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REVIEW

Single‑cell sequencing: a promising 
approach for uncovering the mechanisms 
of tumor metastasis
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Abstract 

Single-cell sequencing (SCS) is an emerging high-throughput technology that can be used to study the genomics, 
transcriptomics, and epigenetics at a single cell level. SCS is widely used in the diagnosis and treatment of various 
diseases, including cancer. Over the years, SCS has gradually become an effective clinical tool for the exploration of 
tumor metastasis mechanisms and the development of treatment strategies. Currently, SCS can be used not only to 
analyze metastasis-related malignant biological characteristics, such as tumor heterogeneity, drug resistance, and 
microenvironment, but also to construct metastasis-related cell maps for predicting and monitoring the dynamics of 
metastasis. SCS is also used to identify therapeutic targets related to metastasis as it provides insights into the distribu-
tion of tumor cell subsets and gene expression differences between primary and metastatic tumors. Additionally, SCS 
techniques in combination with artificial intelligence (AI) are used in liquid biopsy to identify circulating tumor cells 
(CTCs), thereby providing a novel strategy for treating tumor metastasis. In this review, we summarize the potential 
applications of SCS in the field of tumor metastasis and discuss the prospects and limitations of SCS to provide a theo-
retical basis for finding therapeutic targets and mechanisms of metastasis.
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Background
During tumor metastasis, cancer cells from the primary 
tumors spread through the circulatory system or body 
cavities to colonize distant organs. These tumor cells 
then further colonize novel sites to form metastatic sites 
in distant organs [1, 2]. Various factors affect the occur-
rence and development of metastatic tumors, includ-
ing genetic factors and in  vivo microenvironment. The 
genotypes and phenotypes of metastatic tumor cells are 
often inconsistent with those of the cells present at the 

primary site. Tumor metastasis is an essential factor 
in cancer-related deaths and thus a major obstacle to 
tumor treatment. Significant progress has been made in 
the treatment of metastatic cancer treatment with the 
introduction of novel diagnostic techniques and treat-
ment methods in recent years, yet the overall five-year 
survival rate in patients with metastatic cancer remains 
low [3]. This may be attributed to undetected tumor cell 
proliferation in early stages of cancer, as clinical symp-
toms often only appear in late stages [4–6]. Therefore, the 
identification of metastasis-related mechanisms, appro-
priate markers, and therapeutic targets is highly relevant 
in metastasis research.

With the development of high-throughput sequenc-
ing technologies and ChIP-seq platforms, single-cell 
sequencing (SCS) technology has enabled significant 
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achievements in the diagnosis and treatment of various 
diseases, including metabolic, circulatory system, neu-
rodevelopmental, and viral-infection-related diseases as 
well as cancer [7]. SCS techniques have been particularly 
instrumental for providing key insights in tumor metas-
tasis research. For example, Perone et  al. [8] compared 
genomes and transcriptomes of different cells using SCS 
and identified rare cell subsets, metastasis regulator key 
marker molecules, and their localization in metastatic 
tumors [9]. Bartoschek et al. [10] demonstrated the abil-
ity of SCS to predict and monitor tumor metastasis. Chen 
et al. [9] identified differentially expressed genes in tumor 
metastasis between primary and metastatic tumors using 
SCS and identified targets for metastatic cancer treat-
ment. SCS techniques, in combination with artificial 
intelligence (AI), are used in liquid biopsy to identify cir-
culating cells of tumors, thereby providing a theoretical 
basis for revealing novel metastasis-related targets. This 
review summarizes the recent applications of SCS in 
tumor metastasis research and discusses the prospects 
and limitations of SCS in this field. We expect this review 
to provide an important perspective for future metastasis 

research and the development of novel metastasis-target-
ing drugs.

Single‑cell sequencing (SCS)
Development of SCS technology
SCS is the study of the transcriptomics, genomics, and 
proteomics at the level of individual cells. In SCS, the 
whole genome and whole transcriptome of a single cell 
are amplified, and then high-throughput sequencing is 
performed, which reveals the structure and expression 
levels of genes in a single cell. Thus, even subtle differ-
ences between cells can be analyzed [7–12]. Typical SCS 
workflows include four main steps [13, 14] (Fig. 1). First, 
solid tumor samples are processed to separate surviv-
ing single cells (A-B). Then, the single cells are lysed to 
obtain the DNA or RNA, and then amplified to construct 
a sequencing library. However, RNA is first reverse-tran-
scribed into cDNA(C). Once the sequencing library has 
been prepared, the critical SCS steps can be performed 
on a sequencing platform (D). After sequencing, it is nec-
essary to visualize and interpret those data (E–F).

Fig. 1  Schematic diagram of single-cell sequencing. First, solid tumor samples are processed to separate the surviving single cells A–B. Then, 
the single cells are lysed to obtain DNA or RNA, reverse-transcribed into cDNA, and then amplified to construct a sequencing library C. Once the 
sequencing library has been prepared, the critical single-cell sequencing steps are performed on a sequencing platform (D). After sequencing, it is 
necessary to visualize and interpret those data E–F 
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SCS has been widely used worldwide since the devel-
opment of RNA sequencing (RNA-seq) technology in 
2009 [15]. In 2011, Islam et al. [16] developed a single-cell 
labeled reverse transcription sequencing method named 
STRT-seq. In 2012, a new SCS variant called Smart-
seq was developed [17], which was improved in 2013 
by Picelli et  al. [18] who also developed Smart-seq2. In 
2017, 10 × Genomics was developed as a novel single-cell 
immune repertoire sequencing method. This technique 
introduced significant advancements in sequencing effi-
ciency in the context of technical- and application-ori-
ented aspects of SCS. Azizi et  al. [19] analyzed 45,000 
immune cells from eight primary breast cancer patients 
using 10 × Genomics SCS platforms and revealed 
detailed phenotypes of immunocytes in the tumor micro-
environment (TME) (Fig. 2).

Classification of SCS technology
Based on the analysis of the obtained sequencing data, 
SCS can be divided into three main types, i.e., single-cell 
DNA sequencing (scDNA-seq), single-cell RNA sequenc-
ing (scRNA-seq), and single-cell immune repertoire 

sequencing (scIR-seq). The scDNA-seq and scRNA-seq 
are two commonly used single-cell sequencing tech-
nologies, of which two have subtle differences in their 
operating procedures. scDNA-seq amplifies the whole-
genome DNA of isolated single cells, while scRNA-seq 
first reverse-transcribes the whole-transcriptome RNA 
of a single cell into cDNA, which is then amplified; 
after analysis, the visualized data reveal the cell popula-
tion differences and cell evolutionary relationships [7, 
9–12, 20–22]. scIR-seq has gained significant attention in 
recent years due to the development of tumor immuno-
therapy technology. In scIR-seq, T/B lymphocytes are the 
research target, and multiplex PCR technology/5’RACE 
is used to amplify the complementarity determining 
regions (CDR3 regions) that determine the diversity of B 
cell receptors (BCRs) or T cell receptors (TCRs). This is 
then combined with high-throughput sequencing tech-
nology to comprehensively evaluate the diversity of the 
immune system and examine the relationship between 
the immune repertoire and disease [23, 24].

To date, dozens of single-cell transcriptome 
sequencing methods have been developed, each with 

Fig. 2  Timeline of milestones in single-cell sequencing technology. A Tang et al.[15] developed the first single-cell transcriptional sequencing 
technology, i.e., mRNA-seq in 2009. B Islam et al. [16] established a single-cell labeled reverse transcription sequencing method, i.e., STRT-seq 
in 2011. C Ramsköld et al.[17] developed a new single-cell sequencing technology Smart-seq in 2012; in the same year, Hashimshony et al. [25] 
developed single-cell RNA-Seq by multiplexed linear amplification named CEL-seq. D Picelli et al. [18] made some improvements to the Smart-seq 
technology in 2013, i.e., Smart-seq2. E 10 × Genomics technology was developed as a new single-cell transcriptome sequencing method in 2017
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its own characteristics and advantages/disadvantages. 
Commonly used SCS analysis methods are mainly 
divided into seven types, i.e., two low-flux plate-
based methods (Smart-seq2 [18] and CEL-Seq2 [25]) 
and five high-throughput methods (10 × Chromium 
[26], Drop-seq [27], Seq-Well [28], InDrops [29], and 
Sci-RNA-seq [30]). No single sequencing platform is 
suitable for all research objectives [18–35] (Table  1). 
Researchers should choose a suitable sequencing plat-
form in view of their respective research purposes.

Application of SCS in human diseases
SCS is widely used to study human diseases, includ-
ing metabolic, circulatory, neurodevelopmental, and 
viral-infection-related diseases as well as cancer [36–45] 
(Table 2). For example, Farrell et al. [39] comprehensively 
analyzed gene expression profiles in individual brain 
cells of Alzheimer’s patients using SCS and identified 
potentially disease-related signaling pathways, thereby 
providing a theoretical basis for drug development. Fur-
thermore, Wilk et al. [43] used SCS to analyze peripheral 
blood mononuclear cells (PBMCs) of seven critically ill 
patients hospitalized for the treatment of coronavirus 
disease 2019 (COVID-19) and constructed a cell map of 

Table1  Advantages and disadvantages of the common SCS methods

Method Flux Advantages Disadvantages Ref

Smart-seq2 Low a. High sensitivity, high transcription coverage
b. Cell capture visualization
c. Analysis of rare cell populations

a. No early multiplexing
b. Longer cycle

[18, 28]

CEL-Seq2 Low a. Higher sensitivity, lower cost
b. Lower hands-on input

a. Strong 3’ preference
b. High-abundance transcripts are preferentially ampli-
fied

[25,34,
30]

10x- Chromium High a. Less time-consuming and low technical noise
b. Analysis of rare cell population

a. There are too many steps for DNA library construction
b. Higher sample requirement

[18, 19, 24, 26]

Drop -seq High a. Low cost and fast
b More effective

Lower cell capture efficiency [27,  29,
35]

Seq-Well High Easy-to-use, portable, low cost
b. Efficient cell lysis and transcriptome capture

a. Lower cell capture efficiency [28,33,
35]

In Drops High a. Lower cost
b. Strong cell capture and simplification capabilities

a. Extremely lower cell capture efficiency [29, 35]

Sci-RNA-seq High a. Minimize perturbation to RNA integrity a. Some cell types cannot be defined [30]

Table 2  Application of SCS in human diseases

Disease type Sample type Number Detection
Method

Conclusion Ref

Diabetic kidney Cells – scRNA-seq Revealed the dynamic changes of gene expression in the 
diabetic kidney

[36]

Rheumatoid
arthritis

Cells 51 patients scRNA-seq Discovered the key mediators of the pathogenesis of RA [37]

Heart injury Cells 30,000 cells scRNA-seq Provided an in-depth analysis of the entry points of cardiac 
homeostasis, inflammation, fibrosis, repair and regeneration

[38]

Alzheimer’s
disease

Cells 38,731 cells scRNA-seq Discovered potential signaling pathways in Alzheimer’s disease [39]

Biliary atresia Cells – scRNA-seq Demonstrated that B cell modification therapy can alleviate liver 
pathology

[40]

Cirrhosis Cells 4076 cells 10 × scRNA-seq Displayed the development of novel therapeutic strategies to 
target the most dysfunctional liver ECs

[41]

Placenta Cells — scRNA-seq Revealed the unprecedented depth for the investigation of cell 
type-specific gene expression patterns in the placenta

[42]

SARS-CoV-2 Cells 7 patients scRNA-seq Provided potential therapeutic targets for cell resistance [43]

Lung adenocarcinoma Cells 208,506 cells scRNA-seq Identified a cancer cell subtype deviating from the normal dif-
ferentiation trajectory

[44]

Pan-cancer Cells 21 types of cancer 
cells

scRNA-seq Revealed distinct patterns of T cell composition [45]
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the peripheral immune response in these patients in an 
effort to better understand the immune cell composition 
in COVID-19 patients and to assist the development of 
a COVID-19 vaccine. In human cancers, Kim et al. [44] 
characterized 208,506 cells based on the single-cell tran-
scriptome profile of metastatic lung adenocarcinoma 
and identified a cancer cell subtype deviating from the 
normal differentiation trajectory and dominating the 
metastatic stage. Thus, the application of single-cell 
sequencing technology is quite extensive and can benefit 
human beings in various aspects.

Tumor metastasis
Malignant tumor cells disseminate from the primary 
tumor site through the lymphatics, blood vessels, or 
body cavities to other body parts during metastasis [1, 2]. 
This is a complex and multi-step process (Fig.  3) which 
often includes local invasion, intravasation, circulation, 
extravasation, and seeding [46–48].

Infiltration into adjacent tissues and metastasis to 
distant organs are major features of malignant tumors. 
Tumor metastasis also involves the activation and inac-
tivation of protooncogenes and suppressor oncogenes, 
respectively, which regulate different signal transduction 
pathways. For instance, MAPK[49], JAK-STAT [50, 51], 
Wnt [52–55], and other signaling pathways are closely 
related to tumor metastasis. The components of tumor 
cells and their surrounding environment also change 
before or during tumor metastasis. Primary and meta-
static tumors have been shown to be indeed significantly 
different from each other in terms of tumor heterogene-
ity, drug resistance, and TME. A study on prostate cancer 
revealed similar genetic profiles of primary and meta-
static sites, yet additional mutations in the metastatic site 
were detected as well, indicating specific intratumoral 
heterogeneity [56]. Moreover, the activity of P-glyco-
protein (P-Gp), a multidrug resistance (MDR) efflux 
transporter, is increased during epithelial-mesenchymal 

Fig. 3  The process of tumor metastasis. Tumor metastasis is complex and involves multiple steps, i.e., local invasion (A), intravasation (B), circulation 
(C), extravasation (D), and seeding (E)
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transition (EMT) in cancer progression [57, 58]. When 
P-Gp expression is significantly reduced, cell migration 
and invasive abilities of MDR cells decrease significantly 
[59]. In fact, the TME in the metastatic site is selec-
tively activated prior to metastasis to create favorable 
tumor growth conditions [60, 61]. The microenviron-
ment around the primary tumor also changes simultane-
ously prior to metastasis, initiates the transition of cells 
to obtain certain unique biological characteristics, and 
thus promotes metastasis [62]. Components and inter-
cellular communication in TME can also promote tumor 
formation, metastasis, and drug resistance [63–66], such 
as tumor-related macrophages (TAMs) [67, 68], cancer-
related fibroblasts (CAFs)[69–71], and EMT [72, 73]. 
Overall, tumor metastasis is closely related to tumor het-
erogeneity, tumor drug resistance, and TME.

SCS and tumor metastasis
SCS technology can be used to examine the relation-
ship between tumor metastasis and tumor heterogene-
ity, tumor drug resistance, and TME (Fig.  4), providing 
a good platform for revealing the mechanism of tumor 
metastasis and proposing new strategies for treating 
tumor metastasis.

SCS and tumor metastasis‑associated heterogeneity
Heterogeneity between and within tumors often occurs 
during tumor development. Thus, genotype and phe-
notype variation exists in the same tumor or in differ-
ent tumors. More directly, there is a difference between 
primary and metastatic sites [74]. Tumor heterogeneity 
is an important characteristic of malignant tumors that 
renders basic research, clinical diagnosis, and treat-
ment of tumor metastasis difficult. During metastasis, 
tumor heterogeneity reflects differences in genetic, 
epigenetic, metabolic, and immune responses between 
primary sites and metastases, such as immune infiltra-
tion degree and immune and tumor cell types [75–77]. 
Furthermore, tumor cells in the metastatic site often 
exhibit specific driver mutations after metastasis. For 
example, a mutation in driver genes has been observed 
in advanced recurrent metastatic breast cancer, which 
has not been found in early primary breast cancer [8]. 
In addition to the spatial heterogeneity mentioned 
above, heterogeneity also exists in the time dimension 
in metastasis. In other words, there are also differences 
in heterogeneity of the same tumor at different time 
points during metastasis. SCS can be used to reveal 
genetic, transcriptional, and metabolic characteristics 

Fig. 4  SCS and tumor metastasis. SCS technology can be used to examine the relationship between tumor metastasis and tumor heterogeneity 
(A), tumor drug resistance (B), and tumor microenvironment (C)
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of tumor metastasis-related heterogeneity at the single-
cell level.

The expression levels of genes involved in different 
metastasis-related biological processes vary continu-
ously during metastasis. Toward this end, SCS is useful 
to understand the mechanisms underlying gene expres-
sion dynamics, and reveal genetic, transcriptional, and 
metabolic heterogeneity between primary and metastatic 
tumors [78]. Okamoto et  al. [79] analyzed organoids 
originating from patients with primary and metastatic 
colorectal cancer using the SCS technology and found 
that expression levels of differentiated cell marker genes 
were inconsistent between primary and metastatic 
lesions, indicating differences in the genetic composi-
tion of metastatic lesions. Davis et  al. [80] also used 
SCS to study patient-derived xenograft models of breast 
cancer and found that both primary tumor and micro-
metastasis cells display transcriptional heterogeneity, 
yet micro-metastasis cells harbor a distinct transcrip-
tional profile. There are also significant differences in the 
metabolic expression profiles of primary breast cancer 
and pulmonary metastases. Pharmacological inhibition 
of oxidative phosphorylation dramatically attenuated 
metastatic seeding in lungs, demonstrating the functional 
importance of oxidative phosphorylation in metastasis. 
Another study also revealed metabolic heterogeneity 
between primary and metastatic tumors in pancreatic 
cancer [81]. As the most malignant osteogenic tumor, 
osteosarcoma easily metastasizes to the lungs. SCS analy-
sis of primary and pulmonary metastatic osteosarcoma 
revealed lower osteoblast infiltration and inflammatory 
FABP4+ macrophages in pulmonary metastatic osteo-
sarcoma. The difference in the types and proportions 
of immune cells between the two osteosarcoma types 
indicates tumor heterogeneity [82]. Using SCS, Ni et  al. 
[83] found that different CTCs from the same patient 
showed a highly consistent copy number change pattern 
throughout the whole genome, which was highly consist-
ent with the copy number change patterns of the meta-
static tumor tissue of the same patient. This phenomenon 
was observed in patients with small-cell lung cancer and 
lung adenocarcinoma. This highly consistent copy num-
ber change pattern observed in CTC for the first time is 
likely to change the traditional understanding of tumor 
consistency.

Tumors also show heterogeneity in both time and 
space. SCS can accurately detect dynamic changes in 
heterogeneity among tumor cells across time and dif-
ferent spatial positions [84]. Indeed, multi-region SCS 
analyses of lung cancer showed a considerable degree 
of intra-tumor heterogeneity of immune-related genes 
in spatial [85] and temporal [86] dimensions. A simi-
lar analysis of different metastases in ovarian cancer 

patients showed that immune and interstitial compo-
nents of the different metastatic sites have consider-
able spatial heterogeneity [87, 88]. An SCS analysis of 
cancer stem cells (CSCs) from a pair of primary and 
metastatic sites of collecting duct renal cell carcinoma 
(CDRCC) showed that CSCs can transform into pri-
mary and metastatic CDRCC cells in a spatiotemporal 
manner [89]. SCS is also used to reconstruct the history 
of tumors and tumor subclone development, identify 
cell subtypes that are likely to metastasize, and possi-
bly discover genes that drive metastasis and subclone 
development. Puram et al. [90] performed an SCS anal-
ysis on primary and lymph node metastatic cells from 
18 patients with head and neck squamous cell carci-
noma. Based on different types of immune and stromal 
cells in the TME, molecular subtypes in the head and 
neck squamous cell carcinoma were redefined. Spe-
cifically, the authors identified a group of frontal tumor 
cells with EMT characteristics closely related to lymph 
node metastasis. Triple-negative breast cancer (TNBC) 
is a unique subtype of breast cancer that is negative for 
estrogen receptor (ER), progesterone receptor (PR), 
and human epidermal growth factor (HER2), has a 
wide range of intra-tumor heterogeneity, and has a 
poor prognosis. Karaayvaz et  al. [91] performed clus-
ter analysis of gene expression profiles obtained from 
SCS analysis on six main cells with TNBC > 1500 and 
showed the existence of different tumor cell subtypes, 
including those with metastasis and treatment resist-
ance. Subtypes that easily metastasize can be identified 
using SCS. Yates et  al. [92] sequenced whole genomes 
of samples from metastatic breast cancer patients and 
showed that most of the distant metastases obtained 
unseen driver gene mutations compared to the primary 
tumors. SCS can also be used to construct a tumor 
transfusion spectrum and determine metastasis onset 
time. Navin et  al. [93] used SCS to analyze 100 single 
cells of primary breast cancer and its liver metastasis. 
According to their results, a single clonal amplification 
formed the primary tumor, initiated metastasis, and 
formed unexpectedly genetically “fake diploid” cell sub-
groups that did not reach the transfer site. The primary 
site was also found to be similar to the transfer site in 
terms of the SCS copy number variant data. This find-
ing supports the hypothesis that transfer occurs during 
the late stages of clonal evolution.

In summary, the findings discussed above show that 
SCS can reveal intra- and inter-tumor heterogeneity at 
the single-cell level, identify characteristics and states of 
cells, and identify potential key factors for tumor occur-
rence and metastasis to guide the development of precise 
treatment options, draw an overall map of the tumor, and 
track the lineage of metastasized cells.
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SCS and tumor metastasis‑associated drug resistance
Chemotherapy is currently a major treatment option 
for malignant tumors. However, chemotherapy drugs 
may alter the phenotype of tumor cells and lead to drug 
resistance. Many recent studies have shown a close asso-
ciation between metastasis and drug resistance. For 
example, CSCs can induce drug resistance and metas-
tasis. CSCs are first transformed into primary and then 
metastatic cells. During metastasis, CSCs pass through 
EMT and mesenchymal–epithelial transition (MET) and 
form a distant metastatic site [89]. Heterogeneity associ-
ated with tumor metastasis is the main driving force for 
tumor resistance [94]. The tumor genes of cells in meta-
static lesions often include mutations, which result in 
drug resistance following metastasis. Jordan et  al. [95] 
detected rare CTCs from the blood of primary breast 
cancer patients and identified dynamic gene expression 
profiles in metastatic breast cancer that promote disease 
development and resistance to treatment. For instance, 
the activity of P-Gp increases during metastasis-related 
EMT [57, 58], whereas significant decreases in P-Gp 
expression result in corresponding decreases in migra-
tion and invasion abilities of MDR cells [59]. Thus, tumor 
metastasis mechanisms can be further elucidated by ana-
lyzing the formation of drug resistance in cancer cells.

Interaction between tumor drug resistance and metas-
tasis has been shown in recent years. Long-term expo-
sure to chemotherapeutic drugs greatly promotes tumor 
invasion and metastasis [96, 97], and drug-resistant cells 
are more likely to metastasize [98–100]. SCS can be 
used to study and analyze drug-resistant tumor cells to 
avoid the interference of tumor heterogeneity, providing 
a new perspective for exploring tumor metastasis. Pros-
tate cancer patients respond to androgen receptor (AR) 
inhibitors to a certain extent. Miyamoto et al. [101] per-
formed an SCS analysis of single CTCs in 17 prostate 
cancer patients and found that atypical Wnt signals were 
enriched in CTCs of drug-resistant rather than untreated 
patients. Expression of Wnt signaling components in 
prostate cancer was shown to promote the metastasis of 
prostate cancer [102]. Accordingly, drug-resistant cells 
were found to be more likely metastasized. Expression 
levels of several EMT-related genes were also previously 
shown to be altered in drug-resistant human breast can-
cer (MCF-7) cells [103]. A large-scale SCS analysis fur-
ther showed that chemotherapy increased the metastatic 
ability of breast cancer cells [100]. Lee et  al. [104] per-
formed an SCS analysis of untreated paclitaxel-resistant 
metastatic breast cancer and found specific transcrip-
tional profiles in the cell population in addition to a spe-
cific RNA variant in drug-resistant cells. This variant is 
involved in microtubule stabilization and cell adhesion, 

which indirectly indicates that drug-resistant cells are 
more likely to develop tumor metastasis. In another 
breast cancer study, various single-cell gene expression 
profiles in chemotherapy-treated cell lines showed that 
EMT-related genes were upregulated in drug-resistant 
cells, mainly by the LEF1 gene. EMT is generally consid-
ered a key factor for tumor metastasis and drug resist-
ance. Thus, chemotherapy increases tumor metastasis 
risk, and enhanced metastatic ability of drug-resistant 
tumor cells is associated with the upregulation of EMT-
related genes [105]. Nath et  al. [106] also reported high 
drug resistance due to EMT-related genes in addition 
to high expression of the double multidrug resistance 
(MDR1) gene. Tumor drug resistance is mediated by cell 
proliferation, apoptosis, invasion, and migration [107]. 
Single-cell transcriptional map analysis of tumor tissue 
samples from six patients with TNBC showed subclonal 
heterogeneity among malignant tumor cells shared by 
different patients, which is characterized by drug resist-
ance and metastasis [91]. Briefly, upregulation of EMT-
related proteins is often accompanied by an increase in 
tumor drug resistance and high rate of proliferation and 
metastasis of drug-resistant cells. Thus, enrichment of 
drug-resistant tumor cells can lead to tumor metastasis. 
Hjortland et  al. [98] conducted a genome-wide single-
cell analysis of chemotherapy-resistant metastatic cells of 
gastroesophageal adenocarcinoma, analyzed the molecu-
lar characteristics of drug-resistant metastatic cells, and 
identified markers responsible for malignant progres-
sion and potential therapeutic targets. Another study 
discussed the feasibility of SCS in monitoring the emer-
gence of drug-resistant cell clones in tumors [108]. CSCs 
are capable of undergoing cell division and, therefore, 
give rise to heterogeneity in the tumor, playing a crucial 
role in tumorigenesis. Characterization of CSCs proper-
ties can provide important information regarding tumor 
metastasis and drug resistance [109, 110]. Chen et al. [9] 
enriched metastatic breast cancer cells with microfluid-
ics, and identified differentially expressed genes in met-
astatic cells via SCS. Migrating cells were found to have 
the overall characteristics of EMT and CSCs, yet different 
properties with respect to mitochondrial morphology, 
oxidative stress, and proteasome regulators, revealing 
potential vulnerability and unexpected consequences of 
drug treatments. Franken et al. [111] performed an SCS 
analysis of 46 metastatic breast cancer patients, focusing 
on the ESR1 gene of CTC. The results showed that ESR1 
mutations were only detected in metastatic foci, but not 
in primary tumor tissue samples. Moreover, ESR1 muta-
tions only appeared in patients who received estrogen 
deprivation therapy. The authors thus concluded that the 
newly discovered mutation might lead to targeted drug 
resistance and tumor metastasis.
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These studies demonstrate that SCS can be used to 
analyze drug-resistant cell subtypes in tumors, detect key 
drug-resistant genes, discover potential drug targets, and 
provide a theoretical basis for improved targeted therapy 
for drug-resistant tumors.

SCS and tumor metastasis‑associated tumor 
microenvironment
The relationship between TME and tumors is often 
described with the terms “seed” (the tumor cell) and “soil” 
(TME). TME indeed plays an indispensable role in tumor 
metastasis [112, 113]. The driving factors of mutant genes 
with proliferation and invasion in tumor cells are in line 
with the importance of TME in this regard [56]. TME-
related cells and molecules also play an important role in 
tumor metastasis, such as fibroblasts, tumor-associated 
macrophages, immune cells, and cytokines. The “prem-
etastatic niche” concept first proposed by Psaila et  al. 
[114] denotes that the primary tumor will release a series 
of signal molecules that change the local microenviron-
ment around the metastasis site prior to the arrival of 
the tumor cells. Thus, key regulatory molecules that play 
roles in tumor occurrence, development, and metastasis 
can be identified by clarifying the relationship between 
tumor metastasis and TME and analyzing changes in 
TME before and after tumor metastasis.

SCS can also be used to investigate the heterogeneity 
between primary tumors and metastatic TMEs based 
on analysis of the microenvironment composition and 
accompanying molecular changes. Arvanitis et  al. [115] 
studied the characteristic structures of the blood–brain 
barrier (BBB) and blood–tumor barrier (BTB) of primary 
brain tumors and brain metastases by SCS and found 
structural and functional heterogeneity between the 
metastatic and primary tumors in the microenvironment. 
This in-depth study of BBB/BTB structure and tumor cell 
subtypes between primary and metastatic tumors thus 
enabled a better understanding of tumor progression and 
metastasis as well as identification of targeted immuno-
therapy strategies. Lee et  al. [116] analyzed the TME of 
metastatic colorectal cancer by using the SCS technol-
ogy and revealed the diversity of cell components of CRC 
molecular subtypes, their dynamic relationship, and the 
TME landscape of CRC. Robinson et al. [117] performed 
an SCS-based analysis of the whole exons and transcrip-
tome of 500 metastatic and non-cancerous tissue samples 
from metastatic cancer patients. These studies provided 
detailed analyses of genomes and immune responses in 
metastatic cancer tissues, indicating the complex molec-
ular landscape of metastatic tumors. SCS can also be 
used to study the metastasis-related genes or cell types in 
the TME, including (but not limited to) CAFs and TAMs. 
Li et al. [118] analyzed the transcriptional heterogeneity 

of colorectal tumors and their microenvironment via SCS 
and found two different CAF subtypes. The expression 
of EMT-related genes increased only in the CAF sub-
group of tumor tissues, indicating a possible role of CAF 
in tumor metastasis and invasion ability. Bao et al. [119] 
analyzed TNBC using SCS and characterized the hetero-
geneity between and within tumors. The authors found 
that M2-like TAMs accounted for the majority of mac-
rophages in tumor-infiltrating immune cells and showed 
immunosuppressive characteristics. In contrast, M2-like 
TAMs have been previously shown to be closely related 
to tumor metastasis [67–69]. Winterhoff et al. [120] per-
formed enzymatic digestion of serous ovarian cancer 
tissue to remove immune cells, identified two subsets 
of epithelial and tumor-related stromal cells among 66 
cells via STS, and described the characteristics of these 
two subsets. Accordingly, the expression of EMT-related 
genes was found to increase in stromal cell subsets, which 
provided a new perspective on invasion and metastasis of 
serous ovarian cancer.

The importance of the degree of immune infiltra-
tion and type of immune cells in the TME in regulating 
tumor progression has also been emphasized recently. 
Metastatic sites often show different immune cell enrich-
ment patterns [121]. Understanding the composition 
and function of the primary tumor immune microenvi-
ronment (TIME) and its metastasis is thus a prerequi-
site for successful cancer immunotherapy. SCS enables 
identification of the heterogeneity of TIME and specific 
characteristics of immune cells, especially those of T 
cells, to design better immunotherapy strategies. Zhang 
et al. [122] analyzed liver metastasis samples from CRC 
patients and adjacent tissues by SCS and revealed hetero-
geneity of TIME in liver metastasis from colorectal can-
cer. Identification of immune cell subtypes in this study 
allowed analysis of tumor-infiltrating T cell subsets and, 
ultimately, highlighted the role of granulocytes in TIME. 
The technology also allows identification of unique 
metastasis-related immune cell subsets and potential 
immunotherapy targets.

These studies show that SCS can be used to map the 
microenvironment of metastatic cancer cells and ana-
lyze obvious structural and functional heterogeneity of 
TME between metastatic and primary tumors in order to 
identify metastasis-related genes or cell types. SCS is also 
particularly helpful to explore potential new targets for 
tumor immunotherapy via identification of the relation-
ship between tumor metastasis and immune cells.

Application of SCS in cancer treatment
SCS has excellent application potential in the treat-
ment of metastatic cancer and can be used for purposes 
such as prediction and monitoring of tumor metastasis, 
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clarification of metastasis mechanisms, identification 
of therapeutic targets, monitoring and prediction of the 
therapeutic response, and optimization of treatment 
strategies (Fig. 5).

Monitoring of tumor metastasis
Current knowledge of tumor metastasis mechanisms is 
highly limited, and many questions lack clear answers, 
including which cell subtypes or clones in primary 
tumors can spread and metastasize, how many times 
tumor cells can metastasize to distant organs, and 
whether the whole process of tumor metastasis can be 
monitored. With recent developments in SCS, progress 
has been achieved in finding answers to these open 
questions.

SCS can predict whether tumors will metastasize and 
can help identify markers for predicting metastasis. For 
example, an SCS study of CAFs in 190 cases of distant 
metastatic breast cancer tissues by Bartoschek et al. [10] 
showed that the expression of marker genes in different 
CAF subtypes indicates whether human breast cancer 

will metastasize, confirming the association of CAF sub-
types with metastasis and spread of tumors. Consistent 
with the Bartoschek et  al.[10] study, in an SCS study of 
pancreatic ductal carcinoma, the primary tumor was 
shown to have a higher metastatic capacity if the TME is 
rich in new CAF subtypes [123]. Puram et  al. [90] ana-
lyzed primary and metastases of the head and neck squa-
mous cell carcinoma by SCS and showed some distinct 
characteristics related to partial EMT (p-EMT). Spe-
cifically, the level of p-EMT in cells located at the front 
edge of the primary tumors can be used as a predictive 
marker of tumor metastasis. SCS of tumors at differ-
ent time points can also be used to monitor rare muta-
tions during tumor development and progression, such 
as gaining the ability to invade and metastasize. To this 
end, Davis et al. [80] developed a novel method to moni-
tor global transcriptome changes of several metastatic 
cells in the process of breast cancer metastasis based on 
SCS and a patient-derived breast cancer xenotransplanta-
tion (PDX) model to identify whether the tumor is in the 
process of metastasis by monitoring the changes in the 

Fig. 5  Application of single-cell sequencing (SCS) for treating tumor metastasis. A SCS can be used for predicting and monitoring tumor 
metastasis. B SCS can be used for clarifying the mechanism of tumor metastasis and provide treatment targets. C SCS can be used for monitoring 
and predicting the treatment response and optimizing the treatment strategies
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cell transcriptome and predicting adverse survival of the 
patients. Interestingly, such a systematic genome analysis 
of metastatic prostate cancer pedigree was found to help 
identify whether metastasis spreads only once or whether 
multiple metastases will be found [124].

Searching for potential therapeutic targets
SCS can be used to analyze heterogeneity of tumor cells 
during metastasis by assisting the discovery of genes 
and cell subsets related to metastasis and identification 
of potential therapeutic targets [9, 41, 80, 122, 124–132] 
(Table 3). For instance, Kim et al. [41] used SCS to ana-
lyze single-cell transcriptome profiles of metastatic lung 
adenocarcinoma cells. In addition to identifying a can-
cer cell subtype deviating from the normal differentia-
tion trajectory, they also identified genes related to the 
progression and metastasis of lung adenocarcinoma and 
highlighted that ts2-specific related genes were related 
to tumor progression and metastasis. This finding indi-
cated that ts2-specific related genes could represent 
new therapeutic targets for metastatic lung adenocarci-
noma. Chen et al. [9] enriched metastatic breast cancer 
cells with microfluidics, and then identified differen-
tially expressed genes in metastatic breast cancer cells 

using SCS. The results revealed genes that migrated with 
breast cancer cells as potential prognostic biomarkers 
and therapeutic targets for treatment of metastatic breast 
cancer. Xu et  al. [127] obtained SCS-based transcrip-
tome profiles of single cells from primary tumors, nega-
tive lymph nodes (NL), and positive lymph nodes (PL). 
They also performed a single-cell assay for transposase-
accessible chromatin (ATAC) sequencing (scATAC-seq) 
of the P- and NL samples. The result showed a novel cell 
subpopulation with an abnormally high expression level 
of CXCL14  in the PL of breast cancer patients. Integra-
tive analyses of scRNA-seq and scATAC-seq revealed 
CXCL14 as a key regulator of lymph node metastasis 
in breast cancer. Lawson et  al. [128] analyzed the gene 
expression of metastatic breast cancer at different stages 
by SCS and found that gene expression levels of meta-
static tumor cells in early lesions were significantly dif-
ferent than that of the primary lesions. Moreover, they 
also found a small number of stem cell-like clonal sub-
populations in primary tumors and detected the expres-
sion of various stem cell genes in metastatic tumor cells 
with early pathological changes, confirming that these 
cells can differentiate into coelomic metastatic cells, thus 
clarifying the role of stem cell-like clonal subpopulations 

Table 3  Potential application of single-cell sequencing in human cancers

Tumor
type

Sample type Number Detection method Clinical significance Ref

Colorectal cancer Tissues 1 patient scRNA-seq The study found a total of 12 clusters corresponding to 
6 cell types were identified from patient sample of CRC 
liver metastasis

[122]

Breast cancer Tissues – scRNA-seq The study elucidated role of stem cell-like clone subset in 
breast cancer metastasis

[128]

Cells 55 patients scRNA-seq
ATAC-seq

This study provided a new therapeutic target for breast 
cancer lymph node metastasis

[127]

Tissues – scRNA-seq The study revealed the main pathway of tumor metasta-
sis upregulation is mitochondrial oxidative phosphoryla-
tion

[80]

Blood 5 patients scRNA-seq The study may provide a key therapeutic target for breast 
cancer metastasis

[131]

Blood – scRNA-seq The study identified a rare but highly metastatic sub-
population of CTCs

[9]

Adenocarcinoma Cells 44 patients scRNA-seq The study showed that ts2-specific related genes are 
associated with lung adenocarcinoma progression and 
metastasis

[41]

Pancreatic cancer Blood 168 single CTCs scRNA-seq The study found the SPARC gene is highly expressed in 
pancreatic CTCs, which may provide a novel target for 
the therapy of pancreatic cancer

[132]

Prostate cancer Tissues 10 patients scRNA-seq The study showed that mutations in androgen recep-
tor signaling reveals unprecedented, detailed transfer 
mechanisms

[124]

Metastatic
melanoma

Tissues 19 patients scRNA-seq The study showed the mechanism of T lymphocyte 
activation and cloning in this tumor tissues

[129]

Clear cell renal cell carcinoma Tissues 121 cells scRNA-seq The study found and identified 44 metastasis-associated 
marker genes

[130]
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in breast cancer metastasis. In summary, it is necessary 
to find the corresponding targets for drugs focusing on 
cell subsets or genes with metastatic tendency to enable 
targeted treatment and improve the prognosis of early 
and middle stage cancer patients.

SCS can also identify the details of metastasis mecha-
nism, which is expected to provide therapeutic targets for 
tumor metastasis treatment. Gundem et  al. [124] used 
SCS to characterize multiple metastatic tissues caused 
by prostate cancer in ten patients and comprehensively 
analyzed the characteristics of the subclonal system. It 
was found that AR signal transduction gene mutations 
are usually found in different metastases, revealing an 
unprecedented detail on metastatic mechanism, fur-
ther elucidating the mechanism of metastasis to distant 
organs. It is worth mentioning that SCS can also explain 
the metabolic theory of metastatic cancer. Davis et  al. 
[80] highlighted that breast cancer cells use mitochon-
drial metabolism during metastasis, and that those drugs 
targeting mitochondria can effectively prevent cancer cell 
metastasis. The authors also analyzed the transcriptome 
profiles of primary breast cancer and its micrometasta-
ses by SCS and determined that the main mechanism of 
upregulation of tumor metastasis is mitochondrial oxi-
dative phosphorylation (OXPHOS). This indicates that 
selective inhibition of OXPHOS might be a novel tar-
geted therapy strategy to prevent breast cancer metas-
tasis. Using SCS to study the composition of immune 
cell groups in the tumor environment will help identify 
promising targets for cancer immunotherapy. Zhang 
et al. [122] used SCS to analyze samples of liver metas-
tasis tissue and adjacent tissues from colorectal cancer 
patients to further study the microenvironment com-
position and characteristics of liver metastasis of colo-
rectal carcinoma. Twelve clusters corresponding to six 
cell types were identified. The clinical significance of 93 
cell cluster-specific disorder genes (CCSDGs) in tumor-
infiltrating immunocytes was discussed. The Wnt sign-
aling pathway was found to be activated and promoted 
granulocyte migration. SCS analysis may also help shed 
light on TME composition and mechanisms of CRC liver 
metastasis. Similarly, SCS analysis of tumor-infiltrating T 
lymphocytes in the metastatic melanoma microenviron-
ment revealed T cell activation and clonal expansion in 
the tumor tissue [129]. Single-cell genomics offers further 
insights with implications for both targeted and immune 
therapies. Zhang et  al. [130] used SCS to decipher the 
tumor heterogeneity of all cell subsets, including clear 
renal cell carcinoma (ccRCC). The authors character-
ized 121 cell samples. They found 44 metastasis-related 
marker genes and verified 14 key metastasis-related 
genes (MAGs), which confirmed that MAGs were related 
to multiple risk prognosis. In addition, patients with high 

MAGs nomogram scores were related to the upregula-
tion of oxidative phosphorylation, Wnt signaling path-
way, and MAPK signaling pathway in ccRCC. SCS may 
thus be valuable to identify potential drug targets in met-
astatic ccRCC.

With the continuous advancement of SCS technolo-
gies and the standardization of CTC enrichment and 
identification, SCS of CTCs can be used to compare 
the differences in the genetic make-up, transcription, 
and epigenome of single cells in primary and metastatic 
tumors and metastatic lymph nodes, and thus to deter-
mine potential treatment targets and discover transfer-
related cell subsets or mutated genes. Aceto et  al. [131] 
analyzed CTCs from mouse models with tagged breast 
cancer using SCS and found that rare CTC clusters 
exhibit increased metastatic potential compared to sin-
gle CTCs. In addition, RNA sequencing of CTC clusters 
of human breast cancer confirmed the key role of plako-
globin in the formation of tumor cell clusters. In mouse 
models, plakoglobin knockdown abrogates CTC clus-
ter formation and suppresses lung metastases, indicat-
ing that plakoglobin may be a critical therapeutic target 
for metastatic breast cancer. Ting et  al. [132] separated 
CTCs from a pancreatic cancer mouse model, analyzed 
the whole-genome expression profile of single CTCs, 
and matched primary tumors by SCS. The extracellular 
matrix (ECM) associated gene secreted protein acidic 
and cysteine rich (SPARC) was found highly expressed 
in mouse and human pancreatic cancer CTCs, and this 
gene has also been proven to be closely related to pancre-
atic cancer metastasis. Knocking out SPARC​ can inhibit 
cell migration and invasion. Thus, SPARC​ is expected to 
become a new target for pancreatic cancer treatment.

The development of AI industry enables easier and 
more visually appealing solutions for SCS technology. For 
example, AI can be widely exploited in all aspects of the 
SCS workflow, such as batch correction for technical het-
erogeneity [133, 134], feature extraction [135, 136], data 
distribution transformation [137, 138], classification of 
cancer subtypes [139, 140], and biomarker identification 
[141–143]. Most notably, SCS in combination with AI is 
also widely used to identify and analyze CTCs, a class of 
cells that can be used for searching therapeutic targets for 
tumor metastasis [133–144]. For instance, AI-based cell 
identification technology “Deepcell” can be used for mor-
phological identification of living cells to assist single-cell 
genomics and liquid biopsy [140]. Furthermore, MagRC, 
a new AI technology, is able to distinguish CTCs in whole 
blood cells and classify the heterogeneous CTCs [145]. 
Such combined use with AI enables a more comprehen-
sive analysis of CTCs, is not influenced by interference 
between operators, and therefore is expected to be an 
essential tool to identify metastasis-related markers and 
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therapeutic targets. Thus, combined with AI, SCS will be 
the pivotal tool for exploiting the information available 
in genomic big data and ultimately “deliver” therapy of 
precision.

In conclusion, SCS can be used to mine the therapeutic 
targets related to tumor metastasis and provide a theo-
retical basis for basic researchers to find potential drug 
therapeutic targets. With the combined application of 
AI, the mining of CTCs has become in-depth and more 
convenient.

Monitoring of treatment response and optimization 
of treatment strategy
Tumor heterogeneity poses a complex challenge to can-
cer treatment and is a critical determinant of treatment 
response and metastasis. Metastatic tumors are different 
from primary tumors in terms of cell proliferation rate, 
invasion, and metastasis ability, which in turn lead to dif-
ferences in therapy response and prognosis. Malignant 
ascites can be caused by metastasis of various cancers, 
including CRC. Poonpanichakul et al. [146] used SCS to 
explore and characterize 19,653 ascites-derived cells from 
four patients with CRC. Unbiased clustering of these cells 
revealed 14 subgroups with unique transcriptome pat-
terns in four main cell types: epithelial and bone marrow 
cells, fibroblasts, and lymphocytes. Analysis of epithelial 
cell subsets showed that only three of the eleven subsets 
contracted significantly after treatment, indicating that 
most of the heterogeneous ascites-derived cells were 
resistant to treatment. Hence, a highly heterogeneous 
cancer subgroup at the single-cell level was determined. 
In other words, different cell types responded differ-
ently to chemotherapy. Overall, this study highlighted 
the potential benefits of SCS in real-time monitoring of 
the treatment response of cancer patients. Studying the 
phenotype of the primary tumor alone may lead to poor 
treatment choices. Early detection and characterization 
of the CTC phenotype can help optimize drug treatment 
strategy and monitor treatment response [147], as the 
identified gene expression characteristics of the CTCs are 
related to the treatment response and metastasis risk of 
lung [148], breast [149, 150], and prostate cancers [151, 
152]. Miyamoto et  al. [152] analyzed 77 CTCs in the 
peripheral blood of prostate cancer patients using SCS 
and found heterogeneity in gene expression in CTCs. 
Based on this finding, therapeutic response to androgen 
receptor (AR) inhibitors in patients was retrospectively 
analyzed. The results showed that the cell-signaling path-
way in CTCs was affected in patients who received AR 
inhibitor treatment. The authors attributed this finding to 
the treatment response of patients, and SCS was indeed 
shown to reflect the treatment responses of tumors. Su 
et al. [148] used SCS to track and analyze copy number 

alterations (CNA) of CTCs in small-cell lung cancer 
(SCLC) at different time points during treatment and 
found that the patient’s survival could be predicted based 
on the initial CNA score prior to treatment. Accordingly, 
lower CNA scores indicate longer survival times and bet-
ter treatment responses. Thus, monitoring of the CNA 
scores of CTCs at different time points during chemo-
therapy can be used to evaluate treatment responses. 
Shih et  al. [153] studied primary and metastatic tumor 
tissue samples from high-grade serous ovarian cancer 
patients through high-throughput SCS analysis. Accord-
ing to their results, CD24, EPCAM, and KRT18 genes 
were significantly expressed in epithelial cells of primary 
tumors, whereas the corresponding metastatic lesions 
showed high expressions of CD44 in T and B cell clusters. 
Elevated CD44 expression was previously shown to be an 
independent prognostic indicator of shorter overall sur-
vival (OS) in serous ovarian cancer patients [154]. Schulz 
et  al. [155] analyzed changes in microglia and blood-
derived monocytes in the microenvironment of brain 
metastasis using SCS and revealed cellular and molecu-
lar changes in the medullary compartment at different 
brain metastasis stages and response to radiotherapy, 
which indicated that SCS can also be used to monitor 
the therapeutic response in brain metastasis. Another 
potential application of SCS may be the investigation of 
tumor-derived exosomes (TEXs). Exosomes, a class of 
small extracellular vesicles, are associated with biologi-
cal phenomena, such as tumor metastasis and treatment 
response [156]. SCS can be used for RNA sequencing in 
TEXs, and thus for the longitudinal monitoring of the 
RNA expression profile in circulating exosomes and stud-
ying the changes in immune pathway genes during the 
course of immunotherapy and the differential expression 
patterns between responders and non-responders [157]. 
The potential of the SCS technique to characterize these 
complicated microvesicles is promising. Fathi et al. [158] 
confirmed that pathways related to extracellular  vesi-
cle  (EV) secretion were enriched in the non-metastatic 
cells (compared with metastatic cells) using SCS. Analy-
sis of the results from in  vitro experiments and animal 
studies with results obtained using these cell lines sug-
gested that tumors enriched in CD81 + CD63 + EV sig-
natures have a better prognosis compared with tumors 
with fewer CD81 + CD63 + EVs signatures in non-meta-
static breast tumors. It can be seen that studying TEXs 
can help to monitor the treatment response and infer the 
prognosis of tumor patients.

SCS can also be used to identify novel markers that 
can predict treatment response. Wang et al. [159] inves-
tigated tumor heterogeneity in dense and loose pan-
creatic ductal adenocarcinoma (PDAC) using SCS and 
found that PDAC patients with abundant meCAFs had a 
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higher metastasis risk and a poor prognosis, yet showed 
better response to immunotherapy. This indicates that 
the new CAF subtype can be used as a biomarker for 
treatment response prediction. Gastric adenocarcinoma 
(GAC) tumor cells metastasize to peritoneal carcinoma 
(PC), but the basic mechanisms of peritoneal carcinoma-
tosis are currently unclear. Wang et  al. [160] sequenced 
whole exons and transcriptomes of 44 PC patients, and 
identified two main molecular subtypes of PC, namely 
“epithelioid” and “mesenchymal-like,” which show dif-
ferent responses to chemotherapy, and can thus be used 
to predict the therapeutic response. Fairfax et  al. [161] 
characterized the gene expression of CD8 + T cells in 
a group of metastatic melanoma patients treated with 
checkpoint blockers using SCS. Their results showed that 
CD8 + T clones in peripheral blood could be used to pre-
dict long-term response to checkpoint blocking. Drug 
sensitivity experiments based on predictive metastasis-
related factors were also conducted to predict treatment 
response. Clear cell renal cell carcinoma (ccRCC) is the 
most common form of renal cell carcinoma. Kim et  al. 
[162] applied SCS to examine the intratumoral heteroge-
neity of a pair of primary renal cell carcinomas and their 
pulmonary metastases. They found that EGFR and SRC 
could be considered as target genes based on their high 
expression levels for combined targeting treatment in 
metastatic renal cell carcinoma. In addition, drug sensi-
tivity of single tumor cells was also predicted, and four 
metastatic renal cell carcinoma (mRCC) subsets with dif-
ferent drug sensitivities and signaling pathway activation 
profiles were identified. Finally, a combinatorial strategy 
regimen was predicted, which targeted two mutually 
exclusive pathways. In this strategy, metastatic cancer 
cells were derived based on the activation of multiple 
drug target pathways. Thus, a combinatorial therapeu-
tic strategy was shown to be superior to monotherapy in 
metastatic renal cell carcinoma.

These studies show the potential of SCS at monitor-
ing and predicting the treatment responses of metastatic 
tumors, as well as the screening of novel molecular mark-
ers to further optimize clinical drug treatment options.

Challenges
Although great progress has been made in the field of 
SCS, this technique remains challenging and is far from 
being used routinely [163, 164] due to the following fac-
tors: (1) single-cell collection is tricky. A small amount of 
sample material is used, but analysis still requires a suf-
ficient number of cells to ensure that all cell types are 
labeled; (2) sample separation method and storage are 
not yet fully and comprehensively established. The sepa-
ration technology may cause cellular injury; thus, careful 
operation and practical experience are required; (3) there 

are differences in the quality and efficiency of amplifi-
cation products. When different sequencing platforms 
detect the same sample, owing to the fact that the PCR 
amplification efficiency of each platform is different, the 
results will be different. In addition, as the amount of 
DNA or mRNA contained in each cell is very small, it 
is necessary to perform a whole-genome or whole-tran-
scriptome amplification step first. It is mainly manifested 
in two aspects: (i) it is difficult to achieve true genome-
wide amplification. As a result, some regions in the 
genome are amplified and some are not, and the regions 
that have not been amplified cannot be sequenced; (ii) 
the gene expression levels in the two samples are the 
same, but the amplification efficiency is inconsistent. 
After N cycles of amplification, the expression profile of 
the two samples after amplification will be very differ-
ent. When analyzing the differential genes, if 1.5 times is 
selected as the standard for differential genes, then there 
may be false differences between genes; (4) the technol-
ogy is expensive. The use of SCS has been limited in part 
because of its high cost and long operating time. Most 
of the instruments and reagents required are expensive; 
(5) the analysis of SCS data is too difficult. As the scale of 
the experiment increases, the burden of data analysis also 
increases. Moreover, when there is too much data, the 
computer runs slowly and it is inconvenient to download 
and save. The potential of SCS technology for large-scale 
application in clinical diagnosis, treatment guidance, and 
treatment monitoring remains to be further tested in the 
face of these limitations. All in all, we expect that these 
bottlenecks will be overcome in the near future with 
technological advancements.

Conclusions and prospects
In 2011, the journal Nature Methods listed SCS as one 
of the emerging technologies worth looking forward to. 
In 2013, Science listed SCS as the most noteworthy tech-
nology of the year. In 2018, SCS ranked first among the 
top ten scientific breakthroughs in Science once again. 
Several research institutions cooperated to character-
ize a human tumor map network (HTAN) based on SCS 
data in 2020 [165]. Furthermore, the literature shows that 
SCS has unlimited potential for application in various 
research fields such as basic scientific research and clini-
cal medicine in the future and will affect the direction 
of future scientific development. This review shows that 
SCS technique has excellent application potential with 
respect to research on tumor metastasis. It can be used to 
draw comprehensive maps of single tumor cells and accu-
rately compare the heterogeneity of different tumor cells, 
such as those from primary and metastatic tumors, for 
predicting and monitoring tumor metastasis, clarifying 
metastasis mechanisms, identifying therapeutic targets, 
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monitoring and predicting the therapeutic response, and 
optimizing treatment strategies. The most promising 
application of SCS is analyzing tumor metastasis through 
the identification of CTCs. Use of SCS in combination 
with AI to identify CTCs and mechanisms underlying 
tumor metastasis is the “icing on the cake.” In conclu-
sion, SCS has great prospects with respect to conquering 
tumor metastasis, and is expected to provide new thera-
peutic targets for tumor metastasis [166].
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