. Moreover, we have only included patients based on the BMI, as a body weight of <60 kg or >120 kg does not necessarily correspond with underweight or morbid obesity, respectively (e.g., any person larger than 1.73 meters with a body weight of 120 kg has a BMI of <40 kg/m²).

Several limitations should be mentioned complicating the comparability of included studies. First, classification of patients according to BMI differed between studies. For example, some studies categorized their patient cohorts according to the BMI tertiles^{31,32} or quartiles,²⁶ or did not use the WHO BMI classification.³⁰ Second, BMI was usually measured at baseline, not adjusting for weight changes during follow-up. However, in the ARISTOTLE trial, only very small weight changes were noted during follow-up.⁴⁴ Third, four studies^{4,20,21,29} included nonanticoagulated AF patients, resulting in the exclusion of their results in the meta-analysis to overcome this shortcoming. However, results were consistent in a sensitivity analysis with inclusion of these studies. Fourth, NOAC dosages varied between studies, as rivaroxaban 15 and 10 mg once daily are the approved standard and reduced dosages in Japan⁴⁵ (as opposed to 20 and 15 mg in Europe)³⁵ and dabigatran 75 mg twice daily is the approved reduced dosage in the U.S.¹² (compared to 110 mg twice daily in Europe).³⁵ Fifth, endpoints frequently differed from our outcomes of interest, as some studies^{14,16-18,24,28,32,33} examined the risk of ischemic stroke, stroke/SE/mortality, stroke/SE/myocardial infarction, or any (major or minor) bleeding. Lastly, results from observational studies^{16-18,20,22,24,30,33} on AF-related outcomes in underweight versus normal BMI AF patients were all performed in an Asian setting potentially limiting generalizability. Similarly, morbidly obese AF patients were more likely to be of Caucasian ethnicity (especially from North America).^{8,9} These results should not be automatically extrapolated to other populations due to potential ethnic differences, as VKA-treated Asian AF patients tend to have more major bleeding events (especially intracranial bleeding), higher stroke rates (especially haemorrhagic stroke) and a lower mean time in therapeutic range than VKA-treated Caucasian AF patients.46,47

5 | CONCLUSION

In conclusion, this meta-analysis exploring the controversial 'obesity paradox' demonstrated lower thromboembolic and mortality risks with increasing BMI in anticoagulated AF patients. However, as this paradox was driven by results from randomized studies, while subsequent observational studies rendered more conflicting results, these seemingly protective effects should still be interpreted with caution.

AUTHOR CONTRIBUTIONS

Maxim Grymonprez and Lies Lahousse contributed to the concept and design of the systematic review. Maxim Grymonprez and Andreas Capiau performed the literature search. Maxim Grymonprez performed the statistical analysis, interpretation and writing. Andreas Capiau, Tine L. De Backer, Stephane Steurbaut, Koen Boussery, and Lies Lahousse revised the systematic review critically. All authors contributed to the article and approved the submitted version.

DATA AVAILABILITY STATEMENT

The data underlying this article are available in the article and in its online supplemental materials.

ORCID

Maxim Grymonprez D https://orcid.org/0000-0002-0145-6486

REFERENCES

 World Health Organization (WHO) Body mass index (BMI) classification. http://www.euro.who.int/en/health-topics/disease-prevention/ nutrition/a-healthy-lifestyle/body-mass-index-bmi. 2020. Wanahita N, Messerli FH, Bangalore S, Gami AS, Somers VK, Steinberg JS. Atrial fibrillation and obesity-results of a meta-analysis. *Am Heart J.* 2008;155(2):310-315.

CLINICAL

- Tsang TS, Barnes ME, Miyasaka Y, et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. *Eur Heart J.* 2008;29(18):2227-2233.
- Pandey A, Gersh BJ, McGuire DK, et al. Association of Body Mass Index with care and outcomes in patients with atrial fibrillation: results from the ORBIT-AF registry. J Am Coll Cardiol EP. 2016;2(3):355-363.
- Kang SH, Choi EK, Han KD, et al. Underweight is a risk factor for atrial fibrillation: a nationwide population-based study. *Int J Cardiol.* 2016; 215:449-456.
- Deng H, Shantsila A, Guo P, et al. A U-shaped relationship of body mass index on atrial fibrillation recurrence post ablation: a report from the Guangzhou atrial fibrillation ablation registry. *EBioMedicine*. 2018;35:40-45.
- Balla SR, Cyr DD, Lokhnygina Y, et al. Relation of risk of stroke in patients with atrial fibrillation to body mass index (from patients treated with rivaroxaban and warfarin in the rivaroxaban once daily Oral direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation trial). Am J Cardiol. 2017;119(12):1989-1996.
- Sandhu RK, Ezekowitz J, Andersson U, et al. The 'obesity paradox' in atrial fibrillation: observations from the ARISTOTLE (Apixaban for reduction in stroke and other thromboembolic events in atrial fibrillation) trial. *Eur Heart J.* 2016;37(38):2869-2878.
- Boriani G, Ruff CT, Kuder JF, et al. Relationship between body mass index and outcomes in patients with atrial fibrillation treated with edoxaban or warfarin in the ENGAGE AF-TIMI 48 trial. *Eur Heart J.* 2019;40(19):1541-1550.
- Proietti M, Guiducci E, Cheli P, Lip GY. Is there an obesity paradox for outcomes in atrial fibrillation? A systematic review and meta-analysis of nonvitamin K antagonist Oral anticoagulant trials. *Stroke*. 2017;48(4):857-866.
- Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007;146(12):857-867.
- Boehringer Ingelheim Pharmaceuticals. FDA Advisory Committee Briefing Document, Dabigatran Etexilate Mesylate Capsules, for the September 20, 2010 Meeting of the Cardiovascular and Renal Drugs Advisory Committee. https://wayback.archive-it.org/7993/20170405212218/https:// www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeeting Materials/Drugs/CardiovascularandRenalDrugsAdvisoryCommittee/ UCM247244.pdf.
- 13. Kmet L, Lee R, Cook L. The Quality Assessment Tool 'QUALSYST' from the "Standard Quality Assessment Criteria for Evaluating Primary Research Papers from a Variety of Fields". 2004. https://www. ihe.ca/advanced-search/standard-quality-assessment-criteria-forevaluating-primary-research-papers-from-a-variety-of-fields.
- Senoo K, Lip GY. Body mass index and adverse outcomes in elderly patients with atrial fibrillation: the AMADEUS trial. *Stroke*. 2016;47 (2):523-526.
- Zhou Y, Ma J, Zhu W. Efficacy and safety of direct Oral anticoagulants versus warfarin in patients with atrial fibrillation across BMI categories: a systematic review and meta-analysis. Am J Cardiovasc Drugs. 2020;20(1):51-60.
- Lee SR, Choi EK, Jung JH, et al. Body mass index and clinical outcomes in Asian patients with atrial fibrillation receiving oral anticoagulation. *Stroke*. 2021;52(2):521-530.
- Okumura K, Tomita H, Nakai M, et al. Risk factors associated with ischemic stroke in Japanese patients with Nonvalvular atrial fibrillation. JAMA Netw Open. 2020;3(4):e202881.
- Hamatani Y, Yamashita Y, Esato M, et al. Predictors for stroke and death in non-Anticoagulated Asian patients with atrial fibrillation: the Fushimi AF registry. *PloS One*. 2015;10(11):e0142394.
- Bertomeu-Gonzalez V, Moreno-Arribas J, Esteve-Pastor MA, et al. Association of body mass index with clinical outcomes in patients

-WILEY-

WILEY-CLINICAL

with atrial fibrillation: a report from the FANTASIIA registry. J Am Heart Assoc. 2020;9(1):e013789.

- Inoue H, Kodani E, Atarashi H, et al. Impact of body mass index on the prognosis of Japanese patients with non-Valvular atrial fibrillation. *Am J Cardiol.* 2016;118(2):215-221.
- Overvad TF, Rasmussen LH, Skjøth F, et al. Body mass index and adverse events in patients with incident atrial fibrillation. *Am J Med.* 2013;126(7):640.e9-e6.4E17.
- Park CS, Choi EK, Kim HM, Lee SR, Cha MJ, Oh S. Increased risk of major bleeding in underweight patients with atrial fibrillation who were prescribed non-vitamin K antagonist oral anticoagulants. *Heart Rhythm.* 2017;14(4):501-507.
- Kaplan RM, Tanaka Y, Passman RS, et al. Efficacy and safety of direct Oral anticoagulants for atrial fibrillation across body mass index categories. J Am Heart Assoc. 2020;9(24):e017383.
- Murakawa Y, Ikeda T, Ogawa S, et al. Impact of body mass index on real-world outcomes of rivaroxaban treatment in Japanese patients with non-valvular atrial fibrillation. *Heart Vessels*. 2020;35:1125-1134.
- Netley J, Howard K, Wilson W. Effects of body mass index on the safety and effectiveness of direct oral anticoagulants: a retrospective review. J Thromb Thrombolysis. 2019;48(3):359-365.
- Patti G, Pecen L, Manu MC, et al. Thromboembolic and bleeding risk in obese patients with atrial fibrillation according to different anticoagulation strategies. *Int J Cardiol.* 2020;318:67-73.
- Lucijanic M, Jurin I, Jurin H, et al. Patients with higher body mass index treated with direct/novel oral anticoagulants (DOAC/NOAC) for atrial fibrillation experience worse clinical outcomes. *Int J Cardiol.* 2020;301:90-95.
- Wang H, Wang HJ, Chen YD, et al. Prognostic factors of clinical endpoints in elderly patients with atrial fibrillation during a 2-year follow-up in China: an observational cohort study. *Medicine (United States)*. 2017;96(33):e7679.
- Badheka AO, Rathod A, Kizilbash MA, et al. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. *Am J Med.* 2010;123(7):646-651.
- Wang L, Du X, Dong JZ, et al. Body mass index and all-cause mortality in patients with atrial fibrillation: insights from the China atrial fibrillation registry study. *Clin Res Cardiol.* 2019;108(12):1371-1380.
- Lee CH, Lin TY, Chang SH, et al. Body mass index is an independent predictor of major bleeding in non-valvular atrial fibrillation patients taking dabigatran. *Int J Cardiol.* 2017;228:771-778.
- Li MH, Hu LH, Xiong YR, et al. Association between body mass index and the risk of bleeding in elderly patients with non-valvular atrial fibrillation taking dabigatran: a cohort study. J Geriatr Cardiol. 2020; 17(4):193-201.
- Shinohara M, Fujino T, Yao S, et al. Assessment of the bleeding risk of anticoagulant treatment in non-severe frail octogenarians with atrial fibrillation. J Cardiol. 2019;73(1):7-13.
- Boonyawat K, Caron F, Li A, et al. Association of body weight with efficacy and safety outcomes in phase III randomized controlled trials of direct oral anticoagulants: a systematic review and meta-analysis. *J Thromb Haemost*. 2017;15(7):1322-1333.
- 35. Steffel J, Verhamme P, Potpara TS, et al. The 2018 European heart Rhythm association practical guide on the use of non-vitamin K

antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J. 2018;39(16):1330-1393.

- 36. Buys DR, Roth DL, Ritchie CS, et al. Nutritional risk and body mass index predict hospitalization, nursing home admissions, and mortality in community-dwelling older adults: results from the UAB study of aging with 8.5 years of follow-up. J Gerontol A Biol Sci Med Sci. 2014;69(9):1146-1153.
- Watson T, Shantsila E, Lip GYH. Mechanisms of thrombogenesis in atrial fibrillation: Virchow's triad revisited. *Lancet (London, England)*. 2009;373(9658):155-166.
- Guo Y, Lip GYH, Apostolakis S. Inflammation in atrial fibrillation. J Am Coll Cardiol. 2012;60(22):2263-2270.
- Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282(22):2131-2135.
- Ziccardi P, Nappo F, Giugliano G, et al. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. *Circulation*. 2002;105(7):804-809.
- Nakajima K, Yamaoka H, Morita K, et al. Elderly people with low body weight may have subtle low-grade inflammation. *Obesity*. 2009;17(4):803-808.
- Weber MA, Neutel JM, Smith DH. Contrasting clinical properties and exercise responses in obese and lean hypertensive patients. J Am Coll Cardiol. 2001;37(1):169-174.
- Mohamed-Ali V, Goodrick S, Bulmer K, Holly JM, Yudkin JS, Coppack SW. Production of soluble tumor necrosis factor receptors by human subcutaneous adipose tissue in vivo. *Am J Physiol.* 1999; 277(6):E971-E975.
- Hohnloser SH, Fudim M, Alexander JH, et al. Efficacy and safety of Apixaban versus warfarin in patients with atrial fibrillation and extremes in body weight. *Circulation*. 2019;139(20):2292-2300.
- 45. Group JCSJW. Guidelines for pharmacotherapy of atrial fibrillation (JCS 2013). *Circulation J.* 2014;78(8):1997-2021.
- 46. Hori M, Connolly SJ, Zhu J, et al. Dabigatran versus warfarin: effects on ischemic and hemorrhagic strokes and bleeding in Asians and non-Asians with atrial fibrillation. *Stroke*. 2013;44(7):1891-1896.
- Chao TF, Chen SA, Ruff CT, et al. Clinical outcomes, edoxaban concentration, and anti-factor Xa activity of Asian patients with atrial fibrillation compared with non-Asians in the ENGAGE AF-TIMI 48 trial. *Eur Heart J.* 2019;40(19):1518-1527.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Grymonprez M, Capiau A, De Backer TL, Steurbaut S, Boussery K, Lahousse L. The impact of underweight and obesity on outcomes in anticoagulated patients with atrial fibrillation: A systematic review and metaanalysis on the obesity paradox. *Clin Cardiol*. 2021;44: 599–608. https://doi.org/10.1002/clc.23593