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Abstract: Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due
to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility.
AuNPs have physical features that distinguish them from bulk materials, small molecules and other
nanoscale particles. Their unique combination of characteristics is just now being fully realized in
various biomedical applications. In this review, we focus on the research accomplishments and new
opportunities in this field, and we describe the rising developments in the use of monodisperse
AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and
the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications,
and future theranostic applications. Moving forward, we also consider the possible development of
functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate
that as research advances, flexible AuNPs will become a crucial platform for medical applications.

Keywords: monodisperse AuNPs; surface modification; imaging; therapy; theranostic

1. Introduction

Cancer is one of the leading causes of death worldwide [1]. It is distinguished by the
uncontrollable growth of cells resulting from genetic alterations. The standard treatment is
surgery, which is limited to tumors that are accessible. Chemotherapeutic medicines are
also employed; however, their activity causes harmful side effects since it is not restricted
to malignant cells. To avoid this issue, the medications could be selectively delivered into
cancerous cells through vectors. As a result, the application of nanoscience in the medical
field is increasing at an exponential rate [2]. Gold nanoparticles (AuNPs), iron oxide,
dendrimers, liposomes, and polymers are the most commonly utilized nanoparticles in
cancer nanotechnology [3]. AuNPs, in particular, have been the topic of extensive research
recently. It has been demonstrated that they can identify cancer cells preferentially [4].
AuNPs in medical applications have sparked attention in recent decades due to their
intrinsic features, which make them suited for cancer diagnosis and treatment. AuNPs,
like many valuable metals, have a superior optical feature called surface plasmon reso-
nance (SPR), which permits them to be employed in near-infrared (NIR) resonant medical
imaging modalities, including computed tomography (CT) [5], X-ray scatter imaging [6],
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fluorescence imaging [7], photoacoustic imaging (PAI) [8] and MRI [9]. When subjected to
NIR laser light, AuNPs generate heat, making them appropriate for photothermal cancer
treatment [10,11]. Furthermore, AuNPs are nonimmunogenic and have low toxicity. The
synthesis procedures of AuNPs are straightforward; therefore, the shape, size and surface
modification are manageable. All of these qualities imply that AuNPs can be modified in a
variety of ways for the localized hyperthermia of cancer tissue as well as regulated and
targeted drug delivery [12]. AuNPs have been examined and delivered in clinical trials
(phases I and II) for cancer treatment based on their excellent characteristics [13]. One of
the essential factors of AuNPs that influences circulation half-life in the body, systemic
toxicity, tumor accumulation, and other aspects important for diagnostic and therapeutic
applications is size. As the number of applications for AuNPs expands, it is critical to better
understand the fundamental impacts of AuNPs of varying sizes. Many factors influence
the fluorescence of AuNPs, including size, surrounding environment, oxidation state and
surface chemistry. Furthermore, it was discovered that the catalytic efficiency of AuNPs
differs significantly from that of nanoclusters [14,15]. The oxidation of organic free radicals
to stable molecules has profound implications for cell biochemistry. To begin with, it repairs
radiation damage, which prevents molecules from being attacked by free radicals such as
˙OH from being fixed by antioxidants and other cell healing mechanisms. Furthermore, if
some of the molecules generated in cells by radiation are signal molecules (i.e., molecules
that initiate cellular apoptosis), their enhanced production owing to redox catalysis will
result in greater cell death. Capturing the unpaired electron of an organic radical by NPs,
on the other hand, can have a positive effect, such as preventing radical chain processes
such as lipid peroxidation in cell membranes [16].

A recent study found that biocompatible AuNPs had significant antibacterial activity,
whereas bigger AuNPs are ineffective [17]. Furthermore, the improved biodegradability,
renal clearance and pharmacokinetics of AuNPs have been thoroughly documented [18,19].
Monodisperse AuNPs hold great promise in biological applications due to their unique
characteristics and natural biocompatibility [20,21]. The ability of AuNPs to enter the
nucleus was also investigated. Huang et al. and Kumar et al. created AuNPs with
diameters of 6 nm and 2 nm, respectively, and discovered that these NPs can successfully
penetrate the nucleus [22,23]. Furthermore, smaller AuNPs are less hazardous than larger
AuNPs. According to several research studies, AuNPs can finally be eliminated from the
body via the glomerular filtration system, rather than collecting extensively in various
organs, tissues and cells [24–26]. Zheng et al. demonstrated that particle size affects renal
clearance efficiency, and AuNPs with a size of about 6 nm could be removed from the blood
through filtration by the kidney to the bladder [27]. Stevens et al. established indirectly that
monodisperse ultrasmall AuNPs may be entirely removed from the body via the kidney
and liver by constructing an AuNP disease detection platform [28]. As a result, the intrinsic
features of monodisperse AuNPs increase their potential for the diagnosis and therapy of
cancer. Monodisperse AuNPs have made remarkable progress in disease detection and
therapy as a revolutionary nanomedicine, and there is an urgent need for a comprehensive
review of monodisperse AuNPs and their theranostic applications.

Mathilde et al. [29] summarized gold nanoparticles for molecular imaging in cells and
living systems, whereas Alizadeh et al. [30] discussed AuNP aggregation applications. Ha-
lawa et al. [31] described the synthetic strategies and recent advances in fluorescent sensing
with AuNPs. None of these studies focused on the methods for producing monodisperse
AuNPs and their theranostic applications.

Despite numerous earlier reviews on the use of AuNPs in medical applications, this
is the first report on the synthesis of monodisperse AuNPs and their prospective use in
cancer diagnostics and therapy (theranostic applications).

In this review, we will concentrate on monodisperse AuNPs synthesized using diverse
methods for various diagnostic and therapeutic applications. The production methods,
type, shape, properties, and surface modifications of monodisperse AuNPs will be dis-
cussed initially. The usage of monodisperse AuNPs in cancer diagnostic imaging techniques



Int. J. Mol. Sci. 2022, 23, 7400 3 of 34

such as optical imaging, photoacoustic imaging, fluorescence imaging, CT and MRI will be
briefly summarized. The applications of monodisperse AuNPs in cancer therapy, includ-
ing photothermal therapy, photodynamic therapy, radiotherapy, chemotherapy and drug
delivery will be discussed in more detail. This information could be useful in developing
clinical uses for AuNPs in the future.

2. Monodisperse AuNPs

Colloidal dispersions of AuNPs based on the variety of their dimensions are generally
polydisperse. However, researchers tend to frequently use monodisperse nanoparticle
systems as a model with narrow variation of AuNP size distribution. Generally, AuNPs’
size indicates a number average. The size of AuNPs can be determined by measuring the di-
ameter of a large number of unique particles, employing different techniques, for instance,
electron microscopy, light scattering and analyzing data collected by X-ray diffraction.
Monodisperse AuNPs with a size variation of less than 5.0% (relative standard deviation
less than 5.0%) show unique properties and exhibit a higher performance compared to
polydisperse AuNPs [32]. Monodisperse colloidal AuNPs with controlled morphologies,
size distribution, surface chemistry, and optical properties show a high potential for use in
biomedicine, rapid identification, and the imaging of cancer cells in a living state. Hence,
the production of monodisperse AuNPs is critical in the design of NPs for their specific
applications. For instance, the AuNPs employed for sensing applications with a narrower
plasmonic peak and a smaller full width half maximum (FWHM) are preferable for achiev-
ing a higher sensitivity and a lower limit of detection in studies (Figure 1) [33,34]. Moreover,
developing a controllable, time-saving and convenient method to prepare monodisperse
AuNPs with tunable plasmonic spectra and high uniformity is receiving tremendous atten-
tion. Recently, Jairo et al. [35] demonstrated the importance of fractional design in creating
precise AuNPs employing sodium borohydride (SB) and sodium citrate (SC) as reduc-
ers. The suggested method employs simple and low-cost ways to produce monodisperse
AuNPs without the need of time-consuming image-based characterization equipment. In
this research work, FWHM as a function of AuNPs’ plasmonic band was employed as a
variable of reaction [35].
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In addition, the synthesis of uniform-sized and highly monodisperse AuNPs is possi-
ble by utilizing the seeding growth method, in which tiny AuNPs are initially produced
and then employed as a nucleation center for the formation of bigger NPs [36]. Moshaii and
his colleagues studied the dependency of polydispersity and size on the reducing agents’
concentrations. Their findings showed that monodispersed AuNPs (with a size range of
2.5 to 35 nm) can be synthesized in particular ranges of reducing agent concentrations [36].
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Cui and his group reported a time-saving and straightforward approach for synthesizing
monodisperse Au nanobipyramid core and silver nanorod shell NPs (Au NBP@Ag NRs).
The Ag shell directly grows on the surface of the Au NBP core (Figure 2). In this work, the
authors reported Au NBP with a highly uniform size distribution (with a relative standard
deviation of less than 5.0%) and the average size for Au NBPs was 80 nm (length) and 50 nm
(width) with high stability. In addition, the TEM and SEM images showed Au NBP@Ag
with a length of 100 nm and width of 50 nm. Their proposed monodisperse core shell NPs
have a number of distinct benefits, including good responsivity, high stability, favorable
homogeneity and high Surface-Enhanced Raman Resonance (SERS) activity. Proposed
Au NBP@AgNRs are capable of promptly identifying live cancer cell cultures without
additional therapy [33].
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Xu et al. demonstrated the ultrasensitivity of highly uniform and monodispersed Au
NBPs for colorimetric biosensing. They developed an ultrasensitive colorimetric immunoas-
say for alkaline phosphatase (ALP) activity based on the targeted guided deposition of
Ag on extremely uniform and monodisperse Au NBPs [37,38]. It is believed that protocols
developed for the preparation of monodisperse colloidal AuNPs with a very narrow size
distribution will offer versatile coupling points for several bioconjugation-based applica-
tions (e.g., bioprobes and drug deliver) [39,40]. Han et al. [39] reported a fast and facile
synthetic route to synthyze monodisperse Au@SiO2 NPs (50 nm Au cores and ~35, 75 and
90 nm silica shell thicknesses) with a pure silica surface for functionalization, without any
specific interface to enable bioconjugation via well-established silica surface chemistry.

In addition, the preparation and design of polymer-functionalized monodisperse col-
loidal AuNPs for drug delivery have attracted interest due to their higher biocompatibility,
stability, and controlled release of drug [41]. For instance, Venkatsan et al. reported a devel-
oped method for AuNRs-doxorubicin conjugation by an electrostatic interaction between
the amine group (−NH2) of DOX and the negatively charged PSS-AuNRs (AuNRs coated
with poly sodium 4-styrenesulfonate) surface. The improved monodispersed AuNRs
(4.4 aspect ratio) exhibited a high efficiency in drug loading and higher biological stabil-
ity compared to free DOX AuNRs [42]. Thus, monodisperse AuNPs with a narrow size
distribution will open up a new path for the development of revolutionary noble AuNP
growth-based biosensors and various biomedical applications [43].

3. Synthesis of Monodisperse AuNPs

Because of the possibilities of AuNPs in diagnosis and therapy, AuNP synthesis has
been extensively studied for centuries. The present research has confirmed tremendous
progress in the preparation of AuNPs. AuNPs can be synthesized in a variety of ways,
using physical and chemical methods. More specifically, these production methods can be
divided into two categories: top-down and bottom-up methods [44]. To reach nanoscale
structures, top-down approaches usually use bulk materials as well as removal strate-
gies, including lithography. On the other hand, bottom-up approaches rely on the unit
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coordination of material molecules for nanoparticle synthesis by monitoring the growing
structure. Sonochemical, thermal reduction, and electrochemical procedures are examples
of bottom-up methods [5,45]. The most popular bottom-up methodologies used for the
production of AuNPs are the Brust and Turkevich techniques. The Turkevich technique
depends on reducing metallic ions to generate spherical and homogeneous AuNPs with
dimensions varying from 10 up to 20 nm [45]. Sodium citrate is generally used as a reducing
agent as well as a stabilizer, resulting in a colloidal dispersion that prevents particle aggre-
gation [46]. Furthermore, instead of citrate, UV light, ascorbic acid, and amino acids can be
used [47]. The Schiffrin–Brust approach, which is premised on multiple procedures that
are advantageous for the synthesis of AuNPs in an organic system with high stability, was
first revealed in 1994 [45]. This method utilizes tetrabutylammonium bromide as a transfer
agent from organic to inorganic solutions, and particle sizes ranging from 2 up to 6 nm can
be acquired [48]. Aside from these approaches, the “growing seed” technique is commonly
used to prepare other shapes of AuNPs, such as nanocubes and nanorods [49,50]. In this
method, tiny seeds are synthesized first, serving as nucleation centers. Under controlled
conditions, the reactive sites on all of these nucleation centers can then grow to ensure
AuNPs of a predicted size and with the desired shape. Two reducing agents usually used
in this method are hydroxylamine and ascorbic acid. The size of the particles produced is
determined by the Au ion ratio, which ranges from 5 to 40 nm [51]. The radiation method
has been effective in nanomaterial research [52] (Table 1), since it has been investigated
primarily using high-energy charged particles, such as ions and electrons, and also photons
such as X-rays and gamma rays [53]. Nonionizing radiation sources including microwave
and ultraviolet (UV) light at certain wavelengths. Enzymes [54], nanocomposites [55],
metal nanoparticles [56], hybrid nanoparticles [57], and organic nanoparticles such as
proteins [58] are examples of nanostructures that can be designed and synthesized using
radiation. Nguyen et al. [59] reported the synthesis of homogeneous AuNPs with sizes
ranging from 5 to 40 nm via the radiation method. The results showed that the irradiation
process is suitable for the synthesis of AuNPs with high purity and a controllable size.
The sonochemical method which is considered as rapid, easy, cost-effective, attractive,
and eco-friendly has been reported to synthesize AuNPs. Fuentes-García et al. synthe-
sized AuNPs using different ultrasound irradiations (60, 150, and 210 W). Colloidal AuNP
solutions were acquired from gold acid (HAuCl4) and sodium citrate for 60 min under
irradiation [60]. Figure 3 depicts representative TEM images of AuNPs. The 60 W sample
had a particle size of about 16 nm. The crystalline structure of AuNPs was characterized
by HRTEM as a hexahedron polyhedral arrangement (Figure 3b), and the complex array
was confirmed by the selected area electron diffraction (SAED) pattern (Figure 3c). The
triakis icosahedron crystallization was visible in the 150 sample (Figure 3d). However, there
were no discernible changes in particle size (Figure 3e). The size was reduced to 121 nm in
the 210 sample (Figure 3g). The rings in the simulated electron diffraction patterns image
confirmed a quasi-spherical shape as a faceted pentakis dodecahedron (Figure 3h,i).

Various methods for producing AuNPs that have recently been introduced in or-
der to identify physicochemical features will be thoroughly explored. These methods
are: the (i) Turkevich, (ii) Brust, (iii) seed-mediated growth, (iv) biological synthesis and
(v) sonochemical methods.
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3.1. Turkevich Method

The Turkevich method for producing AuNPs was initially described in 1951. It is one
of the most widely utilized procedures for producing spherical AuNPs. This approach
produces AuNPs with sizes ranging from 1 to 20 nm, based on conditions [61]. The main
idea behind this approach is to reduce gold ions to form gold atoms via reducing agents
such as citrate [62], ascorbic acid [63], and amino acids [64]. The stabilization of AuNPs
is accomplished by the use of several capping/stabilizing agents. Initially, the Turkevich
method’s uses were limited due to the limited variety of AuNPs that could be produced
using this process. Several developments in the fundamental process have allowed re-
searchers to broaden the size range of the particles generated using this technology over
time. It was discovered in 1973 that by adjusting the ratio of reducing and stabilizing
agents, AuNPs with specific sizes ranging from 16 to 147 nm could be generated [65].

3.2. The Brust Method

This approach, which was first published in 1994, uses a two-phase procedure to
synthesize AuNPs with sizes ranging from 1.5 to 5.2 nm by utilizing organic solvents [66].
The process entails the employment of a phase transfer agent, such as tetraocty lammonium
bromide, to transfer Au ions from their aqueous solution to an organic solvent such
as toluene. The Au is subsequently reduced using a reducing agent including sodium
borohydride in conjunction with an alkanethiol. The alkanethiol is responsible for the
stability of AuNPs [67]. The color shifts from orange to brown as a result of interaction [68].

3.3. Seed-Mediated Growth

The previous two approaches can produce only spherical AuNPs; however, they can
also be formulated in a number of shapes and geometries such as rods [69]. Seed-mediated
growth is the most extensively utilized method for producing rod-shaped AuNPs. This
process is based on the basic premise of first generating seed particles through reducing
gold ions. This process is carried out in the presence of reducing agents such as NaBH4. The
seed particles are then transferred to metal ions and a mild reducing agent such as ascorbic
acid, which prevents additional nucleation and accelerates the production of rod-shaped
AuNPs. The geometry and shape of AuNPs are determined by the seeds and concentration
of reducing agents.
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3.4. Biological Synthesis

Although chemical procedures are the most widely utilized method for producing
metallic nanoparticles, the employment of costly and hazardous chemicals as stabilizing
and reducing agents limits their usage. Furthermore, these nanoparticles may be toxic
in biomedical applications [70]. As a result, there is an increasing need to develop cost-
effective and environmentally friendly techniques for the production of nanoparticles that
do not rely on toxic chemicals. In recent years, the biological production of nanoparticles
has received a lot of interest as an eco-friendly and green method. Simple bacterial cells
to sophisticated eukaryotes are among the biological resources employed in NP manufac-
turing. Surprisingly, the ability of organisms to fabricate metal nanoparticles has resulted
in a new and exciting approach to the design of these biological nanofactories [71]. A
wide range of species, including fungus, algae, plants, and bacteria, have been found to
successfully synthesize AuNPs.

3.5. Sonochemical

Sonochemistry facilitates the synthesis of monodisperse AuNPs by providing a unique
crystallinity control [72]. Sonochemical methods are fairly inexpensive in comparison to
most techniques, allowing researchers to more freely experiment and explore ideas [73].
Sonochemical synthesis requires less than 30 min for production, compared to solvothermal
methods, which take roughly 48 h. Additionally, the particles produced by sonochemical
methods are monodisperse and smaller in size than those produced by traditional synthe-
sis [74]. Sonochemical processes are derived from the strong transient conditions generated
by ultrasound, which generates different hot spots with temperatures of about 5000 K,
cooling and heating rates of up to 1010 K s−1 and pressures over 1000 atm [9,75]. These
conditions differ from other conventional synthetic processes, such as photochemistry, wet
chemistry, flame pyrolysis and hydrothermal methods [76], which do not have the same
conditions. Based on periodic expansion and compression, ultrasonic waves flow through
a typical liquid from low- and high-pressure zones [77]. This pressure change leads to the
start of sonochemistry, which occurs before the crucial period of sonic cavitation, i.e., the
creation, expansion, and bubble collapse. The action of bubble expansion and compression
continues until external pressure triumphs and the bubble explodes. These conditions can
cause anomalous chemical and physical changes, as well as enhance a specific reaction
between atoms and molecules, resulting in the formation of a new class of materials [78].
Nevertheless, the value of the sonochemical process stems from the fact that the radicals
and ions inside the bubble are emitted by chemical solutions; hence, appropriate chemicals
will aid in modifying the overall method. These conditions allow for the sonochemical
synthesis of several nanomaterials.

The sonochemical production of monodisperse AuNPs has great potential. This
technique is a relatively simple and powerful method for generating nanomaterials, and
it is able to control the properties of AuNPs by adjusting the ultrasonic process parame-
ters [79,80]. Monodisperse AuNPs with spherical shapes and an average size of around 18.5
were synthesized using an inexpensive sonochemical approach in which the nanoparticles
were generated using ultrasound from droplets of the metal salt precursor solution.

3.6. Advantages and Limitations of the Methods

The Turkevich method is a simple and repeatable procedure for producing spherical
AuNPs with sizes ranging from 10 to 30 nm. However, once NPs’ sizes exceed 30 nm,
they will be less spherical in shape and have a greater size distribution. Furthermore, this
process has a low yield and uses only water as the solvent [81]. The Brust approach, on the
other hand, entails a simple strategy for producing thermal as well as air-stable AuNPs
with a controlled size and low dispersity. One potential restriction of the Brust approach
is the production of AuNPs that are less distributed and employ organic solvents that are
immiscible with water, inhibiting their biological applicability [48]. Seed-mediated growth
is a viable approach for producing rod-shaped AuNPs, but different parameters influence
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rod size and should be carefully managed. In one study, higher HAuCl4 concentrations re-
sulted in larger seed rods with lower aspect ratios. Temperature also performs an important
role in the formation of rods, with higher temperatures producing rods with lower aspect
ratios. In order to accelerate rod growth, a number of seeds introduced to the mixture
should be carefully examined [82]. Furthermore, chemical approaches have their own set
of limitations, which also include biocompatibility and environmental considerations. A
few of the chemicals utilized in the fabrication of AuNPs during chemical esis can harm
our environment and pose risks when administered to living organisms, restricting the
biological applications of these NPs [83]. To address these problems, numerous biological
approaches for the preparation of AuNPs have been developed.

The synthesis reaction of AuNPs, carried out by taking a biological approach, can take
hours or even days. The preparation of AuNPs from plant-based materials is a simple
and straightforward procedure. The reaction parameters can be used to control many
aspects of AuNPs including size and shape. Furthermore, the reaction time is short and
monotonous. The limitations of employing plants for AuNP formation is that it is difficult
to identify reactive components since plant biomass contains a wide range of organic
components [84–86].

The sonochemical approach is an environmentally friendly, green, rapid, and simple
method of producing monodisperse AuNPs [87], and it has also been used successfully with
less volatile organic liquids. Several types of nanostructures of oxides, metals and carbides
can be created by varying reaction conditions [76]. A reducing agent is not required
for the reduction of noble metal salts during nanostructure development, the reaction
rate is generally quick, and very small metal particles are formed. The disadvantage of
sonochemical reduction is that the rate of reduction is entirely dependent on the ultrasonic
frequency [76].

Table 1. Different methods of synthesizing AuNPs.

Nanoparticle Method Size (nm) Shape Application Ref

AuNPs Turkevich 3.5 Spherical . . . . . . . . . . [49]

AuNPs Seed-mediated 30–150 Spherical . . . . . . . . . . [51]

AuNPs Laser
irradiation 24 Spherical . . . . . . . . . . [52]

AuNPs γ-irradiation 5–40 Semi-spherical . . . . . . . . . . [59]

AuNRs Chemical
reduction . . . . . . . . . . rod . . . . . . . . . . [63]

AuNPs Reduction by
glutamic acid 40 Spherical Bioconjugates [64]

AuNPs Brust 1–3 Semi-spherical . . . . . . . . . . [66]

AuNPs Reduction 180 Decahedral . . . . . . . . . . [69]

AuNPs Green 10 Spherical, triangular
and hexagonal . . . . . . . . . . [70]

AuNPs Sonochemical 22 Spherical . . . . . . . . . . [88]

AuNPs Laser ablation 49 Spherical . . . . . . . . . . [88]

AuNPs Sonochemical 18.5 Spherical Computed
tomography [5]

AuNPs Sonochemical 13.6, 18.6
and 22.3 Spherical Catalysis [89]
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4. Type of AuNPs

AuNPs are typically produced by reducing a gold salt and coating it with an or-
ganic [90] or inorganic [91] layer to ensure colloidal stability. Surface plasmon resonance
(SPR) is a property of AuNPs that is caused by the collective oscillations of free electrons
along the gold lattices in the AuNP core [92]. Using different sizes, shapes, surface coatings,
and assemblies of AuNPs, this SPR can be fine-tuned to obtain the desired optical properties
(Figure 4). Since Turkevich’s seminal work on spherical AuNP synthesis [93], a plethora of
adapted procedures have been developed that alter the process parameters to vary the sizes
of spherical AuNPs [88,89]. Because of the greater surface-to-core ratio available in the con-
jugation of the dyes or targeting moieties, modifying AuNPs’ size is of specific importance
for molecular imaging. Furthermore, increasing AuNPs’ size causes a bathochromic shift in
their SPR, which is advantageous because several optical biomedical techniques are used
in the near-infrared region (NIR), i.e., 650–900 nm, where tissue absorption is low [94]. On
the contrary, the surface-to-core ratio has no impact on CT contrast enhancement, but it
does affect the biodistribution and pharmacokinetics of AuNPs, allowing them to be used
in a variety of molecular imaging applications [95].
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5. Shapes of AuNPs

Several methods for synthesizing AuNPs with various shapes have been developed.
For instance, gold nanorods (AuNR) have both longitudinal and transverse SPRs, which
can be shifted to the NIR region by modifying the length-to-width ratio [96]. Surprisingly,
miniature AuNRs with SPRs in the NIR-II, i.e., beyond 900 nm, have been reported [97].
When compared to larger AuNRs, these miniature AuNRs allowed for a 30% advancement
in tumor accumulation and an around 4.5-fold improvement in photoacoustic imaging
(PAI) contrast in tumor imaging. Core@shell NPs were also established as effective contrast
agents for a variety of modalities as well as cancer treatments [98]. Notably, a sphere-shaped
iron oxide core was coated by a gold shell that provides T2 contrast in MRI, allowing CT
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and MRI multimodal imaging [99]. Other unique-shape variations, such as stars, triangles,
and prisms, have been formed to adjust both the cellular uptake and optical properties
of AuNPs (Figure 5) [100]. Gold nanoprisms’ strong light scattering characteristics make
them suitable contrast agents for skin imaging or the imaging of melanoma tumors using
optical coherence tomography (OCT) [101]. Stars have a high surface-to-core ratio, which
is beneficial for the surface modification of targeting ligands and allows for the molecular
imaging of CT [102] and SERS [103].
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6. Properties of AuNPs

Surface plasmon resonance (SPR) is one of the common essential features of AuNPs,
and it is mostly determined by their shape and size [105]. Plasmon is a collective oscillation
of the free electrons at the material interface that happens when certain wavelengths of
light interact with the conduction band of the material interface, causing a dipole oscillation
that relies on the electromagnetic field and ionic lattice of incident light. The maximum
oscillation happens at a certain light frequency, which is known as SPR [106]. AuNPs absorb
light strongly depending on their size, and the SPR band spans the visible to infrared region.
Figure 6 depicts the displacement of SPR peaks caused by different AuNP sizes [107]. SPR
also offers surface plasmon scattering, which occurs when light strikes AuNPs and causes
electron oscillation, which results from photon energy and re-emits photons of the same
wavelength. Importantly, altering the material interface with various receptors and the
consequent interaction with diverse structures such as cells affect the wavelength, which
can be exploited for the imaging and diagnosis of various cancers such as breast, prostate
and lung cancers [108]. Furthermore, AuNPs can emit the previously mentioned light
which induces collective oscillation, resulting in heat, making them a suitable platform
for various therapeutics including cancer cell eradication via photothermal therapy and
drug-delivery systems. When the bulk size of gold is reduced to nanoscale dimensions, the
surface-to-volume ratio will increase, which impacts AuNPs’ surface energy and improves
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atom alignment on the nanoparticle surface. As a result, AuNPs have the ability to interact
with many types of compounds in order to increase their biocompatibility [109].
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7. Surface Modification

AuNPs are simple to functionalize and can interact with a variety of molecules, which
allows one to manipulate AuNPs’ functions by conjugating biological molecules and
chemical groups such as DNA, antibodies and peptides for various purposes, including
diagnostic cancer therapy and gene-/drug-delivery systems [110]. Generally, these ligands
allow nanoparticles to reach the desired region and perform detection or therapeutic
functions. Physical and chemical interactions between ligands and AuNPs vary depending
on the ligand type and synthesis method [111]. Covalent bonding has received more
attention in chemical conjugation than other techniques due to its efficient nature and
excellent stability in a physiological environment. Additionally, the size of modified
AuNPs can be controlled more precisely, and the coupling between AuNPs and molecules
is stable. This technology is simple to use, but the number of available and suitable
ligands for this technique is restricted. Ligand exchange considers a very novel method of
conjugating ligands onto the surfaces of AuNPs, wherein hydrophobic ligands interchange
with hydrophilic ones to offer preferred surface features [112]. In this approach, the first
reactive group of a functional chemical binds to the surface of the AuNPs, while the other
functional group of the compound serves as a coupling site for other molecules including
peptides and antibodies. Trialkoxysilane is commonly utilized in this approach due to
the number of coupling sites that can connect with other ligands, particularly those with
vinyl and amino groups. Phosphine’s interaction with AuNPs is very weak; thus, it is
an excellent option for exchanging with thiol groups to further modify them to improve
particle stability in physiological environments. The effectiveness of this approach is
determined by a number of parameters, such as ligand type, nanoparticle size, bonding
strength and the number of grafted ligands [111].

The surface modification of AuNPs is required to reduce surfactant-induced toxicity
and improve biocompatibility. The thiol gold reaction, which relies on the high affinity
between Au and thiols, is the most essential approach for functionalizing AuNPs. By
replacing the CTAB with thiolated species, AuNPs using hexadecyl trimethyl ammonium
bromide (CTAB) as a surfactant could be detoxed and stably dispersed [113,114]. Liang et al.
used gold–sulfur bonding to produce stably dispersed AuNPs with different sizes, about 2,
4, and 6 nm, covered with zwitterionic ligands [115], whilst Garcia et al. [116] generated
AuNPs at a size of about 5 nm stabilized with double-pyridine salt in cancer treatment.
Wu et al. [117] synthesized AuNPs with a size of about 12 nm with folic acid and the
reduction of a bovine serum albumin conjugation for imaging and photothermal treatment.
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The thiol gold reaction is also used in various methods for the surface modification of
AuNPs, such as electrostatic adsorption. Rotello et al. [118] created a DNA-delivery system
through electrostatic interactions, combining DNA with trimethylammonium mixed mono-
layer protection cluster-adjusted AuNPs. Rotello et al. [119] produced a gold core of 2 nm
and triethylenetetramine-terminated ligands that electrostatically reacted with negatively
charged siRNA. The versatility of the gold–sulfur bond serves as the foundation for the
surface modification of AuNPs, expanding the potential for using AuNPs as a diverse
cancer theranostic platform.

8. Imaging Applications of AuNPs

Cancer is one of the major causes of death worldwide. Patients’ chances of survival are
mostly dependent on diagnosing cancer in its early stages, when it is curable. Furthermore,
present cancer diagnostic approaches are time-consuming, costly and have harmful side
effects. Nanotechnology has improved diagnostic procedures in recent decades, allowing
for the detection of cell alterations and cancer in its early stages [120,121]. AuNPs are
considered the most viable candidate for imaging applications (Figure 7). To detect cancer
cells precisely, a bioimaging system must have high selectivity and sensitivity. To prevent
clearance, AuNPs must be functionalized in order to reach specific malignant cells while
remaining undetectable to the immune system. PEGylated AuNPs, for example, covalently
modified with a monoclonal antibody and herceptin (HER), can be bound to the targeted
antigen on breast cancer cells [122]. The visible light absorption of AuNPs, which is
caused by the SPR effect, is a useful characteristic for the detection of cancer cells using
a colorimetric test. The chemical-physical properties of AuNPs, such as size, shape and
solvent, have a direct effect on the SPR band of AuNPs. Furthermore, when the size of
GNPs decreases, the wavelength switches from blue to red [52,90,91].
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8.1. Optical Imaging

Up to now, researchers have employed AuNPs and several analytical optical imaging
methods such as: (1) two-photon luminescence; (2) dark-field light scattering; (3) optical
coherent tomography; (4) Raman spectroscopy; and (5) photoacoustic imaging for the
optical imaging of cells and tissues [123,124]. A special imaging modality that can provide
sectional images of a biological sample with a high resolution is optical coherence tomogra-
phy (OCT). Gobin et al. [125] demonstrated that scattering is increased in the presence of
Au nanoshells and that it can produce an improved optical contrast imaging for accurate
tumor diagnosis in mice. Another imaging technology that allows for accurate cancer
diagnosis in the early stages is photoacoustic imaging. This approach combines optical
and ultrasonic imaging modalities. It is based on irradiating biological samples or tissues
with short pulses of electromagnetic irradiation in the absorption range, which results in a
raised temperature and local pressure, which can create measurable acoustic waves [124].
Eghtedari et al. [126] revealed that Au nanorods enhance the diagnostic power of laser
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photoacoustic imaging systems. They reported that Au nanocages provide more detailed
images of vascular systems by increasing the contrast between blood and surrounding
tissues by up to 81%. Additionally, it has been reported that nanocage-shaped AuNPs have
larger optical absorption cross-sections than Au nanoshells and are more suited for in vivo
applications [55].

Kang et al. [127] employed spherical AuNPs for fast subcellular Raman imaging
to track changes in cell shape during toxic-induced cell death. High-resolution Raman
images of different sites of the cell, including the cytoplasm, mitochondria, or nucleus,
were obtained due to the good distribution of organelle-targeted AuNPs. Additionally,
Ma et al. [128] performed a study on developed graphene oxide-wrapped AuNPs as a
potential theranostic agent in HeLa cancer cells for intracellular Raman imaging (laser:
488 nm; strength: 20 mW) and doxorubicin administration. Using dark-field microscopy,
Loo and colleagues [129] used the near-infrared light scattering of Au nanoshells as a
contrast agent to identify the molecular marker human epidermal growth factor receptor 2
(HER2) inserted into breast cancer cells. Furthermore, Bickford et al. [130] showed that Au
nanorods could potentially be usedas liver HER2-overexpressing cancer contrast agents for
imaging using two-photon microscopy.

AuNPs were synthesized by Qian et al. [131] to be used as contrast agents in dark-
field scattering light microscopy to analyze the life phases of cancer cells. Jin et al. [132]
showed that DFM can be utilized to analyze carbohydrate–protein interactions using single
plasmonic AuNPs [44].

8.2. Photoacoustic Imaging

In photoacoustic imaging (PAI), AuNPs can potentially be used as contrast agents.
AuNPs have a large absorption cross-section which is greater than those of well-known
chemical dyes such as rhodamine-6G and indocyanine green [133]. The intensity of the
PAI signal is related to the concentration of AuNPs; increasing the concentration of AuNPs
increases the PAI signal, which improves the image contrast [133]. Sentinel lymph node
mapping is a method that can be used to successfully diagnose metastases in cancer staging.
To this end, several imaging methods have been developed, the majority of which rely on
dangerous radioactive tracers [134,135].

Han et al. [130] employed an epidermal growth factor receptor which conjugated to
AuNPs with particle sizes ranging from 5 to 40 nm for cancer detection. The results revealed
that the 5 nm AuNPs exhibited high near-infrared absorption while maintaining the same
PA signal as the 40 nm AuNPs. The findings proved that AuNPs could be used as a PAI
agent for cancer cell detection in vivo. Wang et al. [136] demonstrated that the graphene
oxide@ AuNPs could be potentially used as bimodal agents for photothermal treatment and
PAI for ovarian cancer. Recently, Salah et al. [137] presented a novel bio-imaging approach
as well as a PAI agent utilizing PEG–CALNN–TAT Au nanorods.

8.3. Fluorescence Imaging

Fluorescence imaging (FI) is based on a linear connection between the intensity of
the fluorescent signal generated by the stimulated fluorescent material and the amount
of fluorescent substance present in a certain range. AuNPs have several well-known
optical features and may passively accumulate at tumor locations, making them even more
promising in early cancer detection than tiny therapeutic molecules. When utilized in
tumor diagnosis, however, AuNPs accumulate abundantly in reticular endothelial system
organs, lowering their targeting specificity and limiting their clinical applicability [138]. To
effectively utilize the increased permeability and retention of tumors, AuNPs (≥10 nm)
must be used since they may remain at greater concentrations in the plasma, therefore
avoiding renal filtration [139]. Zheng et al. [140] applied FI to compare AuNPs (2.5 nm)
coated with glutathione to the dye molecule IRDye 800CW in breast cancer tumor-bearing
mice. The findings indicate that the use of gold NPs for tumor diagnosis was more efficient
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than IRDye 800CW. This finding supported the importance of renal-clearable ultrasmall
fluorescent gold NPs in cancer diagnosis.

Hou et al. [141] demonstrated the tumor imaging capability of AuNPs using NIR BSA-
Au nanoclusters as imaging contrast agents. Using HeLa and MDA-MB-45 tumor-bearing
mice, ex vivo and in vivo investigations revealed that AuNPs were capable of accumulating
in the tumor sites due to the EPR effects. Wang and colleagues employed GSH-capped silver
nanoclusters as templates to create highly luminous AuNPs via a galvanic replacement
approach [142]. The GSH-gold nanoclusters produced by Venkatesh et al. [143] can be
employed as a possible purine-stabilized FI probe to identify CAL-27 cancer cells.

Likewise, the self-assembly of allylamine hydrochloride and GSH-AuNPs caused
a significant increase in fluorescence via aggregation-induced emissions [144]. In vitro
investigations revealed that the self-assembled nanocomposites had a much higher uptake
than GSH-AuNPs. Liu et al. [145] developed a precision Au25(GSH)18 that fluoresces
in the near-infrared region (1100–1350 nm) for the imaging of cerebral blood flow and
brain cancer. Based on their in vivo findings, cerebral blood flow imaging was able to
discriminate between healthy and damaged brains. Moreover, by utilizing Au25(GSH)18,
primary cancer and lymphatic metastasis were diagnosed. Nanoparticle modification
methods such as employing folic acid, an aptamer, a targeting peptide and a biosensor
were functionalized on the surface of AuNPs to improve targeted cell imaging [146–148].

8.4. MRI

Magnetic resonance imaging (MRI) is a well-known imaging method based on the
nuclear spin concept [149,150]. The use of MRI in the diagnosis of cancer is beneficial.
Nonsystemic toxic AuNPs have great potential to be utilized in medical applications,
such as being used as MR contrast agents [7]. Luo et al. [151] used AuNPs targeting
prostate cancer in MR-guided radiotherapy to enhance targeting accuracy and effectiveness.
The binding affinity and r1 relaxivity of AuNPs were greatly increased by conjugating
gadolinium complexes and PSMA ligands to the surfaces of NPs. Elsewhere, the AuNPs
bound with Gd significantly enhanced the image contrast of CT and MR images by using Gd
as a contrast agent for MR imaging [152]. Another study by Cai et al. [101] investigated Au3
Cu1 nanoshells as agents for MR imaging blood vessels in in vivo studies, indicating their
potential use as blood contrast agents in MR angiography. Due to their strong attenuation
of CT and excellent MR signals, hybrid NPs with superparamagnetic iron oxide coated
with AuNPs have been employed as dual contrast agents for CT and MRI [98,153]. Despite
the limitations of Gd-based contrast agents in depicting tumor margins, gold nanoparticles
have been used as contrast agents to detect brain tumors using MRI. Compared to Gd alone,
Gd-conjugated AuNPs offer a substantially higher intracellular concentration of Gd and a
longer-lasting amplification of brain tumor signals, leading to enhanced tumor imaging. As
a result, a single preoperative injection of Gd-conjugated AuNPs allows for intraoperative
MRI tumor excision, resulting in increased diagnostic accuracy and no toxicity associated
with repeated doses of Gd chelates [154]. Iancu et al. [155] investigated nontoxic iron oxide@
AuNPs to reduce the T2 relaxation time in MR images of small animals. In another study,
Wan et al. [105] developed a variety of T2 contrast agents using AuNPs and a dysprosium
complex. The transverse relaxivity of AuNPs-DyDOTA(amide)2 was 22.9 mM–1 s–1 at 9.4 T
after NMR spectroscopy, which is greater than the transverse relaxivity of dysprosium-
based small molecules. Shahid [156] utilized a reduction process to synthesize water-based
AuNPs stabilized by dimethylaminopyridine molecules. Based on this theory, butanethiol
molecules are responsible for the limited tumbling of Gd-DTPA chelates, which induced a
38% enhancement in the relaxivity of AuNP-based MR contrast agents.
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8.5. CT

CT is another frequent imaging modality in which AuNPs have been employed as
a component that interacts with the weakening or amplified output signal, resulting in
an enhancement of contrast in the CT images [5,157]. Most of the biocompatible particles
are synthesized as an Au core with a water-soluble coating to increase the effectiveness of
targeted CT contrast agents to specific cells/tissues [121,158]. Meir et al. [159] evaluated
the migration, kinetics and distribution of T cells in vivo using AuNP-labeled melanoma-
specific T cells and whole-body CT imaging. At the tumor region, the highest CT signal
intensity was obtained 48 h after injection, revealing the accumulation of labeled AuNPs at
the target, whereas the tumor region was not identifiable prior to injection. There was no
visible CT signal for nontargeted T cells in the same specific region. Elsewhere, gold NPs
have also been employed as cell-labeling contrast agents to test for monocyte accumulation
inside plaques using CT, where the presence of AuNP-labeled monocytes in the aorta
increased CT signal attenuation [160]. Cao et al. [161] demonstrated the fabrication of
lactobionic acid (LA)-modified dendrimer-entrapped AuNPs as a specific hepatocellular
carcinoma nanoprobe for using CT modality in vivo. Recently, Hara and colleagues [162]
conjugated anti-prostate-specific membrane antigens (PSMAs) onto PEGylated AuNPs
through (EDC/NHS) chemistry. PSMA-targeted gold NPs showed a significantly good
performance as a contrast agent for the targeted CT imaging and X-ray fluorescence CT of
prostate cancer.

8.6. PET

Positron emission tomography (PET), as one of the imaging modalities, can be used
for quantitative imaging and has a high diagnostic potential for in vivo studies at the
cellular and molecular levels. A radiometal such as 64Cu can be conjugated to gold NPs for
radionuclide-based PET, in order to utilize the sensitivity of PET scans. Consequently, some
studies have indicated that AuNPs can be used in the more sophisticated nuclear magnetic
imaging method PET. Chen et al. [163] studied the performance of AuNPs (~2.5 nm)
containing a 64Cu-labeled contrast agent to predict and diagnose kidney disease in vivo via
PET imaging. Moreover, their findings proved the kidney’s quick clearance of GSH-coated
AuNPs as well as the PET contrast agent for cancer detection and diagnosis.

The attachment of radiometal–chelator complexes meets significant difficulties due to
the possibility of radiometal detachment as well as changes in the surface characteristics of
AuNPs. A chelator-free 64Cu radiolabeling technique for PET imaging was developed to
overcome these difficulties by chemically reducing 64Cu on the surface of RGD-PEG-Au
nanorods (NRs) (50 × 15 nm). It was reported that RGD amino acid has a significant
affinity to αvβ3 integrin receptors overexpressed on a variety of tumor cells, such as breast,
bladder and prostate cancer cells, rendering it a unique molecular ligand for targeted cancer
imaging/therapy [135,164]. Sun et al. [165] synthesized RGD-[64Cu]-PEG-Au NRs, and
[64Cu]-PEG-AuNRs uptake in U87MG subcutaneous tumors was 8.37 1.16 percent ID/g
(injected dosage per gram of tissue), and 6.19 0.5 percent ID/g at 24 h postinjection. In a
U87MG glioblastoma xenograft model, these NRs have demonstrated high tumor-targeting
capabilities and were effectively employed for PET image-guided photothermal treatment.

9. Therapy

Because of their unique optical as well as surface modification properties, AuNPs have
enormous potential in cancer treatments such as PPT, PDT, radiotherapy, chemotherapy,
and drug delivery, as explained in Figure 8.
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9.1. Photothermal Therapy (PTT)

Because of the side effects of the current cancer treatment approaches, newer proce-
dures such as PTT are being developed, which involve more minor damage to the healthy
tissues [166]. PTT kills cancer cells by generating localized heat, which is most effective in
the early stages of metastasis or when a tumor is in its initial stages [167]. PTT is a promis-
ing new cancer treatment approach that transforms light to heat and uses hyperthermia
to trigger cell death [168,169]. When cells are cultured at temperatures higher than 42 ◦C
for several minutes, permanent damage to the protein and membrane occurs, leading to
cell death. The laser wavelengths and the penetration of light into the tissue are critical
for the potency of PTT. Near-infrared (NIR) illumination is thought to be more capable of
penetrating tissue [170]. AuNPs are considered one of the best options for this technique.
Because of their unique optical properties, AuNPs may attract light at a certain wavelength
(preferably and mostly in the NIR) and transfer it to heat in a much shorter time than other
nanomaterials [171]. This phenomenon raises the temperature in the surrounding area, in
which the temperature value degree is determined mainly by laser power and the time of
irradiation. Furthermore, the shape and size of AuNPs play an essential role in PTT [172].
Halas et al. were the first to report that Au nanoshells might be used as PTT agents. Cells
was cultured with PEGylated Au nanoshells while being exposed to an 820 nm laser. After
7 min, considerable cell death was seen in the area of irradiation [173]. Au nanoshells
have also been shown to be efficient tumor therapy agents in vivo [174,175]. Additionally,
Rastinehad et al. conducted a clinical study that demonstrated that laser treatment using
nanoshells (Au coated silica) for prostate cancer successfully achieved an around 94% cure
rate in humans, demonstrating the significant potential of AuNPs for cancer therapy [176].
Mohammed et al. described the creation of spherical Au-coated Fe3O4 as a PTT agent for
the eradication of breast cancer cells (MCF 7). Following photothermal therapy for 10 min,
MCF 7 cells showed a significant cell reduction of about 73.9% [177].

Among the many geometries of AuNPs, Au nanorods are widely used as PTT agents
because of their SPR wavelength and high cell permeability. These properties are a crucial
requirement for biological applications. Cheng et al. created spherical AuNP-decorated
photolabile diazirine moieties that used in vivo PTT [178]. Under UV irradiation, the
produced particles efficiently aggregated at the tumor site, leading to a substantial shift
in the peak of SPR towards the NIR region. According to the findings, following AuNP
injections over 10 min of irradiation with an 808 nm laser, the localized temperature of the
nude mice having 4T1 tumors climbed to 26.7 ◦C, whereas there was no notable temperature
rise in the control tumor. Moreover, when compared with the control, the tumor treated
with a dose of AuNPs, followed by laser irradiation, was totally destroyed, implying



Int. J. Mol. Sci. 2022, 23, 7400 17 of 34

that PTT is a viable treatment option. Another type of AuNP is Au nanospheres, which
have an optical resonance wavelength ranging from 500 to 600 nm depending on size and
cover the visible to near-infrared region [171]. It is important to note that the NIR area is
advantageous for medical applications since tissues absorb fewer electromagnetic waves
within this range [179]. In addition to Au nanospheres being efficient as PTT agents, they
can be effective nanocarriers for other chemicals such as metal NPs or cell-labeling agents
or, owing to their unique shape, have the potential to be used in theranostics [180,181]. A
full investigation of the various shapes of AuNPs used in PTT has been published [179].
Surface ligands play a vital role in tumor targeting and enhancing blood circulation time;
nevertheless, they may or may not influence the thermal behavior of AuNPs. Because of
the success of this strategy, PTT can be used alone or in conjunction with other approaches,
such as chemotherapy, to treat cancer tumors and improve therapeutic efficacy. Numerous
other excellent studies have also confirmed that AuNPs, including nanoplates, nanoprisms
and nanoparticles, have significant potential for use in PTT cancer treatment, particularly
when surface functionalization is used [182,183]. The inclusion of the active target ligands
improves the accumulation of the PTT agents in tumor tissue, resulting in the selective
killing of cancer cells. AuNPs with strong light-penetrating and conversion efficacy, as well
as good compatibility, may be ideal candidates for PTT. Despite the fact that PTT is at the
vanguard of cancer treatment, its precise mechanism is still unknown. The key point of
contention in current studies is necrotic or apoptotic cell death. Many parameters, such
as intensity, particle shape, laser irradiation time, and particle-targeting techniques, all
influence the manner in which cells die. As a result, more extensive research is required to
determine the essential mechanism of PTT.

9.2. Photodynamic Therapy (PDT)

PDT is another interesting cancer therapy technique used in the presence of light-
sensitizing agents. PDT is a new cancer treatment technique [184]. It is focused on the use
of a photosensitizer that can become excited after being exposed to light. Because of the
energy transfer to the environment, reactive oxygen species (ROS) are produced following
light irradiation [185]. Clinical photosensitizing compounds, such as phthalocyanines
and porphyrins, are typically hydrophobic and thus cannot easily penetrate cells due
to lipid barriers. As a result, they require a suitable carrier that can reach cancer cells
without modifying the agent. In fact, nanoparticles are used as a carrier for the delivery
of photosensitizer drugs in PDT research [186]. Furthermore, the nanoparticle binding
to photosensitizing compounds might increase ROS production [187,188]. According to
several studies, AuNPs coupled with photosensitizer agents can increase the effectiveness
of PDT [189–191].

In a mouse model, Burda et al. [186] employed PEGylated coated AuNPs to deliver
hydrophobic drugs for PDT. This form of delivery significantly shortened the drug-delivery
time as well as improved drug transport to the tumor. Cheng et al. [192] investigated the
drug-delivery method and pharmacokinetics of a system containing noncovalent conju-
gates of the PDT cancer medication with AuNPs. The transport of hydrophobic medicines
into tumors in mice by passive build-up of AuNPs resulted in a deep penetration and rapid
release into the tumor tissue. Burda et al. [193] covalently linked the photo precursor to
AuNPs to produce the photodynamic therapy drug using laser irradiation (660 nm). This
enabled the controlled release of drugs, which could increase drug accumulation in the
targeted region. When irradiated with light, these nanoparticles successfully deliver Pc
4 to the prostate cancer cells, allowing the tumor to be seen and eventually eliminated
(Figure 9). A design like this can help guide surgical therapy and postoperative inter-
vention. Pérez et al. [194] synthesized and integrated a new photosensitizer onto AuNPs
via dissymmetric porphyrin derivatives. The photosensitizer-loaded colloidal AuNPs
increased the photosensitizer’s activity and water solubility. These studies showed that
AuNPs may efficiently overcome photosensitizer hydrophobicity as well as deliver them
to tumor locations. Because PTT and PDT have similar mechanisms, most recent research
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has focused on the combination of PTT and PDT in cancer treatment. In terms of the deep
penetration of NIR light, the combination of PDT and PTT can maximize the anticancer
efficiency of AuNPs, particularly for deep tumors. At the moment, light and AuNPs are
being used to cure cancer cells, and both ROS and hyperthermia are being produced, which
can have unanticipated results.
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9.3. Radiotherapy

In clinics, radiotherapy is still the most commonly used cancer treatment technique.
The main objective for radiotherapy is to use X-rays with high-energy radiation to shrink
tumors and eradicate cancer cells. One of the most difficult aspects of radiotherapy is that X-
ray radiation causes collateral harm to neighboring healthy cells (Figure 10). One approach
to addressing radiotherapy concerns is to develop potential targeted radiosensitizers that
can locally increase radiation damage to tumors while minimizing the harm to proximal tis-
sues. Due to their distinctive photoelectric effects and significant X-ray absorption, AuNPs
are one of the most investigated components in this field. The incident electromagnetic
waves can interact with AuNPs, resulting in secondary electron emissions. These electrons
can cause harm to the inner organs of cell-like mitochondria through direct interaction. Due
to the fine Au, AuNP-based materials were regarded as the most appealing radiosensitizers
of cancer radiotherapy [195]. Zhang et al. [196–198] were the first to bring AuNPs into the
area of cancer radiation. A number of atomically exact glutathione-AuNPs, such as Au25,
Au 29_43 and Au 10_12, were discovered to concentrate at the tumor site, particularly due
to permeability and retention, and hence have a high radiosensitizing impact in cancer
radiotherapy. The thiol/thiolate exchange reactions between the intracellular GSH and
thiolate AuNP ligands allow the thiolated drug to be delivered (Figure 11).

AuNPs have also demonstrated rapid renal clearance, resulting in good biocompat-
ibility inside the body. Furthermore, by depleting intracellular glutathione levels with
histidine-template AuNPs, an improved cancer radiation method has been devised using
both external and internal controls [200]. In vivo investigations have indicated that the
glutathione-depleting method is effective for tumor radiation. Broekgaarden et al. [201]
discovered that AuNPs modified with glutathione are more appropriate for radiotherapy
enhancement through rigorous surface chemistry experiments. Jia et al. [199] revealed in
another study that structurally designed levonorgestrel-capped AuNPs with strong fluores-
cence may be used as a nano-radio-sensitizers for increased cancer irradiation. The AuNPs
enhanced intracellular ROS generation in response to X-ray exposure, leading to irreversible
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death. Furthermore, AuNPs modified with different targeting molecules, including folic
acid, peptides and oligonucleotide aptamers, were employed as nano-radio-sensitizers for
improved cancer radiotherapy [202–204].
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9.4. Chemotherapy

Cancer chemotherapy relies heavily on the targeted administration and bioavailability
of chemotherapeutics. Targeted drug delivery using nanomedicine carriers is widely re-
garded as the most effective way to overcome the poor targeting, need for high dosages and
relatively low bioavailability of free medications in conventional medicine [206]. AuNPs
have high potential for the targeted administration and regulated release of anticancer
medicines due to their good biocompatibility and ease of surface modification (Figure 12).
Wang et al. discovered that bovine serum albumin (BSA)-AuNPs loaded with the hu-
manized monoclonal antibody Herceptin can be used for selective targeting and nuclear
localization in ErbB2-overexpressing breast cancer [207]. The Herceptin-loaded AuNPs
might overcome the endolysosomal route and penetrate the nucleus of cancer cells, enhanc-
ing Herceptin’s therapeutic impact. Gu et al. [208] also used functionalized protein-capped
AuNPs as cancer drug carriers. The methionine-decorated AuNPs efficiently loaded dox-
orubicin (DOX) to produce a prodrug for increasing anticancer activity and cancer affinity.
To further selectively target tumor and the endothelial cells, iRGD-coupled response bovine
serum albumin-AuNPs nanogels have also been employed for targeted DOX delivery [209].
The nanogels’ thermo- and pH-responsive properties may allow for the regulated release
of DOX. Bovine serum albumin-AuNPs can also be employed for gemcitabine and DOX co-
delivery when conjugated with mesoporous silica nanospheres [210]. Likewise, maytansine
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analogue DM1-loaded AuNPs have been demonstrated to considerably improve DM1’s
therapeutic efficacy against hepatocellular cancer [211]. Furthermore, Chen et al. [212]
exploited dual-targeted Apt@cRGD@AuNPs as targeting carriers to enable nuclear-targeted
DOX delivery. The DOX bomb has been shown to significantly enhance cancer affinity,
antitumor behavior and tumor penetration in many cancer cells and tumor xenograft
models. Graphene-assembled AuNPs can also be employed for DOX delivery [213]. By
promoting karyopyknosis, the produced nanocomposites might synergistically increase an-
ticancer efficacy. Dendrimer-encapsulated AuNPs can be used to load anticancer medicines
such as DOX, thiolated cisplatin, captopril and 6-mercaptopurine via Au-S bonding [214].
In the presence of glutathione, the loaded medicines displayed an “off–on” release pat-
tern. Intracellular glutathione performs a scissor function, potentially causing the release
of loaded chemotherapeutics within AuNPs, resulting in cell death. Because of folate
receptor-mediated endocytosis, various decorated AuNPs can be employed as nanocarriers
to deliver anticancer medicines such as paclitaxel (PTX), DOX, cisplatin and camptothecin
(CPT) to cancer cells via folic acid functionalization [215–218]. Arunakaran et al. [219]
investigated the effects of AuNPs with a diameter of about 3 nm coupled with quercetin on
breast cancer cell lines (MCF 7). The findings suggest that quercetin-conjugated AuNPs are
more powerful than free quercetin and might be employed for targeted medication delivery
with improved therapeutic efficacy in the breast cancer treatment. The NPs suppressed
the phosphorylation of the epidermal growth factor receptor (EGFR) as well as molecule
activity in MCF 7. These AuNP-based drug delivery systems give evidence for AuNPs’
potential use in cancer treatment.
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9.5. Drug Delivery

The potential of nanoparticles for us as a drug delivery system to carry drugs is 10
to 100 times greater than the molecular administration of the drug to tumors and so can
improve therapeutic and diagnostic methods [221]. Furthermore, because of less uptake
through the reticula-endothelial system, the drug circulation period within nanoparticles
can be prolonged, and it can accelerate drug uptake by tumor cells [184,222]. Because of
properties such as high affinity, nontoxicity and biocompatibility, the surface of AuNPs can
be employed for active tumor targeting with biomarkers, antibodies and ligands capable of
selective binding to tumors. Cytotoxic drug delivery at specific sites can enhance diagnosis
and treatment whilst reducing undesirable side effects [185,223]. Various studies have
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used AuNPs to administer anticancer medications such as paclitaxel [224], tamoxifen [225],
methotrexate [226] and platinum-based drugs, including oxaliplatin and cisplatin, to pro-
mote therapeutic efficiency [227,228].

Passive targeting is an easy mechanism for delivering anticancer drugs using AuNPs,
and is based solely on particle size. In this method, NPs accumulate in the tumor location,
utilizing the effect of increased permeability and retention (RES). Furthermore, in order
to develop an efficient delivery system, combining passive or active targeting would be
highly useful [229]. The core challenge that AuNPs face is being undetected by the RES and
immune system, which has a considerable impact on their capacity to reach the designated
tissue and the speed of blood circulation. According to various studies, bare AuNPs have a
fast clearance rate, which inhibits their successful delivery [112,230]. PEG is a commonly
employed polymer that, due to its excellent hydrophilicity, can increase the circulation
period of NPs in the bloodstream [111]. Lipka et al. [231] produced AuNPs with a diam-
eter of 5 nm followed by modification with PEG1000, which significantly enhanced the
blood circulation time compared to those treated with PEG750. To ensure optimal cellular
absorption in cancer therapy, several forms of AuNPs with a large size range should be
investigated. For example, the absorption of Au nanorods by tumor cells is higher than for
other shapes because of their structure and increased permeability [232]. Methotrexate is an
anticancer medicine widely used as a chemotherapeutic agent in treating prostate, breast
and lung cancers. However, it has recently been demonstrated that impairing the drug
import of cells and then increasing drug export from them results in robust cell resistance
to methotrexate [233]. As a result, developing a new way to address this issue appears
crucial. Thirteen-nanometer colloidal AuNPs coupled with methotrexate via a carboxylic
group (COOH) demonstrated a greater anticancer effect on many tumor cell lines than free
methotrexate [226]. This could be attributed to the increased methotrexate accumulation,
which contributes to high drug concentrations in tumor cells treated with methotrexate–
AuNP treated with free drugs. Cancer cells that contain folate receptors can identify and
absorb folic acid-modified AuNPs. Rizk et al. investigated the therapeutic efficacy of
methotrexate-loaded sphere AuNPs (100 nm) functionalized with folic acid as an MCF 7
targeting agent [234]. Compared to the free drugs, the results indicated greater cellular ab-
sorption by a metastatic human MCF 7 type and decreased cytotoxicity against normal cells.
Heo et al. [235] studied complex paclitaxel-loaded AuNPs functionalized with rhodamin B,
biotin, PEG and cyclodextrin to improve blood circulation and water solubility, used as
the fluorescent probe and targeting ligand. They tested cell cytotoxicity against several
types of cancer cells: NIH3T3, MG63 and A542. The developed compound demonstrated a
higher cellular uptake and anticancer activity than the free drug and, in general, can be
used as a platform for current drug-delivery agents. Moreover, the produced nanoparticles
performed well as detecting agents in a variety of diagnostic systems, including cell via-
bility studies, confocal laser scanning microscopy and fluorescence-activated cell sorting.
pH-sensitive DOX-loaded AuNPs were used for cancer theranostics in a recent work [236].
The maximum amount of drug released was observed under acidic tumor circumstances (in
102 h at about 88% h). Furthermore, when compared to pure DOX, the produced complex
demonstrated better anticancer activity and better CT imaging characteristics in vitro and
in vivo.

10. Current Limitations

AuNPs show promise and can be used in cancer detection and therapy. However, it is
critical to address the opposite side of the coin, namely, unforeseen health consequences.
Individual investigations of the retention period, biodistribution, efficacy, cytotoxicity, the
effect of nanoparticle size on toxicity and physiological response of AuNPs have already
been conducted. Many of them, though, appear to contradict one another. The lack of
consistent information on the actual impacts of nanoparticles may cause issues and have
a harmful influence on human health. While the challenges highlighted generally apply
to any nanoparticle, the examples provided below are unique to AuNPs. AuNPs’ toxicity
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to biological systems has long been a source of concern [237]. The size, shape, targeted
ligand, surface chemistry and composition of AuNPs all have a significant impact on
their toxicity. The surface charge of AuNPs has been shown to influence their toxicity,
with positively charged particles being found to be more poisonous than negatively or
neutrally charged particles [238]. Other teams discovered no toxicity caused by negatively
charged AuNPs [239] and no toxicity caused by positively charged particles [240]. This
disparity originates from the distinct physiochemical nature of NPs, and there is currently
no standardized assay that can be used to determine the toxicity of all nanoparticles.

In addition to toxicity assessment, the size and biodistribution of nanomaterials are
important elements to consider. Tang et al. [241] found that smaller AuNPs of about 8 nm
coated with reduced glutathione were more toxic to a human hepatic cell line than larger
particles of about 37 nm. Rosli et al. [242] found that 50 nm AuNPs were more toxic to
breast cancer cells than their 13 and 70 nm counterparts. Connor et al. [243] investigated
the cytotoxicity of a range of AuNP sizes on human leukemia cells and observed that none
of the sizes were damaging to cellular function.

11. Challenges and Future Perspectives

Physical and chemical procedures are commonly used for the synthesis of AuNPs and
their rapidly expanding prospective uses in medical areas should be studied. However, the
use of toxic and expensive chemicals, as well as complicated apparatus, has limited their
economic potential. As a result of the difficulties associated with the traditional methods
of synthesis, researchers have been encouraged to develop green chemistry-based and
cost-effective procedures for the synthesis of AuNPs in order to meet the growing industrial
demands for AuNPs. Because of its renewability and eco-friendliness, the phytosynthesis
of AuNPs is recognized as a critical method. However, the use of commercially valuable
foods and plants as reducing and stabilizing agents has a negative effect on the function
of synthetic techniques. As a result, it is critical to shift the attention to investigating
the reduction and stabilization potential of noncommercially valuable plants, notably
biowastes, for the synthesis of AuNPs in order to improve the efficacy of the biosynthetic
process. Plant biowastes contain bioactive chemicals that act as reducing and stabilizing
agents during the synthesis of AuNPs. However, because of the complexity of plant
constituents, it is impossible to exactly determine the phytochemicals involved in AuNP
production. Furthermore, estimating the decreased potential for each element of the plant
extracts is more difficult. As a result, it is extremely important to utilize qualitative and
quantitative methodologies for the exact measurement of bioactive chemicals involved
in gold ion reduction and AuNP stabilization. This would be extremely advantageous
in creating AuNPs with appropriate physicochemical properties for future applications.
It would also provide a deeper understanding of the synthesis reaction and the specific
reduction and stabilization mechanism, which have yet to be completely investigated.
The synthesis conditions have a significant impact on the physicochemical properties of
biosynthesized AuNPs. As a result, determining the effect of process factors on the size
and shape of phytosynthesized AuNPs is very interesting. The examination of synthesis
conditions on developing the surface features of AuNPs would aid in the production
of nanoparticles with the desired sizes and shapes, which would be extremely useful in
determining their prospective uses.

12. Conclusions and Outlook

As this study has demonstrated, there is currently a great deal of optimism and
excitement regarding the use of AuNPs for a wide range of medical applications. There is
also a definite need to thoroughly investigate their long-term effects on the environment
and human health. We predict that, as new nanoparticle systems demonstrate potential
in research, these materials will be examined for clinical applications in the near future.
We discussed the benefits and biomedical uses of monodisperse AuNPs, with a focus on
theranostic applications. Size is one of the most important physical variables of AuNPs,
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and it has a direct impact on their features, such as toxicity and biocompatibility. A greater
understanding of the characteristics of monodisperse AuNPs will facilitate the design of
AuNP-based nanoplatforms, allowing their medical applications to be expanded. Surface
functionalization and modification are critical in the development of monodisperse AuNPs.
Monodisperse AuNPs with outstanding electrical and optical properties are currently
being employed as contrast agents in optical imaging, photoacoustic imaging, fluorescence
imaging, CT and MRI. Importantly, monodisperse AuNPs can specifically deliver agents
and target tumor tissues for chemotherapy, photodynamic treatment, and other treatments
to improve the efficiency of killing cancer cells. Although the current research findings
on monodisperse AuNPs in medical applications are intriguing, there are still challenges
that require further investigation. First, more research on the combination of diagnosis
and treatment related to the physical features of AuPNs is required. Second, as a universal
difficulty in cancer therapy, patient differences complicate the optimization of AuNPs for
cancer therapy, and further efforts are required to overcome this barrier. Nevertheless,
the ease with which monodisperse AuNPs can be functionalized offers many possibilities
for customized therapy. Given the effectiveness of monodisperse AuNPs in imaging and
treatment for cancer, the implementation of appropriate techniques to overcome barriers
and achieve AuNP-dependent cancer cell death looks very promising. Considering all
of this information, we feel that monodisperse AuNPs provide unique opportunities to
transform fundamental research findings into clinical applications.
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Abbreviation

AuNPs Gold nanoparticles
NPs nanoparticles
SPR surface plasmon resonance
NIR near-infrared
CT computed tomography
PAI photoacoustic imaging
MRI magnetic resonance imaging
FWHM full width half maximum
SB sodium borohydride
SC sodium citrate
NBP nanobipyramid
NRS nanorod shell
TEM Transmission electron microscopy
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SEM Scanning electron microscope
SERS Surface-Enhanced Raman Resonance
FA folic acid
MBA 4-mercaptobenzoic
BSA bovine serum albumin
RBSA reduced bovine serum albumin
ALP alkaline phosphatase
SIO2 Silicon dioxide
Ag silver
DOX doxorubicin
PSS poly sodium 4-styrenesulfonate
UV Ultraviolet
HAuCl4 gold acid
HRTEM high resolution Transmission electron microscopy
SAED selected area electron diffraction
NaBH4 Sodium borohydride
OCT optical coherence tomography
DNA Deoxyribonucleic acid
CTAB hexadecyl trimethyl ammonium bromide
siRNA small interfering Ribonucleic acid
HER Herceptin
HER2 human epidermal growth factor receptor 2
DFM dimethylformamide
FI fluorescence imaging
EPR enhanced permeability and retention
GSH glutathione
CAL-27 human tongue squamous cell carcinoma
PSMA prostate specific membrane antigen
Gd gadolinium
T2-relaxation spin–spin relaxation
NMR nuclear magnetic resonance
DTPA diethylenetriamine pentaacetate
LA lactobionic acid
EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
NHS n-hydroxysuccinimide
NBP nanobipyramid
PET positron emission tomography
64Cu copper-64
RGD tripeptide arg-gly asp
PPT photothermal therapy
PDT photodynamic therapy
Fe3O4 iron oxide
MCF 7 breast cancer cell line
4T1 breast cancer cell line
ROS reactive oxygen species
ErbB2 receptor tyrosine kinase 2
DM1 emtansine
PTX paclitaxel
CPT camptothecin
EGFR epidermal growth factor receptor
RES permeability and retention;
COOH carboxylic group
NIH3T3 fibroblast cell line
MG63 hypotriploid human cell line
A542 epithelial cell
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