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Abstract

Life in the modern world depends on multiple critical services provided by infrastructure sys-

tems which are interdependent at multiple levels. To effectively respond to infrastructure

failures, this paper proposes a model for developing optimal joint restoration strategy for

interdependent infrastructure systems following a disruptive event. First, models for (i)

describing structure of interdependent infrastructure system and (ii) their interaction pro-

cess, are presented. Both models are considering the failure types, infrastructure operating

rules and interdependencies among systems. Second, an optimization model for determin-

ing an optimal joint restoration strategy at infrastructure component level by minimizing the

economic loss from the infrastructure failures, is proposed. The utility of the model is illus-

trated using a case study of electric-water systems. Results show that a small number of

failed infrastructure components can trigger high level failures in interdependent systems;

the optimal joint restoration strategy varies with failure occurrence time. The proposed mod-

els can help decision makers to understand the mechanisms of infrastructure interactions

and search for optimal joint restoration strategy, which can significantly enhance safety of

infrastructure systems.

Introduction

The functioning of a society is dependent on large-scale infrastructure systems (e.g. power grid,

transportation, water supply network) to deliver services to consumers in an efficient manner.

The infrastructure systems are interconnected and interdependent at multiple levels due to their

functional needs [1]. The existence of interdependencies can improve operations efficiency of

the systems, but can also increase the vulnerability of the systems and the potential for cascading

failures [2]. Failure in one infrastructure system can result in service disruptions in other systems

[3]. One typical example is the 2003 power blackout in the US and Canada. The large scale

power outage caused traffic congestion and the disruption of water supply and communications.

Given the increasing impact of natural and man-made disasters on infrastructure systems, it is

critical to restore the systems jointly to minimize the impact of the disasters.
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Restoration activities are essential for infrastructure systems to recover from a disruption

[4]. Failed infrastructure components should be prioritized and restored to avoid additional

instability. Problems related to restoration of infrastructure systems have been widely studied.

Most of the work done concentrated on restoration strategies for single infrastructure system.

From the network analysis perspective, Liu et al. [5] presented a modeling framework to study

the effect of different restoration strategies on robustness of a system against cascading failures.

To minimize potential hurricane damages, Arab et al. [6] proposed a stochastic integer pro-

gramming model for restoration resource allocation to electric power system. With the objec-

tive of enhancing resilience of transportation network, Vugrin et al. [7] formulated a two-level

optimization model to identify the optimal recovery modes and sequences after disruptions.

Using colored Petri nets, Luna et al. [8] developed a model to improve post-earthquake resto-

ration process of a water distribution system. Subject to limited available repair resources,

Wang et al. [9] formulated an optimization model to determine the optimal recovery process

for internet protocol network after disruptions. Above work represents restoration studies for

different infrastructure types, as well as a variety of approaches.

As current infrastructure systems often exhibit multiple interdependencies, there are stud-

ies of restoration strategies for interdependent infrastructure systems. Some of them provide

restoration suggestions at system level, such as how to allocate restoration resources to differ-

ent infrastructure types. MacKenzie et al. [10] proposed static and dynamic decision models to

determine the optimal resource allocation to facilitate the recovery of impacted infrastructure

industries by minimizing production losses. Zhang et al. [11] presented an approach for allo-

cating restoration resources to enhance resilience of interdependent infrastructure systems,

in which the recovery process of interdependent infrastructure systems is described as the

dynamic inoperability input-output model.

Other studies focused on how to determine the restoration sequence of disrupted infra-

structure components. To minimize the cost of network flow after a disaster, Lee et al. [12]

developed a mixed-integer, network-flow based model to identify which components should

be restored or reconstructed. Using mixed integer linear programming, Cavdaroglu et al. [13]

developed a mathematical formulation that integrates the restoration planning and scheduling

decisions to restore essential services provided by interdependent infrastructure systems. To

maximize the cumulative weighted flow in infrastructure networks, Nurre et al. [14] proposed

an integrated network design and scheduling problem which models real-time restoration

activities and long-term scenario planning activities. Based on the proposed interdependent

network design problem, Gonz´alez et al. [15] developed a model to optimize the resource

allocation and recovery strategy in interdependent infrastructure networks with consideration

of the savings due to simultaneous collocated recovery. However, in above studies, there were

no obvious differences among the operating models of different infrastructure. For example,

the difference in the service transmission speeds of different systems has not been taken into

consideration. Coffrin et al. [16] studied the restoration problem by solving a mix integer lin-

ear programming model to maximize the sum of infrastructure service demands, while they

did not take component repair time into consideration. To enhance resilience of infrastructure

systems, Ouyang and Wang [17] studied the joint restoration with five types of the restoration

strategies proposed in advance.

Since the failure propagation and recovery processes of infrastructure systems are affected

by their interdependencies [18], the interconnected relationships among infrastructure sys-

tems should be modeled first when developing restoration strategies. Network based methods

[19, 20] have been extensively applied to address this problem. Related work includes topology

based methods and network flow based methods [21]. The former model the interaction pro-

cess among infrastructure systems mainly considering their physical connection structure
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[22–24]. The latter consider the services made and delivered by infrastructure systems together

with their structure [25–29]. Flow based methods can capture service flow characteristics of

infrastructure systems, and provide more realistic descriptions of their operation mechanisms.

However, the flow based models require more detailed infrastructure data, such as parameters

of infrastructure operation models, which are usually not easy to obtain.

The objectives of existing restoration studies based on network methods include minimiz-

ing the number of failed nodes, minimizing the connectivity loss of network [5], minimizing

the fraction of consumers affected [8], maximizing system resilience [7,17], maximizing net-

work flows [14], and/or minimizing various costs and economic losses [12,15]. In practice,

decision makers typically favor use of the total economic loss to evaluate the impacts of a disas-

ter. The occurrence time of infrastructure failures impacts the economic loss directly, e.g. the

power outage happening in the morning or evening could cause different social and economic

impacts. So, the occurrence time is an essential factor for effective restoration strategy develop-

ment, while it is seldom considered in existing studies.

The objective of this paper is to present an approach that enables development of effective

joint restoration strategy for interdependent infrastructure systems after a disruptive event, i.e.

determining the joint restoration sequence of disrupted infrastructure components. The con-

tributions of the study include:

1. Assessment of the total economic loss of interdependent infrastructure system considering

the occurrence time of individual infrastructure failures. Minimum of the total economic

loss is used as the objective of system restoration.

2. Development of a model for describing interaction processes among interdependent sys-

tems considering failure types, infrastructure operating rules and interdependencies among

systems. The presented model can capture the change of service of each infrastructure sys-

tem during restoration process, which is used to examine the effect of restoration activities

at each time step.

3. Use of the model to propose an effective restoration strategy by integrating the restoration

objective and interdependent infrastructure system interaction processes and consideration

of the restoration time of disrupted infrastructure components.

The rest of the paper is organized as follows: Section 2 presents the models for describing

the structure of interdependent systems and their interaction process. Section 3 presents a

model for the development of restoration strategy at infrastructure component level and a

numerical method for solving the model. In Section 4, the proposed models are evaluated sys-

tematically using an electric-water system example by simulation. The sensitivities of the

results to model parameters are also analyzed. Section 5 draws the conclusions and gives the

direction for future research.

Modeling of interdependent infrastructure systems

This section presents models for describing (i) interdependent infrastructure system structure

and (ii) interaction process, which are the key building blocks for the development of restora-

tion strategy.

Representation of interdependent infrastructure systems

This research applies a network-based approach to describe the topology of interdependent

infrastructure systems [30]. In the network, nodes correspond to facility components of an

infrastructure system, and links represent the physical elements connecting the nodes. Electric
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power and water supply systems are selected for illustrative purposes. For electric power net-

work, power plants and substations are represented as nodes, transmission lines between

nodes are described as links [31]. For water supply network, water plants and pumping sta-

tions are represented as nodes, and the pipes between the nodes are described as links. Infra-

structure network can be enriched by assigning different roles to different nodes. Based on

functional features, nodes in infrastructure networks can be classified as source nodes and

load nodes. Services are delivered from source nodes to load nodes through links, and then

transmitted to the consumers. The directions of links can denote the transmission directions

of services. In electric power and water supply networks, power plant and water plant nodes

are source nodes; substation nodes and pumping nodes are load nodes.

The interdependencies between electric power and water supply networks are assumed as

[32]: (i) power plant nodes require water input from pumping nodes for cooling; and (ii) water

plant nodes and pumping nodes need power input from substation nodes to maintain their

operations. Multilayer network is used to describe interdependent infrastructure systems [33].

Fig 1 illustrates an interdependent system. Each subsystem is described as a network layer,

nodes and links in the same layer belong to the same infrastructure subsystem; links crossing

layers denote service dependencies between nodes in different subsystems.

Operating models of infrastructure systems

Operating rules of infrastructure systems should be considered in the study of interaction pro-

cess after a disruptive event. Several models have been developed to describe the operation of

electric power and water supply systems. For electric power system, the ORNL-PSerc-Alaska

Fig 1. Diagram of interdependent infrastructure networks.

https://doi.org/10.1371/journal.pone.0195727.g001
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(OPA) model [34] and Crucitti-Latora-Marchiori (CLM) model [35] are widely used. The for-

mer offers a realistic representation of a power system, which results in notable computational

limitations, requires a more involved process in setting parameters, and has multiple parame-

ters. CLM is designed to study common features of flows in many systems. It offers advantages

for modeling cascading failures with fewer parameters, while is unable to directly represent

generator capacity and load demand. Simulation model [36] and dynamic flow model [37]

have been used to describe the operating rules of water supply system.

Due to lack of detailed data of infrastructure systems, this study only considers the essential

functional properties of the selected systems, and applies a network flow model to describe the

operating rules. In the model, only node failures are considered. According to the cause of fail-

ures, the node failures are divided into two types. The first one is physical failure, which means

the nodes failed due to direct physical damages. They cannot recover without restoration activ-

ities. The second type is functional failure, which means the nodes failed due to indirect impact

or insufficient service input. For each node, there is a functional threshold denoting the mini-

mum level of different service inputs required for its operation. If one type of service input is

below the threshold, the node will functionally fail; if the service input is regained and above

the threshold level, the node functionality will be recovered.

The water supply network is composed of water plant nodes, pumping nodes and links

between the nodes. The network flow model for water supply network includes the following

rules: (i) At initial time step, the water input of a pumping node is equally supplied by the con-

nected water plant nodes (there is at least one path between the pumping node and the water

plant node). If a pumping node is connected with n plant nodes, each plant node is responsible

for 1/n water input. (ii) The water delivery between a plant node and a pumping node is

through the shortest path between them and the water delivery through each link in the path

needs one time step. (iii) Nodes are not functional if they encounter physical failures or func-

tional failures. (iv) Links connected to the failed node are not functional. (v) The water input

of the pumping node will decrease, as all paths between the pumping node and a plant node

are not functional. (vi) The pumping node is not functional (failure) if its water input is below

the functional threshold level. (vii) Functionally failed nodes can recover if their services are

re-established and the inputs are above the functional thresholds.

The electric power network is composed of power plant nodes, substation nodes and links.

The network flow model for electric power network is similar to that for water supply network

but different in one point: as power transmission is fast, the delivery of power between each

pair of nodes is instantaneous.

The rules for interdependencies between electric power and water supply networks are as

follows: (i) The water input of a power plant node is supplied by the nearest pumping node. If

a power plant node does not receive water input, it will functionally fail. (ii) The power input

of a water node is provided by the nearest substation node. Considering service buffers, each

water node has a backup power, which can maintain its operation for one time step when

power input is insufficient. If a water node cannot obtain the power input and its backup

power has been used, the water node will functionally fail.

Interaction process of interdependent infrastructure systems

If some nodes in infrastructure networks physically fail, due to service dependencies, the fail-

ures could propagate within and across interdependent infrastructure networks. Considering

that the restoration activities would be implemented, the state change of infrastructure nodes

can be captured by applying an iterative procedure. An analysis flowchart for describing the

interaction process at each time step is shown in Fig 2.
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For electric power and water supply networks, procedures in Fig 2 are described as follows:

1. Update the set of physically failed nodes in two networks. For the initial time step, identify

the physically failed nodes and remove them from the networks; for other time steps, if

some physically failed nodes are restored, add them back to the networks.

2. Check the state of nodes in each infrastructure network separately. Based on the set of phys-

ically failed nodes, and the set of functionally failed nodes, the operating model is applied to

update the state of each node in networks. For electric power network, the power delivery is

instantaneous. Verify whether there are some broken paths between plant nodes and sub-

station nodes, or some interrupted paths are reconnected; if yes, compute the power input

of each node. If the power inputs of some substation nodes are below the functional thresh-

old level, modify the state of these nodes into functional failure; if some functionally failed

nodes regain enough power input, change the state of these nodes to normal. The analysis

process for water supply network is similar. One difference is that the water delivery

through each link needs one time step, so the state change of the water nodes is relatively

slow.

3. Update states of nodes according to their interdependencies. Based on the state of nodes in

step (2), according to the interdependencies between networks, for each node, compute the

service input from the other network. Identify the functioning nodes which cannot obtain

sufficient service input, or the functionally failed nodes which regained enough service

input from the other network. In particular, as each water node has a backup power, if a

water node cannot obtain sufficient power input for the first time, the node will not func-

tionally fail immediately. It may fail at the next time step.

Fig 2. Analysis flowchart for interaction process.

https://doi.org/10.1371/journal.pone.0195727.g002
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4. Update buffers. Any existing buffers, such as the remaining capacity of power backup for

water nodes are updated, if necessary. If there are any changes in nodes’ states at this time

step, or more restoration is planned to be adopted at the next time step, a new iteration is

then initiated by starting from step (1) again; else if all nodes in two networks are func-

tional, end.

Given the interaction process model described above, the consequences of physical failures

and restoration activities can be evaluated. For example, in Fig 3, let us assume that substation

node P6 physically fails at t = 1 and is restored at t = 3, the consequences of the interaction pro-

cess at each time step are shown in Table 1.

In Table 1, (i) at t = 1, substation node P6 physically fails. Since power transmission is

instantaneous, substation node P7 functionally fails due to lack of power input. The power

backup is used at this time step for pumping station node W5. (ii) at t = 2, without restoration

Fig 3. An illustrative example of the interaction process. Substation node P6 physically fails at t = 1, and it is restored at t = 3.

https://doi.org/10.1371/journal.pone.0195727.g003

Table 1. Consequences of the interaction process.

Time step

t

Set of physically failed

nodes

Set of functionally failed

nodes

Change in capacity of power backup for

water nodes

1 {P6} {P7} W5: 1!0

2 {P6} {P7, W5}

3 {} {W6} W5: 0!1

4 {} {P9, W7, P8, P10}

5 {} {}

https://doi.org/10.1371/journal.pone.0195727.t001
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activity, P6 is still physically failed. Due to lack of power, W5 is added into the set of function-

ally failed nodes. (iii) at t = 3, substation node P6 is restored and the set of physically failed

nodes becomes empty. Functionally failed nodes P7 and W5 recover to normal operations

since they regain the necessary power input. The power backup for W5 is reinstated again. As

the water delivery requires one time step, the pumping node W6 becomes functionally failed

due to lack of water input. (iv) at t = 4, W6 recovers to normal operation since it regains the

water input. However, as water delivery requires one time step, power plant node P9 and

pumping station node W7 functionally fail due to lack of water input. Substation nodes P8 and

P10 functionally fail because of the failure of P9. (v) at t = 5, all functionally failed nodes are

recovered and the set of functionally failed nodes becomes empty.

Joint restoration strategy model

After a disruptive event, restoration activities would be conducted to recover physically failed

infrastructure nodes. To minimize the economic loss from the infrastructure failures, this sec-

tion presents a model to develop joint restoration strategies.

Metric for impact of infrastructure failures

Decision makers typically favor the economic loss in evaluating the impact of a disaster. This

paper uses the economic loss from the infrastructure failures as the metric of their impact. The

economic loss consists of the consumer loss due to lack of infrastructure service, and the resto-

ration cost of physically failed nodes. For electric power network, we assume nodes have equal

service capacity, that is, the number of consumers served by each node is the same. When

some power nodes physically fail at t0, Lp(t) represents the economic loss of the network at

time t>t0, and is expressed by Eq (1).

LpðtÞ ¼ CpðtÞ þ RpðtÞ ð1Þ

where Cp(t) represents the consumer loss due to lack of power service, Rp(t) denotes the resto-

ration cost.

Fig 4 shows the average hourly power and water consumption of the Guilin City in China

(data derived from government survey). It can be seen that obvious difference exists in power

Fig 4. Average hourly service consumption of Guilin in China. (a) electric power; (b) water.

https://doi.org/10.1371/journal.pone.0195727.g004
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consumption at different time of the day. The highest is about 160,000 kWh, while the lowest

is only about 50,000 kWh. Therefore, for the same failures, the consumer loss is dependent on

the failure occurrence time. Since the service capacity of each power node is the same, the con-

sumer loss at time step t can be expressed by Eq (2).

Cpðn
t
p; tÞ ¼ φp � ct

p � ðn
t
p=NpÞ ð2Þ

where φp represents the hourly consumer loss for a unit power loss; ct
p is the power consump-

tion at t; nt
p is the number of failed power nodes at t; Npdenotes the number of nodes in the

network.

In Eq (1), Rp(t) denotes the restoration cost. In a real world context, it is very hard to repair

the infrastructures immediately after the disaster due to the extent of the damage and availabil-

ity of resources for recovery. With the increasing recovery of damaged infrastructures, it is eas-

ier to repair the rest of damaged infrastructure as the restoration resources are easier to obtain.

So, the average of early restoration cost for the same damaged infrastructure is always higher

than the later restoration cost. The assumption introduced here is that the restoration cost is

negatively correlated to the time difference between failure occurrence and restoration activi-

ties, and is expressed as

Rpðk
t
p; tÞ ¼ yp � kt

p=ðt � t0Þ ð3Þ

where θp represents the unit cost of restoring a physically failed power node; kt
p denotes the

number of restored physically failed nodes at time step t.

LwðtÞ ¼ CwðtÞ þ RwðtÞ ð4Þ

Similarly, the expression of the economic loss for water supply network at time step t is

shown in Eq (4), where Cw(t) is the consumer loss due to lack of water supply, Rw(t) is the res-

toration cost.

Therefore, the economic loss of electric-water network at t is given in

LðtÞ ¼ LPðtÞ þ LWðtÞ ð5Þ

Model of restoration process

The objective of restoration activities is to minimize the economic loss from the infrastructure

failures over time. To develop joint restoration strategy at component level, i.e. determining

the joint restoration sequence of physically failed nodes at each time step, following assump-

tions are made: (i) the earliest beginning of restoration is the time step following infrastructure

failures occur. (ii) A physically failed nodes could recover to normal functioning within one

time step when they are restored. (iii) For each infrastructure network, the time steps used for

restoration should be no more than the number of physically failed nodes in the network.

For electric-water networks, if physical failures occur at t0, we use Fp and Fw denote the sets

of physically failed nodes in two networks at t0. st
p � Fp and st

w � Fw represent the set of

restored nodes at time step t. The restoration strategy can be written as

S ¼ ffst0þ1

p ; st0þ1

w g; fst0þ2

p ; st0þ2

w g; . . .g ð6Þ

where fst0þi
p ; st0þi

w g is the pair of sets of restored nodes in two networks at time step t0+i,where

i = 1,2,. . .. As water delivery is slow, when all physically failed nodes are restored, additional

time is required for functionally failed nodes to recover back to normal. Let d denote a large

enough number, all nodes will recover to normal functioning within time t0+d. According to

the representation of economic loss in each time step (see Eq (5)), the optimal joint restoration
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strategy is the solution to following optimization problem:

min z ¼
Xt0þd

t¼t0

ðLpðt; k
t
p; n

t
pÞ þ Lwðt; k

t
w; n

t
wÞÞ ð7Þ

s:t: st0
p [ st0þ1

p [ . . . [ st0þd
p ¼ Fp; st0

w [ st0þ1

w [ . . . [ st0þd
w ¼ Fw ð8Þ

st0
p \ st0þ1

p \ . . . \ st0þd
p ¼ ;; st0

w \ st0þ1

w \ . . . \ st0þd
w ¼ ; ð9Þ

st0þl
p ¼ ;; if jFpj < l � d ð10Þ

st0þg
w ¼ ;; if jFwj < g � d ð11Þ

where kt
p ¼ js

t
pj, kt

w ¼ js
t
wj, denotes the number of restored physically failed nodes in two infra-

structure networks at time step t; vector np ¼ ðn
t0
p ; n

t0þ1
p ; . . . ; nt0þd

p Þ and nw ¼ ðn
t0
w ; n

t0þ1
w ; . . . ;

nt0þd
w Þ denote the number of failed nodes in two networks at each time step after failures occur,

elements in the vector could be acquired by applying proposed interaction process model with

initial conditions Fp,Fw, and restoration strategy S. The objective function (7) is to minimize

the total economic loss due to infrastructure failures. Eq (8) ensures all the physically failed

nodes will be restored. Eq (9) ensures each node is a member of only one set of restored nodes.

Eq (10) and Eq (11) ensure that the number of time steps used for restoration is not greater

than the number of physically failed nodes, assumption (iii).

Solution method for the programming model

The joint restoration strategy model (Eqs (7)–(11)) is a multistage decision problem, and

the solution is the optimal joint restoration sequence of the physically failed nodes. As the

interaction process among interdependent infrastructure networks is nonlinear and complex,

the model is hard to solve with standard optimization techniques. This section proposes

a numerical method for solving the model by applying genetic algorithm (GA) [38]. The

search procedure for an optimal restoration sequence is performed according to the following

steps.

1. Code design. Enter the number of physically failed nodes and express a restoration

sequence by a genotype, which is a 0–1 variable matrix G ¼ ½gij�K�ðK1þK2Þ
, in which K1 = |Fp|

(the number of physically failed nodes in electric power network), K2 = |Fw| (the number of

physically failed nodes in water supply network), and K = max(K1,K2). Matrix G is subject

to the following constraints:

XK

i¼1

XK1

j¼1
gij ¼ K1

XK

i¼1

XK1þK2

j¼K1þ1
gij ¼ K2

XK

i¼1
gij � 1; for j ¼ 1; 2; . . . ;K1 þ K2

ð12Þ

8
>>>><

>>>>:

where: for j�K1,

gij ¼
1; the j � th physically failed node in electric power network is restored at time t0 þ i

0; the j � th physically failed node in electric power network is not restored at time t0 þ i

(
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for K1<j�K1+K2,

gij ¼
1; the ðj � K1Þ � th physically failed node in water supply network is restored at time t0 þ i

0; the ðj � K1Þ � th physically failed node in water supply network is not restored at time t0 þ i

(

Comprehensively considering convergence speed and the variety of individuals, some

genotypes of initial individuals are chosen from feasible solutions, the others are randomly

generated.

2. Compute the fitness value. The fitness value (objective function) is the total economic loss

over time. For each genotype, which corresponds to a restoration sequence, the fitness

value of Eq (7) can be calculated by applying the developed interaction process model with

initial conditions. For genotypes that do not meet constraint (12), we use a large enough

number as a penalty of unacceptable solution.

3. Rules for selection, crossover, mutation and stopping. The roulette method, two-point cross-

over and random mutation are chosen as rules for the selection, crossover and mutation.

There are two rules for stopping, one is the number of maximum generations, and the other

is the convergence of the optimal fitness value between generations. When algorithm stops,

the genotype corresponding to the optimal fitness value is the optimal restoration strategy.

Case study

The models developed in this paper are tested using an illustrative case study of electric-water

system.

Generation of infrastructure system topology

The topology generator introduced by Ouyang et al. [39] is applied to construct infrastructure

network topology. The network layers are created based on the spatial proximity of nodes dur-

ing the network growth. Specifically, for electric power network, following procedure is used

to generate the network: (i) the network is seeded with several independent nodes as plant

nodes and no links among them. (ii) At each time step, a new substation node is added to the

network, at least one new link is connected to the node, the other end of the link is connected

to existing node in the network based on the minimum Euclidean distance. In addition, there

is a probability γ of adding another new link connecting the new node with the second nearest

existing node. (iii) After the final time step, a sparse random network is generated.

Referring to average degree [40] of real infrastructure networks, i.e. American grid (2.78)

[41] and grid in northeast China (2.36) [42], the probability parameter γ is set as 0.5, and aim

to generate infrastructure networks with average degree close to 2.5. Based on the presented

procedure, the electric power and water supply networks are generated in the same graph (see

Fig 5). Specifically, the electric power network includes 100 nodes and 148 links, 10 of the

nodes are plant nodes (blue squares, P1–P10), the others (P11–P100) are substation nodes.

The water supply network includes 60 nodes, 6 of them are plant nodes (red squares, W1–

W6), the others are pumping station nodes (W7-W60).

Failure propagation analysis

The interaction process among interdependent infrastructure systems is first investigated. The

service dependencies between power and water nodes are as follows: (i) the water input of a

pumping node is equally provided by the connected water plant nodes; (ii) the power input of
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a water node is supported by the nearest power node. For simplification, functional thresholds

for different types of nodes are set to 0.5.

For the analysis, we set 1 time step to be 1 hour. To investigate interaction process, we use

the proportion of functional nodes in the network as infrastructure performance measure.

Suppose some power nodes physically fail, the simulation process is as follows: At time t = 2,

randomly choose four power nodes to physically fail and remove them from the network.

Without restoration activities, according to the interaction process model, the proportion of

functioning nodes in two networks at each time step is calculated and shown in Fig 6(A). The

Fig 5. The electric power network and the water supply network. The red squares nodes (P1-P10) are the power

plant nodes, while the blue squares nodes (W1-W6) are the water plant nodes. The red lines are electric transmission

lines, and the blue lines are water pipelines.

https://doi.org/10.1371/journal.pone.0195727.g005

Fig 6. Numbers of functional nodes in two networks at each time step. (a) Initial node failures occur in the power network; (b) initial node failures

occur in the water network.

https://doi.org/10.1371/journal.pone.0195727.g006
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result is averaged over 50 runs for random physical failures. The simulation process for water

nodes is similar, and the result is shown in Fig 6(B).

In Fig 6(A), as the power transmission is instantaneous, the physical failure of nodes result

in functional failure of some other power nodes, an immediate decrease is seen in the propor-

tion of functioning power nodes at t = 2. Since there are power backups for water nodes, the

proportion of functioning water nodes begins to decrease at t = 3. As time passes by, if any

water nodes cannot provide sufficient water to power plant nodes, the corresponding power

plant nodes will functionally fail, which further causes decrease in the proportion of functional

power nodes, and a sharp decrease is seen at t = 6. At t = 7, there is another obvious decrease

in the proportion of functional water nodes. The time delay for the state change in water nodes

is due to the existence of power backup. Finally, the proportion of functional power nodes

becomes stable at t = 8, and decreases to about 0.91. The failure propagation in water network

is relatively slow. The proportion of functional water nodes becomes stable at t = 10, and

decreases to about 0.85. If water nodes physical failures occur (see Fig 6(B)), the proportion of

functional power nodes begins to decrease at t = 2, and has a sharp decrease at t = 5. The cause

is due to the failure propagation in water network, the water inputs of some power plant nodes

become insufficient. These nodes functionally fail, and induce the decrease in proportion of

functional power nodes. Finally, the decrease in the proportion of functional nodes for water is

about 0.16, while for power is less than 0.05.

The results show that physical failures in one infrastructure network can cause more fail-

ures in interdependent infrastructure networks. Besides, though there are power backups, the

interdependencies still have much larger effect on water network than on the power network.

The simple explanation is that more water nodes depend on power service. Although the

results rely on the interdependent structure and model parameters, the analysis can help man-

agers achieve a better understanding of the interaction mechanism of interdependent infra-

structure systems.

Joint restoration strategy analysis

To obtain the optimal joint restoration strategy for infrastructure failures, the parameters

defined in the joint restoration strategy model should be provided first. In this section, it is

assumed that the hourly power and water consumption in each hour during a day is equal to

the data shown in Fig 4, and calculated with assumed units, e.g. the power and water consump-

tion at time step t = 1 is 7.82 power units and 7.12 water units. The given parameters in joint

restoration strategy model are shown in Table 2. As electric power system is more essential to

our society, parameters for power network are set to be double of that for water network.

To validate the joint restoration strategy model and examine the characteristics of optimal

strategy, nodes {P19, P38, P54, P68, P85, P99, W19, W23, W41, W46} are supposed to encoun-

ter physical failure. For comparison, the failures are assumed to happen at 1 AM and 1 PM

respectively. To solve the optimal restoration strategy with GA, we set the number of geno-

types of individuals in initial generation as 40, 20 of them are chosen from feasible solutions,

the others are randomly generated. The maximum generation is set as a number which makes

the best impact area in each generation converge and not fluctuate for more than 30 steps. The

Table 2. Parameters in joint restoration strategy model.

Electric power Water supply

Unit cost of restoring a physically failed node θp = 2 θw = 1

Hourly consumer loss for a unit service loss φp = 20 φw = 10

https://doi.org/10.1371/journal.pone.0195727.t002
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crossover probability and mutation probability are set as 0.5 and 0.2. In Fig 7(A) and 7(B), the

change of fitness value is shown for three separate calculations of failures happening at 1 AM

(Fig 7(A)) and 1 PM (Fig 7(B)). The horizontal axis shows the number of iterations and the

vertical axis shows the total economic loss (fitness value). It can be seen that, the change of fit-

ness value decreases monotonically, and the total economic losses for three calculations con-

verges to the same value after 60 generations.

The optimal restoration sequence solved for the failures at 1 AM and 1 PM are listed in

Tables 3 and 4.

In Tables 3 and 4, the optimal restoration strategies are different when the same failures

occur at different time. Comparing the two strategies, the strategy for failures at 1 PM is to

complete the restoration in a shorter time. In Fig 4, the hourly power and water consumption

is lower in the night and higher in the day. The consumer loss is lower if the failures occur at 1

AM. To reduce the restoration cost, the restoration strategy for 1 AM is to restore a small num-

ber of physically failed nodes at each time step, and restore all nodes in five time steps. In con-

trast, if the failures occur at 1 PM, a faster restoration strategy is selected. The optimal

restoration strategy is to respectively restore 3, 4 and 3 physically failed nodes in following

three time steps. The reason is that, consumer loss occupies a bigger portion in total economic

loss when the failures happen in the daytime.

Fig 7. The fitness value during different generations. (a) failures happening at 1 AM; (b) failures happening at 1 PM.

https://doi.org/10.1371/journal.pone.0195727.g007

Table 3. Optimal restoration sequence for failures at 1 AM.

Time Restored nodes Economic loss(monetary units) No. of failed nodes in electric power network No. of failed nodes in water supply network

1AM 16.067 10 4

2 AM P38, W19 17.317 9 7

3 AM P19, P68 17.520 8 6

4 AM P99, W23,W41 14.167 6 5

5 AM W46, P85 8.293 4 4

6 AM P54 5.575 2 3

7 AM 0.253 0 2

8 AM 0 0 0

https://doi.org/10.1371/journal.pone.0195727.t003
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In Tables 3 and 4, no matter which strategy is selected, the numbers of failed nodes in two

networks both first increase, and then decrease. The cause is that the physically failed nodes

cause more nodes to functionally fail, so at the beginning, the numbers of failed nodes

increase. After the beginning of restoration activities, numbers of physically failed nodes and

functionally failed nodes gradually decrease to 0. In addition, for two strategies, there is a time

delay for the recoveries of functionally failed nodes after restoration activities complete,

because time is needed for service delivery to functionally failed nodes.

Sensitivity analysis of model parameters provides insight into how they affect model result.

One basic finding from the case study is, if the failures occur at time with higher power and

water consumption, quicker restoration should be conducted. The values of θ and φ reflect the

basic properties of restoration cost and consumer loss for an infrastructure system. In this

study, the sensitivity analysis is performed on the ratio θ/φ to the optimal restoration strategy.

In following analysis, the duration of a strategy is defined as the time required for restoring

physically failed nodes, e.g. the duration of optimal restoration strategy for failures at 1 AM is

5 time steps (see Table 3, from 2 AM to 6 AM). The assumptions that θp = 2θw and φp = 2φw

are still valid. Fig 8 shows the duration of optimal strategy for failures happening at 1 AM and

1 PM with θ/φ (the values θp/φp and θw/φw are equal) ranging from 0.01 to 0.5.

In Fig 8, with same θ/φ, the duration of optimal joint restoration for failures at 1 PM is

shorter than that for failures at 1 AM, consistent with former results. The duration of optimal

recovery for failures occurring at time with higher power and water consumption is shorter. In

Fig 8, no matter when the failures occur, if θ/φ is very small (less than 0.02), restoration of all

physically failed nodes in one time step is the only option. Because the restoration cost is rela-

tively small in comparison to the consumer loss, faster restoration could minimize the total

economic loss from the infrastructure failures. With the increase of θ/φ, the duration of opti-

mal recovery increases too. The cause is that, with the increase of θ/φ, the restoration costs will

increase, and the consumer loss will decrease. If the increase of the restoration cost is larger

than the decrease in consumer loss, slower restoration strategy will be selected. In addition, the

change in the duration of optimal recovery strategy is marginally decreasing with respect to

the increase of θ/φ. Therefore, although the time duration of optimal strategy increases with

θ/φ, it is less sensitive for larger θ/φ.

Conclusions

Services of infrastructure systems are essential to support the social and economic functioning

of the society. In this paper, considering operating rules and interdependencies of infrastruc-

ture systems, a model for analyses of infrastructure interaction process is first proposed.

It is argued that the model can capture the impacts of infrastructure failures in a predictive

manner. Aiming to minimize the total economic loss from the infrastructure failures over

time, a joint restoration strategy model is presented, which can determine the optimal joint

Table 4. Optimal restoration sequence for failures at 1 PM.

Time Restored nodes Economic loss(monetary units) No. of failed nodes in electric power network No. of failed nodes in water supply network

1 PM 23.887 10 4

2 PM P19, P38, W19 27.320 8 6

3 PM P68, P99, W23,W46 21.392 7 5

4 PM P54, P85, W41 12.606 3 3

5 PM 0.240 0 s2

6 PM 0 0 0

https://doi.org/10.1371/journal.pone.0195727.t004
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restoration sequence at infrastructure components level. Through case study, we have demon-

strated the validity of the model, and identified important factors for determining the optimal

joint restoration strategy, such as failure occurrence time, etc.

There are also some limitations in the study. Above recommendations are largely depen-

dent on modelling assumptions, such as the time step for failure propagation, functional

dependencies between systems, etc. Although we believe these assumptions to some extent

illustrate the real systems, their validity still need to be explored due to the complexity of real

infrastructure systems. This study aims to present an analysis framework to address interde-

pendent infrastructure restoration problem. If some assumptions are replaced in other forms,

the proposed analysis framework still can help to determine the effective restoration strategy.

Due to unavailability of detailed infrastructure data, the case study used in this research is illus-

trative. The future works will focus on the refinement of the approach for the application with

real infrastructure systems.

Supporting information

S1 File. Program for generating infrastructure system topology. Please run the program in

Matlab. Input the numbers of power nodes, power plant nodes, water nodes and water plant

nodes.

(M)

S2 File. Data for Fig 4. Average power and water consumption of city Guilin in China.

(XLS)

Fig 8. Time duration of the optimal strategy with change of θ/φ.
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31. Cuadra L, Salcedo-Sanz S, Del SJ, Jiménez-Fernández S, Geem ZW. A Critical Review of Robustness

in Power Grids Using Complex Networks Concepts. Energies. 2015; 8(9): 9211–9265.

32. Dueñas-Osorio L, Craig JI. Interdependent Response of Networked Systems. Journal of Infrastructure

Systems. 2007; 13(3):185–194.

33. Castet JF, Saleh JH. Interdependent multi-layer networks: Modeling and survivability analysis with

applications to space-based networks. PloS one. 2013; 8(4): e60402. https://doi.org/10.1371/journal.

pone.0060402 PMID: 23599835

34. Carreras BA, Lynch VE, Dobson I, Newman DE. Critical points and transitions in an electric power

transmission model for cascading failure blackouts. Chaos: An interdisciplinary journal of nonlinear sci-

ence. 2002; 12(4): 985–994.

35. Kinney R, Crucitti P, Albert R, Latora V. Modeling cascading failures in the North American power grid.

The European Physical Journal B-Condensed Matter and Complex Systems. 2005; 46(1): 101–107.

36. Kuczera G, Diment G. General water supply system simulation model: WASP. Journal of Water

Resources Planning and Management. 1988; 114(4): 365–382.

37. Diniz AMF, De-Oliveira-Fontes CH, Da-Costa CA, Costa GMN. Dynamic modeling and simulation of a

water supply system with applications for improving energy efficiency. Energy Efficiency. 2015; 8(2):

417–432.

38. Xu N, Guikema SD, Davidson RA. Optimizing scheduling of post-earthquake electric power restoration

tasks. Earthquake engineering & structural dynamics. 2007; 36(2): 265–284.

39. Ouyang M, Hong L, Mao ZJ, Yu MH, Qi F. A methodological approach to analyze vulnerability of inter-

dependent infrastructures. Simulation Modelling Practice and Theory. 2009; 17(5): 817–828.

40. Newman MEJ. The structure and function of complex networks. SIAM review. 2003; 45(2): 167–256.

41. Albert R, Albert I, Nakarado GL. Structural vulnerability of the North American power grid. Physical

review E. 2004; 69(2), 025103.

42. Chen XG, Sun K, Cao YJ. Structural Vulnerability Analysis of Large Power Grid Based on Complex Net-

work Theory. Transactions of China Electro technical Society. 2007; 10: 26–36.

Modeling restoration strategies for infrastructure systems

PLOS ONE | https://doi.org/10.1371/journal.pone.0195727 April 12, 2018 18 / 18

https://doi.org/10.1038/nature08932
http://www.ncbi.nlm.nih.gov/pubmed/20393559
https://doi.org/10.1371/journal.pone.0060402
https://doi.org/10.1371/journal.pone.0060402
http://www.ncbi.nlm.nih.gov/pubmed/23599835
https://doi.org/10.1371/journal.pone.0195727

