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Abstract

Ovarian carcinomas exhibit extensive heterogeneity, and their etiology remains unknown. Histological and genetic evidence
has led to the proposal that low grade ovarian serous carcinomas (LGOSC) have a different etiology than high grade
carcinomas (HGOSC), arising from serous tumours of low malignant potential (LMP). Common regions of chromosome (chr)
3 loss have been observed in all types of serous ovarian tumours, including benign, suggesting that these regions contain
genes important in the development of all ovarian serous carcinomas. A high-density genome-wide genotyping bead array
technology, which assayed .600,000 markers, was applied to a panel of serous benign and LMP tumours and a small set of
LGOSC, to characterize somatic events associated with the most indolent forms of ovarian disease. The genomic patterns
inferred were related to TP53, KRAS and BRAF mutations. An increasing frequency of genomic anomalies was observed with
pathology of disease: 3/22 (13.6%) benign cases, 40/53 (75.5%) LMP cases and 10/11 (90.9%) LGOSC cases. Low frequencies
of chr3 anomalies occurred in all tumour types. Runs of homozygosity were most commonly observed on chr3, with the
3p12-p11 candidate tumour suppressor region the most frequently homozygous region in the genome. An LMP harboured
a homozygous deletion on chr6 which created a GOPC-ROS1 fusion gene, previously reported as oncogenic in other cancer
types. Somatic TP53, KRAS and BRAF mutations were not observed in benign tumours. KRAS-mutation positive LMP cases
displayed significantly more chromosomal aberrations than BRAF-mutation positive or KRAS and BRAF mutation negative
cases. Gain of 12p, which harbours the KRAS gene, was particularly evident. A pathology review reclassified all TP53-
mutation positive LGOSC cases, some of which acquired a HGOSC status. Taken together, our results support the view that
LGOSC could arise from serous benign and LMP tumours, but does not exclude the possibility that HGOSC may derive from
LMP tumours.
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Introduction

Epithelial-stromal tumours of the serous histopathological

subtype represent the largest group of epithelial ovarian cancers

(EOC) and account for significant morbidity and mortality.

Ovarian serous tumours may present as benign, low malignant

potential (LMP) or malignant disease. Benign tumours account for

up to 60% of ovarian serous tumours, present bilaterally in 20% of

cases, and are cured through surgical removal of the disease [1].

LMP tumours account for up to 15% of ovarian serous tumours

and present bilaterally in 30% of cases. Although about 75% of

LMP tumours are stage I at diagnosis, where survival rates exceed

90% [1,2], patients with advanced stage disease may die from

complications due to extragonadal spread throughout the pelvic

cavity. Approximately 15% of LMP tumours may recur up to 20

or more years after the initial diagnosis, and these cases usually

have a poor outcome [1,3]. About 30% of all ovarian serous

tumours are malignant and 60% of these cases are bilateral [1].

Serous tumours make up more than 50% of all malignant EOC.

Although various grading methods have been used [4], it appears

that the vast majority of malignant serous tumours are high grade

ovarian serous carcinomas (HGOSC), with only about 10%

presenting as low grade carcinomas (LGOSC). Treatments for

both include surgery and chemotherapy, but most cases are

diagnosed at advanced stages where the overall 5-year survival

rate is less than 30%. Although patients with LGOSCs have a
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longer survival than those with HGOSCs, they respond poorly to

conventional platinum and taxane-based chemotherapy, suggest-

ing that the molecular pathways involved in the etiology of the

diseases may differ [5]. Although approximately 10% of EOC,

particularly tumours of the serous subtype, occur in women

harbouring germline mutations of the cancer susceptibility genes

BRCA1 or BRCA2 [6], the etiology of the remainder of ovarian

serous neoplasms remains unknown.

Karyotyping and array comparative genomic hybridization

(aCGH) studies of benign, LMP and malignant serous tumours

indicate an increasing frequency of chromosomal abnormalities,

with the most extensive aneuploidy and structural abnormalities

occurring in malignant tumours [7–11]. Genetic analyses of TP53

have identified rare somatic mutations in benign, LMP tumours

and LGOSCs, and a very high frequency in HGOSCs [12].

Mutually exclusive somatic mutations in either KRAS or BRAF are

often reported in LMP tumours and LGOSCs (30–50%), but

rarely in HGOSCs (,12%) [13,14]. This mutation spectrum has

been used as an argument that favours at least two distinct, but not

mutually exclusive, pathways for the development and progression

of ovarian serous tumours. One pathway involves a continuum of

development involving benign, LMP tumours and LGOSCs,

originating from surface epithelial cells of the ovary. The other

pathway describes the de novo development of HGOSCs originat-

ing from either ovarian surface epithelial cells, or epithelial cells of

the fallopian tube fimbriae [4].

Defining the genes involved in the etiology of ovarian serous

neoplasms would provide a means to further stratify patients for

optimal treatment regimens, as well as identify new molecular

pathways to explore in the development of biomarkers. This is

particularly prescient for LMP cases given that the majority of

patients do not succumb to the disease, although most cases are

usually subjected to aggressive management. Although studies of

DNA ploidy in LMP tumours have been used to stratify patients

for aggressive treatment, the overall impact on survival is not clear

[15]. Karyotype studies have implicated chromosome 3p genes in

EOC [16,17], and loss of heterozygosity (LOH) analyses have

suggested that 3p genes may function as tumour suppressors [18–

21]. We have previously reported LOH of 3p14-pcen in benign,

LMP tumours, LGOSCs and HGOSCs [19,21]. Although the

studies were limited by sample size, it is tempting to speculate that

gene(s) residing in this genomic region may be involved in the

tumourigenesis of ovarian serous neoplasms. This notion is

supported by functional complementation studies involving the

transfer of ‘normal’ 3p fragments, including the 3p12-pcen region,

which rendered an aggressive EOC cell line harbouring LOH of

the 3p arm, non-tumourigenic [22,23]. LOH of 3p25-ptel was also

reported in benign, LGOSCs, and HGOSCs [19,24], suggesting

more than one tumour suppressor gene may be involved in the

etiology of ovarian serous neoplasms. Whole genome expression

analyses and targeted analyses of 3p25-ptel and 3p14-pcen genes

also have identified promising candidates for further molecular

analyses [23–25].

In this study we have performed an extensive genetic analysis of

benign and LMP ovarian serous tumours to further characterize

somatic genetic events associated with the most indolent form of

ovarian disease. We performed a targeted LOH analysis of the

3p12-pcen locus of interest generated from our previous analyses

of benign, LMP and malignant ovarian carcinomas [19], in benign

ovarian serous tumours to determine the extent of loss of 3p alleles

in this disease. To further characterize genomic anomalies, we

applied high-density genome-wide genotyping bead array tech-

nology to benign and LMP ovarian serous tumour samples.

Genome-wide genotyping array studies have already shown the

occurrence of specific anomalies, such as 3p loss, attesting to

earlier findings that genomic aberrations are not necessarily

random in malignant EOC (reviewed in Gorringe et al., 2009

[26]). However, genotyping array analyses have largely focused on

HGOSCs [27], and previous genome-wide studies of benign, LMP

tumours and LGOSCs were limited by the density of genetic

markers or by sample size [7–11,28–31]. We relate our results to

the mutational spectra derived from TP53, KRAS and BRAF

genetic analyses, as these genes are mutated in ovarian tumours

with varying frequencies depending on the pathology of the

disease. In some cases, we were also able to investigate

synchronous bilateral ovarian tumours. We also analyzed a set

of LGOSC, as these cancer samples have rarely been genetically

characterized due to their paucity relative to HGOSC cases. This

study represents the largest sample of ovarian serous tumours

examined to date using high density genotyping technologies. The

integration of targeted genetic analyses with global genomic effects

may contribute to our understanding of the etiology of benign and

LMP ovarian serous tumour samples. The results of our targeted

genetic and genomic analyses support the hypothesis that LGOSC

could arise from serous benign and LMP tumours, but do not

exclude the possibility that HGOSC may also be derived from

LMP tumours.

Results

Genetic analysis of chromosome 3p
LOH of 3p has been reported in up to 20% of benign ovarian

serous tumours [19,20]. As previous studies were limited by

sample size, we used polymorphic microsatellite repeat markers to

investigate LOH of regions on 3p in 50 benign ovarian tumour

samples. We focused our analysis on the 3p26.2, 3p21.31, 3p12.3,

3p12.2, and 3p11.2 regions shown to exhibit LOH in serous

benign and/or malignant tumours [18–20]. Although the analysis

was informative for at least one marker per region examined in

78–90% of the samples, no evidence of LOH was observed in any

of the samples analyzed.

To increase the resolution of markers in order to detect LOH

events in tumour samples, we applied Illumina’s HumanHap300-

Duo Genotyping BeadChip, which assays approximately 317,500

SNPs across the human genome, to three benign ovarian tumour

samples. As proof of principle, we investigated sample 1781T, a

benign ovarian serous tumour that has been shown to exhibit

LOH of 3p14-pcen. Samples BOV-1329GT and BOV-2564DT,

which did not exhibit evidence of LOH in the present study, were

also examined. BeadChip analysis identified a 9.1 Mb run of

homozygosity (ROH) at 3p12-p11 in 1781T that did not display a

corresponding decrease in the Log R ratio, which would have

been consistent with a deletion occurring in this region

(Figure 1A). No 3p anomalies were inferred from the BeadChip

analyses of samples BOV-1329GT and BOV-2564DT (data not

shown). Genetic analysis of DNA from normal tissues from case

sample 1781T using seven polymorphic microsatellite repeat

markers suggested that the 3p ROH also occurred in constitu-

tional DNA (data not shown). A higher density array, the

Human610-Quad Genotyping BeadChip (610K), which contains

over 600,000 markers, was used to genotype DNA extracted from

two portions of the 1781T tumour specimen. Interestingly, 1781T-

A exhibited consistent allelic imbalance across the entire lengths of

chr3 and chr9, in contrast to normal genotypes observed on all

chromosomes in the 1781T-B DNA preparation (Figure 1).The

3p12-p11 ROH is present in both preparations, affirming earlier

findings that this ROH is likely present in constitutional DNA.

These results are interesting in light of our recent studies that

Genome-Wide Analysis of Ovarian Tumours
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suggest the presence of an ovarian cancer tumour suppressor gene

located in the 3p12-pcen region [22,23].

High-density genome-wide genotyping of benign
tumours, LMP tumours and LGOSCs

To investigate the possibility that LOH analyses underestimated

the frequency of 3p abnormalities in benign and LMP serous

tumours, we applied the 610K BeadChip technology to an

additional 21 benign ovarian serous cases (32 tumours) and 53

LMP ovarian serous cases (58 tumours), of which 10 benign and 5

LMP cases included samples taken from both the left and the right

ovaries. We also included 11 LGOSC cases (12 tumours), for

which both bilateral tumours of one patient were arrayed.

HGOSCs have already been shown to demonstrate LOH and

abnormalities of 3p using genotyping arrays [26,27].

Using the Genome Viewer module of the BeadStudio software,

we visually assessed the data, which was aligned according to

genomic position. The B allele frequency and Log R ratio were

examined in order to infer allelic imbalance of whole chromo-

somes or chromosomal arms and intrachromosomal breaks

(Figure 2; Tables 1, 2, 3). As summarized in Table 2, allelic

imbalance of 3p was observed in only two LMP samples, TOV-

1068T and TOV-3922GT, both of which also harboured allelic

imbalances of other chromosomes. Breaks involving the 3p arm

Figure 1. SNP array imaging results for chr3 and chr9 of the benign serous tumour 1781T. SNP array imaging results for chr3 (A, C, E) and
chr9 (B, D, F) of the benign serous tumour 1781T, using Illumina’s HumanHap300-Duo Genotyping BeadChip (A and B) and Illumina’s Human610-
Quad Genotyping BeadChip (C–F). Two different DNA preparations were used with the HumanHap610-Quad Genotyping BeadChip. The top plot of
each figure shows the B allele frequency (BAF) for each SNP marker aligned to its chromosomal position. In heterozygous diploid cells, alleles are
present in AA, AB or BB pairs. The B Allele frequencies for these possible allele pairs are 0, 0.5 or 1, respectively. Any deviation from this ratio indicates
a chromosomal aberration. In one DNA preparation, the double row in the BAF plot indicates allelic imbalance of SNP markers across the entire
chromosome (C and D). A 9.1 Mb ROH is observed on chr3 and is highlighted in blue. No markers are located in the centromeric region of either
chromosome, as noted by a lack of markers in both the B allele frequency and Log R ratio (LRR) plots. The bottom plot of each figure contains the Log
R ratio, which provides an indication of the copy number for each SNP marker aligned to its chromosomal position. Note the absence of a drop in the
Log R ratio in the highlighted ROH.
doi:10.1371/journal.pone.0028250.g001
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were observed in two LMP tumours, TOV-942T and TOV-

1685T. Chromosome 3p breaks were more frequently observed in

LGOSCs (4 of 11 cases); however, intrachromosomal breaks were

also observed on other chromosomes in all of these cases (Table 3).

Overall, chromosomal aberrations were more commonly observed

in LMP cases (30 of 53 cases or 56.6%) than in benign cases (3 of

22 cases, 13.6%) (Tables 1 and 2). The most commonly affected

chromosomal arms in LMP cases were 12p (12/53), 12q (9/53), 8p

(7/53), 8q (7/53), 1p (6/53), and 22q (6/53). Allelic imbalance was

more frequently observed on chr12 and chr8, whereas intrachro-

mosomal breaks were observed more often on 1p and 22q.

Chromosomal abnormalities were observed in all but two of the

LGOSC samples (TOV-682T and TOV1284T).

Bilateral tumours from 16 samples in this study were genotyped.

None of the 10 paired bilateral benign tumours exhibited any

evidence of genomic anomalies. Of the five paired LMP samples

examined, one or both tumour samples exhibited evidence of

chromosomal abnormalities. Some of these cases exhibited

identical (cases TOV-1775 and TOV-920) or similar (case

TOV-4054) abnormalities, suggesting the possibility of common

clonal origins in these cases, as has been proposed for malignant

ovarian cancers [32]. An identical spectrum of chromosomal

abnormalities was observed in the one case of paired LGOSC

samples (case TOV-854).

Homozygous deletions may be inferred by identifying markers

associated with a downward deviation of the Log R ratio and the

absence of allele frequency scores. Null alleles resulting from

somatic homozygous deletions are of particular interest, as they

may affect the function of tumour suppressor genes. Furthermore,

breaks occurring adjacent to cancer-associated genes may affect

their regulation. Table S2 provides the coordinates where both

alleles are likely to be deleted, along with the affected genes. Some

of the intervals are known to harbour germline copy number

variants (CNV) as reported in the Database of Genomic Variants

(projects.tcag.ca/variation). Thirty-six homozygous deletions were

found to be unique to a single case. Some of these deletions may

possibly affect the function of genes located within or adjacent to

the deleted intervals (Table 4). Homozygous deletions were

observed in benign, LMP tumours and LGOSCs, although

relative to the number of samples in each group, homozygous

deletions were observed more often in LGOSCs. This is likely to

be an overestimate, as LGOSC sample TOV-490T harboured

several chromosomes with reduced copy number. On these

chromosomes the Log R ratio is decreased, resulting in the

coincidental appearance of three adjacent markers with a Log R

ratio of $22.

Given the large ROH overlapping the 3p12-p11 region in the

benign tumour sample 1781T, we investigated whether ROHs of

this interval were also observed in other samples. This analysis was

restricted to the benign and LMP samples, as they exhibited low

levels of generalized genomic instability. We examined ROHs

larger than 5 Mb, as previous studies have shown that smaller

ROHs, particularly those less than 1.5 Mb, may be common

occurrences [33,34].There were no significant differences in the

occurrence of at least one ROH .5 Mb per sample studied: 4/22

(18.1%) benign cases and 11/53 (20.4%) LMP cases contained at

least one (Table 5). Notable is the large number of ROHs (n = 14)

observed in the benign bilateral tumour samples BOV-1588DT

and BOV-1588GT, as compared with benign and LMP cases

exhibiting no (n = 61), one (n = 8), two (n = 5) or four (n = 1) ROHs

.5 Mb. Both the left and the right ovarian tumours exhibited the

same pattern of ROHs, accounting for about 7% of the genome.

Genotyping of peripheral blood DNA from the same patient

suggested that the ROHs occur in the germline and were not

somatically acquired during the development of these tumours

(data not shown). Interestingly, more ROHs were observed on

chr3 than on any other chromosome (Table 5). Two LMP

samples (TOV-1694DT and TOV-933DT) exhibited ROHs

overlapping the 3p12-p11 ROH observed in the benign sample

1781T. Additionally, two benign and/or LMP tumour samples

displayed overlapping ROHs located at 2.6–5.1 Mb and 190.2–

196.4 Mb on chr3.

Genetic analysis of TP53, BRAF and KRAS and association
with genomic anomalies

Mutations of KRAS, BRAF and TP53 were only detected in LMP

tumours and LGOSCs (Table 2). As reported in independent

studies, samples with mutations in KRAS or BRAF were mutually

exclusive. Concordant mutation results were observed in all but

one of the bilateral tumour samples (LMP case TOV-1010DT/

GT). There were significantly more KRAS and BRAF mutations (26

of 53, 49.1%) and fewer TP53 mutations (1 of 53, 1.9%) in LMP

cases as compared with KRAS and BRAF mutations (3 of 11,

18.1%) and TP53 mutations (5 of 11, 45.5%) in LGOSCs

(Tables 2 and 3) (p = 0.00049).

In general, the LMP and LGOSC cases with somatic TP53

mutations harboured disorganized genomes, particularly large

numbers of intrachromosomal breaks (Tables 2 and 3). The

LMP sample with a TP53 mutation (TOV-1685GT) has 30 of 41

chromosomal arms harbouring an aberration, similar to the

average number (33.4) of chromosomal arms harbouring an

aberration in the TP53 mutation positive LGOSCs. LMP cases

with KRAS mutations contained an average of 5.3 chromosomal

arms harbouring an aberration, whereas cases with BRAF

mutations had an average of 1 chromosomal arm with an

aberration. LMP mutation-negative tumours had an average of

1.5 chromosomal arms with an aberration. In the LMP tumours,

there were significantly more KRAS mutation-positive cases that

were associated with a gain of 12p (8 of 12, 66.7%) than there were

in KRAS mutation-negative tumours (4 of 41, 9.8%) (p = 0. 0.0002).

This is an interesting observation, as KRAS is located at 12p12.1.

Moreover, the only other LMP sample to exhibit overt

Figure 2. Example of intrachromosomal breaks and allelic
imbalance in an LMP tumour. SNP array imaging results for chr1 of
LMP sample TOV-845T. Several intrachromosomal breaks are denoted
by arrows on 1p, and are visualized by breaks in the continuity of both
the B allele frequency and Log R ratio plots. Note the Log R ratio
indicates loss of copy number for most of the 1p arm, with gains of
copy number near the centromere. The double row in the BAF plot
observed on 1q indicates allelic imbalance of SNP markers across the
entire chromosomal arm. Note the Log R ratio for the 1q arm averages
above 0, indicating a gain of copy number.
doi:10.1371/journal.pone.0028250.g002
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disorganization of its genome, sample TOV-942GT, harboured a

high-level 1.59 Mb amplification containing 12 genes, including

the KRAS locus (Figure 3).

A gynecologic pathologist independently reviewed the LMP and

LGOSC samples that were found to harbor TP53 mutations in a

blinded manner to confirm their histopathological classification.

All LMP samples retained their classification status. Interestingly,

none of the LGOSC samples harbouring TP53 mutations

maintained their designation. TOV-553EPT and TOV-490T

were reclassified as high grade carcinomas; TOV-812EPT was

reclassified as a metastatic serous carcinoma, grade not deter-

mined; TOV-947DT was reclassified as a possible LMP; and

TOV-81DT was reclassified as a non-invasive implant (Tables 2
and 3).

Global analysis of copy number aberrations of benign,
LMP and LGOSCs

Genotyping data were analyzed by GenoCNA to evaluate

various states of copy number variations that include allelic

content occurring within each group of benign and LMP samples.

The LGOSCs were not analyzed, given the small number of cases

within the group and the fact that a number of cases were later

designated by histopathology as not LGOSC.

As noted in Table 1, very few chromosomal abnormalities were

observed within the group of benign tumours, which was reflected

in the GenoCNA analyses (Figure 4A). Discrete gains and losses

occurred throughout the genome at low frequencies (,20%),

representing CNVs. The most common regions of gains are

adjacent to the centromeres on many of the chromosomes, likely

indicating repetitive regions. Frequent regions of loss include the

HLA region of chr6 (80%), and other common homozygous

deletions (as catalogued in Table S2).

Discrete CNVs and somatic gains and losses of whole

chromosomes and chromosomal arms are reflected in the

GenoCNA analyses of the LMP tumours (Figure 4B). As

expected, chr1 shows loss of the p arm and gain of the q arm in

10–15% of samples, whereas chr12 and chr8 show gains of the

entire chromosome. Losses of chr4, chr5, chr6p, chr9p and chr13

are apparent, as are gains of chr7 and chr20 (5–15%).

Characterization of chromosome 3p12-pcen interval
The ROH in the 3p12-p11 interval, along with the allelic

imbalance of chr3 observed in the benign tumour sample 1781T,

is interesting in light of recent research in our group suggesting the

possibility of tumour suppressor gene(s) in this interval [22,23,25].

To investigate this further, we performed mutation analysis in

1781T of protein coding regions and intron/exon splice junction

sites of the top 3p12-pcen tumour suppressor gene candidates,

ROBO1, GBE1 and VGLL3 [22,23,25]. Several variants, but no

apparent deleterious mutations, were observed (Table 6).

BeadChip analysis of 1781T demonstrated extensive allelic

imbalance of chr3 and chr9. Chromosome 3 harbours RASSF1A

Table 1. Chromosomal aberrations and mutations observed in benign ovarian serous tumours.

Sample Pathology Age Stage

Imbalance of whole
chromosome or
chromosomal arms

Intrachromosomal
breaks KRAS BRAF TP53

BOV-392 DT GT Benign 57 - - - - - -

BOV-846 DT GT Benign 67 - - - - - -

BOV-1172 DT GT Benign 66 - - - - - -

BOV-1588 DT GT Benign 56 - - - - - -

BOV-2314 DT GT Benign 64 - - - - - -

BOV-2889 DT GT Benign 65 - - - - - -

BOV-3057 DT GT Benign 52 - - - - - -

BOV-3097 DT GT Benign 73 - - - - - -

BOV-3150 DT GT Benign 56 - - - - - -

BOV-3268 DT GT Benign 48 - - - - - -

BOV-1329 GT Benign 26 - - - - - -

BOV-2564 DT Benign 53 - - - - - -

1781 T Benign 66 - 3,9 - - - -

BOV-1207 DT Benign 51 - - 13q - - -

BOV-1296 DT Benign 71 - - - - - -

BOV-1332 DT Benign 67 - - - - - -

BOV-1761 GT Benign 63 - - - - - -

BOV-2023 DT Benign 70 - - 21q - - -

BOV-2328 DT Benign 52 - - - - - -

BOV-2331 GT Benign 57 - - - - - -

BOV-2418 GT Benign 71 - - - - - -

BOV-2506 DT Benign 67 - - - - - -

Description of chromosomal aberrations and mutations observed in a panel of 32 benign ovarian serous tumours from 22 patients. All chromosomal arms which display
an intrachromosomal break or allelic imbalance are shown for each tumour, along with the corresponding mutations. T, tumour; DT, tumour on right ovary; GT, tumour
on left ovary; EPT, tumour on omentum.
doi:10.1371/journal.pone.0028250.t001
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(at 3p21.31) and MLH1 (at 3p22.2), and chr9 harbours CDKN2A

(9p21.3). These genes have been shown to exhibit tumour

suppressor activity, which are often silenced by promoter

methylation [35–38]. Although the frequency of these events

appears to be low in ovarian cancer [35–37], we tested the

possibility of promoter methylation silencing in the benign tumour

case 1781T and our well-characterized EOC cell lines. There was

no evidence of promoter methylation of these genes in the analysis

of either 1781T-A and 1781T-B, in contrast to evidence of

methylated RASSF1A alleles in OV-90, TOV-112D, TOV-21G,

and TOV-2223G, methylated CDKN2A alleles in TOV-112D, and

methylated hMLH1 alleles in TOV-21G (data not shown).

Characterization of putative homozygous deletion
affecting gene function

The inferred 242.5 kb homozygous deletion observed at 6q22.1

in LMP tumour TOV-4054DT stood out in part because it is

much larger than the size of the average homozygous deletion

(28.3 kb) observed in the present study (Table 4, Figure 5A).

The deletion is predicted to affect the function of ROS1, DCBLD1

and GOPC, with breakpoints occurring in all three genes

(Figure 5B). A literature review of these genes reported that

ROS1 and GOPC are partners in an oncogenic fusion gene found in

the glioblastoma cell line U118MG, created by a 240 kb

intrachromosomal deletion. In U118MG, the fusion gene is

transcribed from the 59 end of GOPC and contains the first 7 GOPC

exons and the last 9 ROS1 exons [39]. Log R ratios indicate that

the breakpoints of the 6q22.1 deletion in TOV-4054DT occurred

in genomic regions that could possibly result in the creation of an

identical fusion gene (Figure 5B). To investigate this possibility,

we designed an RT-PCR assay to detect the presence of a fusion

transcript in cDNA prepared from TOV-4054DT. As shown in

Figure 5C, TOV-4054DT harbours an aberrant transcript not

present in the well-characterized ovarian cancer cell line, OV-

90neor, which does not harbour a 6q22.1 anomaly (data not

shown). However, a faint band corresponding in size to the

aberrant 6q22.1 transcript was also visible in the RT-PCR analysis

of the contralateral LMP tumour TOV-4054GT, suggesting a

clonal origin of cells that contain this anomaly. This is consistent

with observation that both LMP tumours harbor allelic imbalance

of the chr6q arm which include the ROS1, DCBLD1, and GOPC

loci (Figure 5A). Sequence analysis of the aberrant transcript

revealed that it was comprised of an in-frame fusion between exon

7 of GOPC and exon 35 of ROS1 (Figure 5D). We attempted to

detect the fusion protein by Western blot, but the only tissue

available for protein extraction was embedded in OCT medium,

which was not amenable to further experiments. Interestingly, the

fusion transcript is identical to that reported in the U118MG

glioblastoma cell line, and to one of the fusion genes identified in a

set of cholangiocarcinomas [39,40]. A review of genotyping data

from a minimum of an additional 200 ovarian cancer samples and

cell lines of various grades and histopathologies from our

laboratory suggest that this chromosomal anomaly is unique to

case TOV-4054 (data not shown).

Discussion

Although LOH of 3p has been reported in benign serous

tumours at frequencies of up to 20% [19,20], loss of 3p alleles were

not observed in the analysis of 50 new cases. Interestingly, the

sample 1781T, which exhibited 3p14-pcen LOH in our previous

LOH study, was shown to exhibit allelic imbalance of chr3 and

chr9. Although methylation of RASSF1A (3p21.31) and CDKN2A

(9p21.3) has previously been reported in benign serous tumours at
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a low frequency [41,42], we observed no evidence of alteration of

promoter CpG methylation in sample 1781T. We also did not

detect evidence of promoter methylation of MLH1 (3p22.2);

however, this alteration is more commonly observed in low grade

ovarian carcinomas of the endometrioid histopathological subtype

[37]. LOH analyses of 3p loci are consistent with SNP analyses

suggesting that 3p anomalies are rare occurrences in benign serous

tumours, as are anomalies associated with other chromosomes.

Although independent LOH analyses have shown low frequencies

of loss of chromosomes 6, 7, 9 and 10, only a limited number of

loci were examined [43,44]. Array CGH studies have identified

both gains and losses of chr6, and losses of 1p, 4q and 5q [7,28].

The absence of KRAS and BRAF mutations in our set of benign

tumours is consistent with the paucity of somatic events observed

in independent reports [14,44]. It has been proposed that the

acquisition of a KRAS or BRAF mutation in a benign tumour might

initiate the progression to an LMP tumour [4]. The underlying

molecular genetic events associated with the development of

benign ovarian serous cancer samples remains elusive.

It is possible that an excess of contaminating stromal cells may

have obscured chromosomal anomalies in a subset of the samples

analyzed. Previous studies using LOH analysis or CGH have

observed chromosomal abnormalities without enriching for

tumour cells, as chromosomal anomalies present in even 40% of

cells can be detected by SNP array analyses [7,19,45]. Microdis-

section of tumour tissues would have necessitated a round of whole

genome amplification (WGA), which is discouraged by Illumina.

The Illumina Infinium protocol includes a WGA step, and an

additional round of WGA has been shown to reduce the call rate

and may introduce allelic bias. Hence, it is possible that

chromosomal anomalies are underreported in this study. While

it was not possible to array constitutional DNA from every patient,

a subset of abnormalities observed could be germline CNVs.

It is interesting that the 9.1 Mb ROH at 3p12 observed in

sample 1781T overlaps a tumour suppressor region identified by

our group using a functional complementation study involving the

transfer of chr3 fragments into an EOC cell line [22,23], and using

comparative transcriptome analysis of ovarian serous cancer and

normal samples [25]. Although no mutations were identified in

1781T in the targeted analysis of tumour suppressor gene

candidates ROBO1, GBE1 and VGLL3 [22,23,25], miRNAs or

other noncoding RNAs (ncRNAs), either located within this region

or acting upon expression of genes in the region, may play a role in

the development of these tumours. Several ncRNAs, predicted to

contain miRNA target sites, have been identified in the 3p12.3-

pcen interval and shown to be differentially expressed in cancers

compared with normal tissues [46]. It is notable that the 3p12

interval was the region of the genome most commonly present in

ROHs longer than 5 Mb, and that chr3 harboured both the most

number and the longest ROHs (up to 56.6 Mb) of any

chromosome within this study. The significance of this observation

is unknown but could be influenced by founder effects, as the

majority of samples analyzed in our study were from the French

Canadian population of Quebec known for its unique genetic

demography [33,34,47,48]. A recent genome-wide SNP array

analysis of 140 French Canadians from different geographic

locations within Quebec reported that subpopulations varied in

their genomic structure and degrees of relatedness, and contained

significantly more ROHs than samples from European popula-

tions [49].

Case BOV-1588 exhibited the most extensive ROHs, as

approximately 212 Mb of the genome (7.1%) occurred in ROHs

longer than 5 Mb. These ROHs were confirmed to be germline in

this patient. As the offspring of first cousins are expected to have
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about 6.25% genomic autozygosity, it is possible that the extensive

ROHs observed in BOV-1588 were the consequence of a

consanguineous mating. Upon further review of the medical

history of this case, it was revealed that the patient has

schizophrenia, a condition that has recently been associated with

ROHs [50]. As ROHs may play a role in the etiology of genetic

diseases, including cancer [51], further studies are required to

determine the significance of these regions in benign ovarian

serous tumours.

The chromosomal abnormalities observed in 58 LMP samples

from 53 cases mirror those previously reported in the literature,

where 1p and 22q are subject to losses, and chr12 and chr8 display

increases in copy number [7,10,11,28–31,52]. As expected, KRAS

and BRAF mutations were observed in a mutually exclusive

manner [14]. Interestingly, gain of chr12 was significantly

associated with the presence of KRAS mutations, a finding that

has been previously observed [53]. This association was observed

in both non-small cell lung cancer (NSCLC) and lung adenocar-

cinomas, although not in colorectal cancers [54,55]. Increased

KRAS expression was observed in NSCLCs harbouring modest

increases of copy number of chr12. Another study indicated that

NSCLC patients with both a KRAS mutation and gain of chr12

had a worse prognosis than those harbouring only one of these

aberrations [55]. It would be interesting to investigate this

association in LMP cases, but this may be difficult with the low

frequency (,15%) and the long average time (.15 years) of

Table 5. ROHs longer than 5 Mb observed in benign and LMP tumours.

Sample Pathlogy Chr Location (MB) Size (bp) # SNPs in region

BOV-1588 DT GT Benign 1 160.7–194.5 33,841,667 6654

1 196.2–205 8,752,119 2007

2 5.0–23.0 18,066,407 4085

2 235.5–242.7 7,160,696 1656

3 128.9–173.1 44,169,552 8290

7 145.8–157.6 11,483,243 2810

11 89.1–94.6 5,530,828 1005

12 51.8–62.6 10,847,129 1827

13 24.6–43.6 18,960,867 4658

15 29.2–34.3 5,117,368 1316

21 18.7–27.5 8,753,964 2144

22 14.4–36.3 21,832,954 5490

22 41.2–49.6 8,361,420 2645

X 19.4–29.4 10,007,381 1267

BOV-1172 DT GT Benign 1 155.7–161.8 6,055,835 1491

BOV-2506 DT Benign 13 49.3–60.9 11,593,401 2076

N1781 T Benign 3 78.4–87.4 9,078,581 1206

N3426-RT DT LMP 3 190.2–196.4 6,176,699 1173

6 39.0–82.4 43,394,086 8120

10 12.7–25.6 12,881,505 3541

X 48.0–68.4 20,413,402 1608

TOV-206 DT LMP 1 37.9–55.6 17,698,088 2995

15 57.6–66.7 9,077,633 2004

TOV-916 T LMP 2 169.9–206.4 36,453,242 6293

3 190.0–196.7 7,768,872 1594

TOV-1694 DT LMP 3 71.7–128.3 56,621,515 9502

15 40.1–51.5 11,391,842 2027

TOV-3882 DT LMP 3 2.6–8.4 5,795,529 1963

3 65.3–71.7 6,417,920 1437

TOV-4105(A) GT LMP 3 0–5.1 5,082,955 1947

3 177.1–186.6 9,530,536 1788

TOV-1267 DT LMP X 71.9–77.6 5,692,402 314

TOV-107 GT LMP X 55.1–67.3 12,153,847 538

TOV-1775 DT GT LMP 8 24.5–29.7 5,229,945 1429

TOV-3165 GT LMP 17 32.3–48.1 15,814,993 2498

TOV-933 DT LMP 3 77.2–101.8 24,659,990 3046

#SNPs in the region refers to the number of polymorphic SNP markers located within the ROH. Only benign and LMP cases were examined in this analysis.
doi:10.1371/journal.pone.0028250.t005
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recurrences for this disease [3]. To date, only one LMP case,

TOV-942GT, has died of cancer, which occurred within a year of

the LMP tumour diagnosis; however, the cause of death was

pancreatic carcinoma. TOV-942GT harboured an amplification

of the KRAS locus, and while pancreatic carcinomas have been

shown to have a high KRAS mutation rate [56], the pathology

review excluded the possibility of metastasis in this case. The low

frequency of TP53 mutations in LMP samples is also consistent

with independent reports [12,13]. The TP53 mutation positive

case (TOV-1685GT) was identified in a young patient (age 26),

who has remained cancer-free for the follow-up period of 6.5

years. Interestingly, both TOV-1685GT and TOV-942GT

harboured extensive evidence of chromosomal instability (CIN)

by SNP array analyses. However, low levels of CIN were also

observed in a number of BRAF and KRAS mutation negative cases.

Although the relationship between somatic mutations in these

genes and genomic anomalies is unknown, the high frequency of

CIN in the context of TP53 mutations combined with the role of

p53 in DNA damage response has been proposed in numerous

studies (reviewed in Negrini et al., 2010 [57]). Collectively, our

results indicate that ovarian serous LMPs are a heterogeneous

group, composed of tumours displaying a range of genetic and

chromosomal anomalies. It remains to be determined what effects

the various anomalies observed in this study have on the clinical

presentation of the disease.

The genetic spectrum of abnormalities observed in our small set

of LGOSC cases is also consistent with independent reports,

particularly when factoring in an independent review of the

histopathology of cases. All five LGOSC cases that harboured a

somatic TP53 mutation exhibited extensive CIN and were later

reclassified. The overlap in the genetic spectrum of anomalies

observed in LGOSC samples with those observed in LMP samples

supports the notion that they may share a common molecular

genetic etiology. However, the rare instances of TP53 mutation

positive LMP samples (including the LGOSC reclassified as a

LMP case) would also support the notion that some LMP samples

share common origins with HGOSC as they often exhibit somatic

TP53 mutations and extensive CIN [58]. Regardless of the

putative origins of EOC, our results suggest that a combination of

TP53 mutation testing and SNP array analyses may facilitate the

classification of malignant serous cases. Identifying methods to

improve histopathological classification of serous EOC cases may

prove useful as improvements in patient management emerge for

treating LGOSC cases.

Few unique homozygous deletions were inferred in the samples

analyzed, and none overlapped regions containing known tumour

suppressor genes. It is interesting that 28 genes reported as

differentially expressed in transcriptome studies of LMP samples

are located directly adjacent to or within homozygous deletions

identified in our SNP analyses of LMP samples [59,60].

Furthermore, pairs of differentially expressed genes directly flank

six of the observed homozygous deletions. Given the presence of

contaminating stromal cells in the samples analyzed, it is likely that

many of the homozygous deletions represent germline CNVs, even

those found to be unique to a specific case. As CNVs may contain

regulatory elements, it is possible that these germline homozygous

deletions may affect the expression of adjacent genes, thus

contributing to tumour risk or progression (reviewed by Henrich-

sen et al., [61]). It is also possible that the presence of homozygous

deletions may affect chromatin folding, affecting the expression of

multiple genes in the region.

A 242.5 kb homozygous deletion at 6q22.1 was observed in the

LMP tumour sample TOV-4054DT. Molecular genetic charac-

terization suggests that this resulted in the creation of a

transcriptionally active GOPC-ROS1 fusion gene. To the best of

our knowledge, this is the first fusion gene reported in an ovarian

LMP context. An identical fusion gene has been described in the

glioblastoma cell line U118MG, as well as in a cholangiocarci-

Figure 3. High level amplification of a 1.59 Mb region containing KRAS in an LMP sample. SNP array imaging results for chr12 of LMP
sample TOV-942GT. A high-grade amplification of a discrete 1.59 Mb region (arrow) containing the proto-oncogene KRAS is observed (A). Depiction
of the amplified region that contains 12 genes, including KRAS (arrow) (B).
doi:10.1371/journal.pone.0028250.g003
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noma tumour [39,40]. Both groups have demonstrated that the

GOPC-ROS1 fusion protein is capable of transforming non-

malignant cells. This variant protein retains tyrosine kinase activity

and is targeted to the Golgi membrane [62]. While it does have

oncogenic activity, its aggressivity was augmented when expressed

in mice with a disrupted p16Ink4a and p19Arf locus [63]. Another

GOPC-ROS1 fusion gene was observed in a different cholangio-

carcinoma tumour, which resulted in a smaller open reading

frame, different cellular location and more potent transforming

ability [40]. Although targeted mutation analyses of ROS1 or

GOPC have not been performed in cancer samples, the Sanger

Wellcome Trust COSMIC database (http://www.sanger.ac.uk/

genetics/CGP/cosmic/) reported low frequencies of ROS1

sequence variations in ovarian (1/84), lung (8/131), breast (2/

201), stomach (2/60), colorectal (1/133) and CNS tumours (3/

477) [64]. However, a recent large scale exomic genome

sequencing analysis of 316 HGOSCs by The Cancer Genome

Atlas Research Network identified 5 cases with verified sequence

variants. Of the 22 sequence variations observed in either the

ovarian TCGA study or in multiple tumour types in the Sanger

Wellcome Trust COSMIC database, 17 are missense mutations,

with 4 occurring in the tyrosine kinase domain. In total, six

mutations have been observed and validated in ovarian tumours,

including four missense mutations and two silent mutations

[64,65]. Likewise, one mutation has been observed in GOPC; a

missense mutation in an ovarian clear cell tumour [64].

The fusion gene occurred in a TP53, KRAS and BRAF mutation-

negative context, with evidence of a modest level of CIN in the

case sample. The LMP case was bilateral, and although the

anomaly was more evident in the right tumour, molecular genetic

analysis suggested that both harboured the fusion gene. The

clinical and biological significance of this genetic abnormality is

Figure 4. GenoCNA graphs showing gain and loss in serous benign tumour samples and serous LMP samples. GenoCNA graphs
showing gain (red) and loss (blue) in 20 serous benign tumour samples (A) and 53 serous LMP samples (B). Peaks describing gain in .30% of samples
represent repetitive regions around centromeres and/or telomeres. Peaks describing loss in .30% of samples represent common CNVs that often
display loss of copy number. Somatic gains and losses of chromosomes are visible in the GenoCNA graph of the LMP samples, such as loss of 1p and
gain of 1q, gain of chr7, chr8 and chr12.
doi:10.1371/journal.pone.0028250.g004
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not clear. To date, the patient has been cancer free for 1.5 years.

However, there is no evidence from a review of SNP array data

that it is a common event in LMP, benign or LGOSC samples.

Our group is currently investigating SNP array results from

HGOSCs and EOC cell lines, and no evidence of a homozygous

deletion affecting this region in these aggressive EOC tumours and

cell lines were observed (data not shown). It would be interesting to

test the effect of the GOPC-ROS1 fusion protein in the context of

LMP tumours, but this awaits the development of a suitable cell

line model system for this variant of ovarian cancer. Thus we can

only speculate based on the effect the identical fusion protein has

on the transforming ability in transfected cells, and propose that it

may have played a role in the pathology of this LMP tumour

[40,63].

Our results support the hypothesis that LGOSCs are derived

from LMP ovarian serous tumours. Interestingly, chromosomal

aberrations, but not genetic mutations, were observed in benign

serous tumours. It is possible that acquisition of a mutation, such

as KRAS or BRAF, represents the moment of transition from a

benign tumour to an LMP. A number of LMP tumours lacking

KRAS or BRAF mutations harboured genomic aberrations,

indicating that different initiating events may be present in these

tumours. Indeed, a fusion gene known to be oncogenic in other

tumour types was found in a single LMP case. While it is unlikely

that this fusion gene is a frequent event in the development of

LMP tumours, its presence indicates that other initiating, growth-

promoting events may be found. The data from this study also

indicates that at least some HGOSCs may be derived from LMP

tumours. This study also illustrates that there is potential for high-

density genotyping arrays in combination with targeted mutation

screening to become useful in classifying ovarian serous tumours,

and could thus have important implications in management of

patients where therapy is targeted based on histopathological

subtype.

Materials and Methods

Clinical Specimens
Tumour samples and peripheral blood lymphocytes were

collected with informed consent from participants undergoing

surgeries performed at the Centre hospitalier de l’Université de

Montréal-Hôpital Notre-Dame or from surgeries performed at the

McGill University Health Centre – Montreal General Hospital.

The study is in compliance with the Helsinki declaration, and has

been granted ethical approval by the respective Research Ethics

Boards of Centre hospitalier de l’Université de Montréal-Hôpital

Notre-Dame and The McGill University Health Centre. Clinical

features such as disease stage, and tumour characteristics such as

grade and histopathological subtype, were assigned by a

gynecologist-oncologist and gynecologic-pathologist, respectively,

according to the criteria established by the International

Federation of Gynecology and Obstetrics (Table S1).

EOC cell lines
EOC cell lines were derived from a stage IIIc/low grade

papillary serous adenocarcinoma (TOV-81D), a stage III/high

grade clear cell carcinoma (TOV-21G), a stage IIIc/high grade

endometrioid carcinoma (TOV-112D), the ascites fluid of a stage

IIIc/high grade adenocarcinoma (OV-90), a stage IIIc/high grade

serous carcinoma (TOV-2223G), and both the tumour and the

Table 6. Sequencing results of ROBO1 and GBE1 in tumour 1781T.

Gene (RefSeq) Genomic Location Coding Location 1781T
Ref.
NCBI

Ref.
Celera

Codon
Change

Amino
Acid
Change Function dbSNP

HapMap CEU
Frequency

ROBO1 g.79067965G.A c.-610G.A A G A 59UTR rs1550930 A = 99.6%

(NM_133631.3) g.78796078G.T c.1346-28G.T T G G intronic rs2304503 G = 51.8%

g.78737962G.A c.1892-40G.A A G G intronic rs967454 G = 54.9%

g.78717508C.T c.2477-56C.T T C C intronic rs2255164 C = 52.2%

g.78711350A.G c.2813-86A.G G A A intronic rs9864412 A = 55.3%

g.78700779G.T c.3658+103G.T T G T intronic rs3925684 T = 97.5%*

g.78680578A.G c.4328-123A.G G A A intronic rs6548592 A = 53.3%*

g.78676467T.C c.4721+4T.C G T G intronic rs7636043 G = 97.5%

g.78676422C.T c.4721+49C.T T C T intronic rs7614084 C = 56.2%

g.78666765A.G c.5128+20A.G G A G intronic rs9839790 G = 71%

g.78663956C.T c.5129-6C.T T C C intronic rs1027832 C = 55.4%

GBE1 g.81810749C.T c.-90C.T T C C 59UTR

(NM_000158.3) g.81810703delG c.-44delG G - - 59UTR rs11391701 n/a

g.81810516G.T c.143+10G.T T G G intronic rs9820490 G = 80%*

g.81720221A.G c.514-117A.G G A A intronic rs9863136 A = 80.6%

g.81643167A.G c.1000A.G G A G ATT.GTT Ile.Val non-
synonymous

rs2172397 G = 95.9%

g.81630214C.T c.1730+102C.T T G G intronic rs9870056 G = 83.9%

g.81548210insTTC c.2335+51insTTC insTTC - - intronic rs34988523 n/a

No sequence variants were observed in VGLL3. Genomic locations have been mapped to the February 2009 human reference sequence (GRCh37). An asterisk (*)
denotes a CEU Low Coverage panel was used to calculate frequencies as frequency data was not available from the HapMap-CEU population.
doi:10.1371/journal.pone.0028250.t006
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ascites fluid of a stage IIIc/high grade serous tumour (TOV-1946

and OV-1946), all from chemotherapy-naı̈ve patients, as described

[66,67]. OV-90neor is a pSV2NEO-transfected clone of OV-90,

which confers resistance to GeneticinH [22].Cells were cultured in

OSE Medium supplemented with 2.5 mg/mL amphotericin B,

50 mg/mL gentamicin and 10% FBS as described previously [67].

Nucleic acid extraction
DNA was extracted from EOC cell lines, fresh frozen tumour

specimens and peripheral blood lymphocytes as described

previously [68]. For case sample 1781T, non-tumour DNA was

extracted from a paraffin-embedded lymph node sample using a

previously described method [69].

Figure 5. Analysis of the GOPC-ROS1 fusion gene in an ovarian LMP sample. Analysis of the GOPC-ROS1 fusion gene. Plots representing the B
allele frequency and the Log R ratio on chr6 in TOV-4054GT (left) and TOV-4054DT (right) (A). A homozygous deletion is present at 6q22.2 in TOV-
4054DT (circled), as observed by a Log R ratio #22 and associated loss of B allele frequency organization. The genomic region located within the
242.5 kb homozygous deletion includes coding exons of the genes ROS1, DCBLD1 and GOPC, as visualized by the UCSC Genome Browser (B). RT-PCR
analysis of the GOPC-ROS1 fusion gene (C). The fusion gene is highly expressed in TOV-4054DT and lowly expressed in TOV-4054GT. The EOC cell line
OV-90neor was used as a negative control. Sequencing of the GOPC-ROS1 fusion cDNA indicates that exon 7 of GOPC is fused in-frame to exon 35 of
ROS1 (D).
doi:10.1371/journal.pone.0028250.g005
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Total RNA was extracted with TRIzolTM reagent (Invitrogen

Canada Inc., Burlington, ON) from the OV-90neor cell line grown

to 80% confluency in 100 mm Petri dishes, or from fresh frozen

TOV-4054DT/GT tumours as described previously [70]. RNA

quality was assessed by gel electrophoresis or 2100 Bioanalyzer

analysis using the RNA 6000 Nano LabChip kit (Agilent

Technologies, Mississauga, ON).

LOH analysis
LOH analysis was performed using polymorphic microsatellite

repeat markers representing various 3p loci: D3S1304 and

D3S1515 at 3p26.2; D3S1581 and D3S3640 at 3p21.31;

D3S1274 and D3S1542 at 3p12.3; D3S1538 and D3S2388 at

3p12.2; and D3S2386 and D3S2318 at 3p11.2. Genetic analysis of

the 3p12 locus in the tumour sample 1781T was determined using

seven polymorphic microsatellite markers: D3S3507, D3S1274,

D3S3049, D3S3508, D3S3633, D3S3679, and D3S2318. The

genomic location of the markers was based on February 2009

GRCh37/hg19 assembly of the human reference sequence [71].

LOH analysis was performed using a previously described PCR-

based assay, with the primers sets for each marker described in the

UniSTS Database (http://www.ncbi.nlm.nih.gov/unists) [21].

LOH or allelic imbalance was scored based on the absence or

difference in the relative intensity of alleles in tumour DNA as

compared with the DNA from patient-matched peripheral

lymphocytes or, in the case of 1781T, DNA from paraffin-

embedded lymph node.

Gene sequencing analysis
Mutation analysis of tumour DNA samples was designed to

detect variants in the protein coding exons 2 to 11 of TP53, as well

as the common mutations in exon 2 of KRAS and exons 11 and 15

of BRAF. Peripheral blood lymphocyte DNA from case sample

TOV-1685GT was also examined for TP53 mutations in exon 10.

Mutation analyses of case sample 1781T were also performed to

identify variants in protein coding regions of the chr3 genes

ROBO1, GBE1 and VGLL3. Mutation analysis was performed

using PCR-based assays followed by sequencing of both genomic

strands using the 3730XL DNA Analyzer system platform from

Applied Biosystems at the McGill University and Genome Quebec

Innovation Center (www.genomequebecplatforms.com) as previ-

ously described [66,72]. Primer sequences for each assay were

reported previously [23,72] with alternate primers used for some

reactions (Table S3). Primers were designed using Primer3

software based on the genomic structures available from the

February 2009 GRCh37/hg19 assembly of the human reference

genome. Sequence chromatograms, reviewed by at least two

observers, were compared with NCBI reference sequence (RefSeq)

reported in GenBank: NM_133631.3 (ROBO1), NM_000158.3

(GBE1), NM_016206.2 (VGLL3), NM_000546.4 (TP53),

NM_004985.3 (KRAS) and NM_004333.4 (BRAF). Sequence

variants were compared with those reported in the SNP Database

(www.ncbi.nlm.nih.gov/SNP). In addition, TP53 variants were

evaluated based on information in the International Agency for

Research on Cancer (IARC) TP53 Database (www-p53.iarc.fr).

Promoter methylation analysis
Promoter hypermethylation of MLH1, RASSF1A and CDKN2A

was examined using methylation-specific PCR assays following

bisulfite conversion of cytosine residues [73]. The bisulfite

conversion reactions were performed using the ImprintTM DNA

Modification Kit (Sigma) with 200 ng of DNA from EOC cell lines

or tumour tissue. Primer sequences for each assay have been

published previously [74–76].

High-density genotyping
Genome-wide chromosomal anomalies in three benign ovarian

tumours were inferred using the InfiniumTM genotyping technol-

ogy with Illumina’s HumanHap300-Duo Genotyping BeadChip

(Illumina, San Diego, CA, USA), which assays .317,500 SNPs.

Genotyping of 32 benign ovarian serous tumours (including the 3

tumours assayed on the 300K BeadChip), 58 serous LMP tumours

and 12 LGOSCs was performed using Illumina’s Human610-

Quad Genotyping BeadChip (Illumina, San Diego, CA, USA).

This BeadChip assays 620,901 markers, where over 560,000 are

SNPs with an average spacing of 4.7 kb per marker (median

spacing is 2.7 kb). Both genotyping, using 750 ng of DNA from

frozen tumours, and scanning, using the BeadArrayTM Reader,

were performed at the McGill University and Genome Quebec

Innovation Centre (http://gqinnovationcenter.com/index.aspx).

All samples had call rates (the percentage of valid genotype calls)

within the range of 0.914 and 0.999 (average 0.992). Genotyping

results are available at Array Express (in progress).

Genotyping analysis was performed using the Genome Viewer

module in BeadStudio Data Analysis software v2.2.22 (Illumina,

San Diego, CA, USA.). The software aligns genotyping data for

each marker with genomic map coordinates based on March 2006

NCBI36/hg18 (Build 36.1) assembly of the human reference

sequence (genome.ucsc.edu/cgi-bin/hgGateway). An image file

was created for inferring genomic rearrangements based on the

allele frequency and copy number (Log R ratios) for each marker

assayed. LOH was inferred by B allele frequency, where values

that deviate from 0.5 (less than 0.4 and greater than 0.6) indicate

allelic imbalance when reviewed for a series of adjacently mapped

markers. Breakpoints were inferred based on deviation of allele

frequencies relative to those of adjacently mapped markers. Log R

ratios deviating from 0 suggest copy gain or loss. Homozygous

deletions were inferred based on Log R ratios #22 for at least

three adjacently mapped markers, and sizes were estimated based

on the location of nearest flanking markers with Log R ratios

above 22. Regions suggesting extensive homozygosity (or runs of

homozygosity; ROH), spanning intervals .5 Mb were inferred

from heterozygous SNP markers. ROHs were required to have an

average frequency of 1 SNP per 10 kb, and a heterozygous call for

a marker was allowed if it was flanked by at least 100 SNP markers

with homozygous scores [33,34,47,48].

The distribution of mutations in KRAS, BRAF and TP53

between the LMP and LGOSC cases was compared using the

Fisher Exact test (Statistical Product and Service Solution Package,

SPSS, Chicago, IL).

Normalized SNP intensity files were also analyzed by

GenoCNA [77]. This software uses a hidden Markov model

containing 9 different tumour states, encompassing loss of 1 or 2

copies, copy number neutral LOH, and 5 different gain states

allowing for different patterns of allele retention. This model

explicitly allows for normal tissue contamination in the samples.

Graphs show the percentage of the samples with gains or losses

based on the GenoCNA inference, where the percentage is

calculated in expectation, using the average of the probabilities of

relevant states at each marker.

Gene expression analysis
Expression of the GOPC-ROS1 fusion gene was assayed by RT-

PCR in TOV-4054DT/GT and OV-90 neor (negative control)

using cDNA synthesized as previously described [78]. Approxi-

mately 200 ng of a 1:10 dilution of the reverse transcribed cDNAs

were used in PCR assays. Primers were designed using Primer3

software based on the genomic structures of GOPC and ROS1 and
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on mRNA sequences available from the February 2009 GRCh37/

hg19 assembly of the human reference genome (Table S3).

Supporting Information

Table S1 Clinical data of ovarian tumour samples.

(XLS)

Table S2 Homozygous deletions observed in all sam-
ples.

(XLS)

Table S3 Novel primers used in the present study.

(XLS)
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