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Abstract
Introduction Signal detection yields confirmed signals in only 2.1%, which imposes a heavy burden on the pharmacovigi-
lance system in the European Union.
Objectives We aimed to develop a network theoretical metric to increase the confirmed signal ratio of individual case safety 
report (ICSR) networks.
Methods ICSRs of five cardiovascular adverse events were requested from EudraVigilance. We developed Vigilace™, 
a web-based application to build network representation of ICSRs. Three network-based signal scores, which we termed 
NEWS (normalized edge weight for signals) scores, were calculated by normalizing the weight of each edge in the report-
based weighted network by the weight of the same edge in topological weighted networks. Depending on the third node in 
topological network edges, we defined full-, adverse event-, and drug-type NEWS scores. Area under the receiver operating 
characteristic curves (AUROC) were analyzed to compare the reporting odds ratio (ROR) and NEWS scores.
Results Overall, 72,475 ICSRs were accessed from EudraVigilance. Drug-type NEWS  (NEWSD) score performed better 
(DeLong test, p-value <0.05) compared with the ROR in case of four adverse events: acute myocardial infarction (AUROC: 
0.856 vs. 0.720), arrhythmia (0.657 vs. 0.614), pulmonary hypertension (0.861 vs. 0.720), and QT prolongation (0.830 vs. 
0.749). Postural orthostatic tachycardia syndrome was excluded due to the lack of reference data.
Conclusion This is the first demonstration that report-based weighting normalized by topological weighting of co-reported 
drugs, which we termed as  NEWSD score, can perform better compared with the ROR. An application was developed for 
ICSR network analysis that facilitates the calculation of this score.
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Key Points 

To increase the confirmed safety signal ratio, a network 
theoretical metric was created for the analysis of indi-
vidual case safety reports (ICSRs).

This is the first demonstration that report-based weight-
ing normalized by topological weighting of co-reported 
drugs, which we termed as  NEWSD score (drug-type of 
normalized edge weight for signals), can perform better 
compared with a disproportionality method.

An application, called Vigilace™, was developed that 
facilitates the ICSR network analysis.
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1 Introduction

Signal detection is one of the basic constituents of pro-
active pharmacovigilance that ensure early detection of 
adverse effects. Multiple sources are used for detecting 
signals, such as literature review, postmarketing studies 
and spontaneous adverse event reports, for which spon-
taneous reporting systems have been set up to collect the 
reports in a structured and standardized format, providing 
a framework for data analysis. Commonly used spontane-
ous reporting databases are VigiBase [1], FDA Adverse 
Event Reporting System (FAERS) [2], and EudraVigilance 
[3]. Each of these databases contains more than 10 mil-
lion individual case safety reports (ICSRs) that allow the 
application of various robust data analysis methods for 
statistical signal detection.

EudraVigilance is maintained by the European Medi-
cines Agency (EMA) and the national competent authori-
ties of the European Union (EU) for monitoring the safety 
of medicines. EudraVigilance is used in all stages of phar-
macovigilance procedures, from the ICSR collection to 
signal detection and decision support.

In 2020, 1888 potential signals were reviewed by the 
EMA, and approximately 80% of them were not validated. 
Moreover, only 2.1% were prioritized and assessed by the 
EMA Pharmacovigilance Risk Assessment Committee 
(PRAC) [4]. This gap between detected and prioritized 
signals reveals the resource cost of detailed signal assess-
ments that imposes a heavy burden on the pharmacovigi-
lance system. Considering that 81% of the signals were 
originating from EudraVigilance, the screening efficiency 
of used statistical methods has a major impact on the over-
all effectiveness of the signal detection system.

The cornerstone of the EudraVigilance signal detection 
is the disproportionality methods, which are based on the 
calculation of statistical association between the constitu-
ents of so-called drug–event combinations (DECs). One of 
the main limitations of disproportionality methods [5] is 
that they are incapable of considering possible factors that 
might cause signals in disproportionate reporting with no 
causal relationship between the elements of DECs. Sensi-
tivity and specificity of statistical signal detection methods 
have been compared previously [6] but no superior method 
was identified. The EMA approach is to use the reporting 
odds ratio (ROR) [7]. To reduce random variability effect 
and false results, data filtering rules were introduced, like 
a threshold for the minimum number of required adverse 
event reports on drugs or the use of the important medical 
event (IME) list [8].

Recent EMA initiatives aimed to identify new ways 
of signal detection methods as a future prospective of 
this field [7]. In 2017, the EMA published a data access 

procedure to the EudraVigilance database in order to facil-
itate pharmacovigilance-related research [9]. The access 
level 2A for academia provides 228 of the 272 data ele-
ments of the ICH E2B(R3) standard ICSR format, pro-
viding deeper insights for researchers to analyze ICSRs 
compared with publicly available data [10].

Studies were published in relation to the development 
of improved statistical signal detection methodologies that 
showed promising results, such as vigiRank [11], combi-
nation of supervised learning and Bradford Hill’s causal-
ity considerations [12], application of machine learning 
[13], false discovery rate detection [14, 15], competition 
bias removal [16], and co-prescription bias and associated 
unmasking [17], but currently these methods are not used 
widely by regulatory bodies or pharmaceutical companies. 
In recent years, the field of network theory and analysis was 
researched extensively, and various methods were applied 
on spontaneous reporting databases in order to describe the 
network characteristics of spontaneous adverse event report 
databases [18–20], certain adverse events [21, 22] and sup-
port decision rules [23]. Network analysis as a part of sig-
nal detection methods has also been published recently, for 
co-reported community detection [24] and adverse event 
severity estimation and risk profiling [25]. In this study, we 
aimed to investigate the application of previously described 
network edge-weighting metrics for signal detection as a 
novel approach.

2  Methods

ICSRs containing five selected cardiovascular adverse events 
were accessed from the EudraVigilance database as indi-
vidual datasets. These were processed by our Vigilace™ 
web-based application that built four different networks 
for each, representing the connections among all drugs and 
adverse events reported in the selected ICSRs. Three met-
rics, which we termed normalized edge weight for signals 
(NEWS) scores, were calculated based on the edge weights 
of the networks and were used for signal detection purposes. 
Area under the receiver operating characteristic curves 
(AUROC) were calculated to compare the performance of 
NEWS scores to the ROR disproportionality method as a 
control. A detailed process workflow is presented in Fig. 1 
using the example of the acute myocardial infarction (AMI) 
ICSR dataset.

2.1  Data Access

We focused on the analysis of cardiovascular adverse 
events, considering their high ratio among safety-related 
drug withdrawals [26]. Signals assessed by the PRAC [27] 
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were reviewed and five cardiovascular-related signals of 
centrally authorized products, where the adverse event was 
described in the form of single Medical Dictionary for Regu-
latory Affairs  (MedDRA®) [28] Preferred Terms (PTs), were 
selected for further analysis. We submitted our data request 
to the EMA for accessing all ICSRs reported in connec-
tion with the above-mentioned PT codes on access level 2A. 
Our research plan was approved by the Semmelweis Univer-
sity Regional and Institutional Committee of Science and 

Research Ethics (SE RKEB 82/2018), and our data access 
request was accepted by the EMA.

2.2  Data Processing

Literature data about the application of network analysis on 
ICSRs are available [18, 19, 29, 30], however no publicly 
available tool was accessible to test signal detection methods 
using the networks built from ICSRs of the EudraVigilance 
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Fig. 1  Process workflow. Data access: All ICSRs, including acute 
myocardial infarction, were obtained from EudraVigilance on the 2A 
access level. Data processing: ICSRs were processed using Vigi-
lace™ software. AE data were coded using the  MedDRA®, and drug 
data were coded using the XEVMPD and DrugBank dictionary. ICSR 
filtering was applied based on the defined study settings, and four 
drug–AE networks (RW,  TWFull,  TWAE,  TWD) were built. Network 
analysis: The built networks were analyzed and visualized. NEWS 
scores were calculated. Signal detection analysis: ROR and NEWS 
scores were applied as signal detection methods for all drug–acute 

myocardial infarction edges, and AUROC analysis was performed 
to compare NEWS scores with ROR. The Merged SIDER and IMI 
Protect—ADR Database were used as the reference dataset. ICSRs 
individual case safety reports, AE adverse event, MedDRA® Medi-
cal Dictionary for Regulatory Activities, RW report-based weighted, 
TW topological weighted, TWFull full topological weighted, TWAE 
adverse event topological weighted, TWD drug topological weighted, 
ROR reporting odds ratio, NEWS normalized edge weight for sig-
nals, AUROC area under the receiver operating characteristic curve, 
XEVMPD Extended EudraVigilance medicinal product dictionary
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database. Therefore, we developed a web-based application 
called Vigilace™ (www. vigil ace. com; Pharmahungary, 
Szeged, Hungary), which allows us to process the accessed 
ICSRs on access level 2A from EudraVigilance and build 
networks from the reported data. The data processing and 
network building parts of Vigilace™ were written in the 
C++ programming language, where queries can be config-
ured by user-defined parameters regarding the processing of 
ICSRs (e.g. reporting type, drug role, handling of combina-
tion drugs) and network settings (edge weighting algorithm). 
Vigilace™ was developed by the Pharmahungary Group in 
collaboration with Semmelweis University under commer-
cial license, but it is available free of charge for reasonable 
academic research use. The networks can be downloaded 
in graph modelling language (GML) and in custom value 
separated (CSV) file format, which allows flexible analysis 
of the data.

The ICSRs of the selected cardiovascular adverse events 
were accessed from EudraVigilance as a relational database 
in the form of Microsoft Excel Open XML Spreadsheet 
(XLSX) files (Microsoft Corporation, Redmond, WA, USA). 
In the published data, the adverse events and drugs were 
provided in text format in line with  MedDRA® and Extended 
EudraVigilance medicinal product dictionary (XEVMPD). 
In case the reported information could not be coded by the 
EMA, the original reported text was provided in the XLSX 
files. Further preprocessing was applied on the published 
files to change the separator characters to a unique separa-
tor character in order to allow the correct reading of free-
text fields within ICSRs by Vigilace™. After preprocess-
ing, each cardiovascular ICSR dataset was uploaded for a 
separate query to the website of Vigilace™. As the drug and 
adverse event data were only published in text format (e.g. 
XEVMPD code was not provided), the different terms and 
synonyms for the same event could not be unified directly, 
therefore we utilized dictionaries as additional input files 
that served as look-up tables for string-matching and enabled 
unification.

Adverse events of accessed ICSRs were coded by map-
ping them in text format to  MedDRA® (version 23.0) PTs. 
If an adverse event-related data field could not be mapped 
against  MedDRA®, it was not included in the internal data 
representation of the ICSR.

Drugs of accessed ICSRs were coded by mapping the 
corresponding drug to XEVMPD identifiers (IDs) provided 
by the EMA. This could not cover all reported drugs, as 
non-coded drugs in EudraVigilance were also published. 
Therefore, DrugBank [31] IDs were applied to improve the 
coding performance. Drugs reported under various names 
(brand name, synonyms) were unified under one common 
ID. If a drug in an ICSR could not be coded by the above-
mentioned drug dictionaries, then that drug was not included 
in the internal data representation of the ICSR. Active 

substances of combination products were coded separately. 
Drugs reported as suspected, interacting, or concomitant in 
the ICSRs were all coded.

Only spontaneous ICSRs containing at least one suc-
cessfully coded drug and at least one successfully coded 
adverse event were used in order to minimize the data loss. 
The ICSRs that satisfied these filtering criteria were kept for 
network building and analysis.

2.3  Network Analysis

Based on the previously described internal data representa-
tion of drugs and adverse events, four different networks 
were built by Vigilace™ for each accessed cardiovascular 
ICSR dataset using the filtered ICSRs. The reported drugs 
and adverse events corresponded to the nodes of the net-
works, while undirected edges were created between them, 
representing the interactions between the nodes.

Edge weights were calculated by different algorithms 
described by Botsis et al. [29], and these algorithms were 
implemented in their original form by our research group. 
The report-based weighting (RW) algorithm calculates 
weights for each edge in the network by counting the ICSRs 
that contain their respective two nodes. In our study, the 
node that represents the selected cardiovascular adverse 
event of the accessed dataset is called the ‘central adverse 
event node’, considering that it occurs in all ICSRs of the 
dataset and therefore forms an edge with all other nodes 
in the networks built by the RW algorithm. These types of 
networks are called RW networks.

The topological weighting (TW) algorithm iterates on 
each possible edge and sets the edge weight based on the 
number of triangles in which the edge is included in the 
network. As described by Botsis et al., the TW method con-
siders the triangle counts within the whole network, and it 
does not take into account the reporting frequencies. Trian-
gles are defined as a subgraph of a network with three nodes 
and three edges. In these triangles, the nodes that belong 
to the investigated edge are called ‘base nodes’, while the 
node outside that edge is termed the ‘third node’. The TW 
algorithm can return three types of edge weights depending 
on the third node type considered during the calculation. 
If both types (drug and adverse event), only adverse event 
type, or only drug type nodes are considered as the third 
node during network building, the resulting network is called 
full-  (TWFull), adverse event-  (TWAE), or drug-  (TWD) type 
of TW network, respectively.  TWFull gives the number of co-
reported adverse events and drugs with a certain edge;  TWAE 
gives the number of adverse events co-reported with a cer-
tain edge; and  TWD gives the number of drugs co-reported 
with a certain edge from the network. Edges with a weight 
of 0 by TW algorithm were excluded from the TW networks. 
If all edges of a given node were weighted 0, and therefore 

http://www.vigilace.com
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the node became isolated, then that node was excluded from 
the network.

In Fig. 2 an example of the networks built by the four 
edge weighting algorithms is shown. In this example, the 
first and second ICSRs both contain AMI as the reported 
adverse event, and cefalexin, nifedipine and rofecoxib as 
reported drugs (Fig. 2a). The third ICSR contains AMI and 
depression as adverse events, and cephalexin and nifedipine 
as drugs. In Fig. 2b, RW,  TWFull,  TWAE, and  TWD networks 
from this set of ICSRs are visualized and calculated edge 
weights for all edges are presented.

Vigilace™ performs the data processing, network build-
ing, edge weighting, and creation of GML output files. 
The GML file format is widely used to describe networks, 
as most of the network analysis software and libraries are 
equipped to process this format. Vigilace™ also creates CSV 
files with the node and edge attributes of the networks.

2.3.1  Network Characterization and Visualization

Each GML network file of the selected five cardiovascular 
ICSR datasets were loaded to the Cytoscape software [32] 
and characterized by overall node count, drug type node 
count (i.e. the number of coded drugs), adverse event type 
node count (i.e. the number of coded adverse events), and 
edge count (i.e. the number of connections among the nodes 
based on the applied edge weighting algorithm) with the 

built-in network analysis functions of Cytoscape. EntOpt-
Layout plugin version 2.1 [33] for the Cytoscape software 
was used to visualize the networks and manual amendments 
were made for demonstration purposes.

2.3.2  Normalized Edge Weight for Signals (NEWS) Scores

We used the networks built by different edge weighting algo-
rithms from the selected cardiovascular ICSR datasets for 
network-based signal detection. Here, we investigated only 
the drug–adverse event edges connected to their respective 
central adverse event node in the networks, as not all edges 
and weights could be included for other adverse event nodes 
in these networks, and thus only the central adverse event 
node-related DECs could be properly described with the cre-
ated networks. In this study, NEWS scores of a drug–adverse 
event edge were calculated by normalizing the edge weight 
in the RW network by the corresponding edge weight in 
the TW networks. NEWS scores were considered 0 using 
our method, if the given TW algorithm would result in a 0 
denominator. By this approach, we calculated three types of 
NEWS scores depending on the TW type in the denomina-
tor, and we termed them full-, adverse event-, and drug-type 
NEWS  (NEWSFull,  NEWSAE,  NEWSD) scores as presented 
in Fig. 3a.

In Figs. 3b, c, an example is shown for the calculation of 
NEWS scores of certain edges of the networks described 

Fig. 2  Example networks were 
built by RW,  TWFull,  TWAE, 
and  TWD algorithms. A The 
list of drugs and adverse events 
reported in three example 
ICSRs. B RW,  TWFull,  TWAE, 
and  TWD networks are visual-
ized from the ICSRs listed in 
(A). Acute myocardial infarc-
tion as the central adverse event 
node is visualized with dark 
green ovals, depression as the 
adverse event node is visual-
ized with green ovals, and the 
drug nodes are visualized with 
blue diamonds. Calculated 
edge weights are presented on 
each edge by the number in 
squares. ICSRs individual case 
safety reports, RW report-based 
weighting, TWFull full topo-
logical weighting, TWAE adverse 
event topological weighting, 
TWD drug topological weighting

ICSR 1 Acute myocardial 
infarc�on (AMI) Cefalexin (Cef) Nifedipine (Nif) Rofecoxib (Rof) 

ICSR 2 Acute myocardial 
infarc�on (AMI) Cefalexin (Cef) Nifedipine (Nif) Rofecoxib (Rof) 

ICSR 3 Acute myocardial 
infarc�on (AMI) Depression (DEP) Cefalexin (Cef) Nifedipine (Nif)

A.

B.
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in Fig. 2. In this example, the central adverse event node 
was AMI, therefore only drug–adverse event edge weights 
in relation to AMI were calculated, while depression-related 
drug–adverse event edges were not. Figure 3b shows edge 
weights in the RW and TW networks of AMI, with cefalexin, 
nifedipine, and rofecoxib nodes. In Fig. 3c the NEWS scores 
for each drug–AMI edge were presented.

2.4  Signal Detection Analysis

AUROC analysis was used to assess the predictive value of 
the NEWS scores as a signal detection method.

The reference dataset for the analysis was prepared by 
merging SIDER [34] and IMI protect—Adverse Drug Reac-
tion Database [35]. These databases contain known DECs 
that we used as positive controls in the AUROC analysis. 
Drug-adverse event edges that did not appear in this merged 
reference dataset were considered as negative controls.

ROR, which is the standard statistical signal detec-
tion method used by the EMA, was chosen for the con-
trol method to evaluate the signal detection efficiency of 

NEWS scores. For ROR calculation, all ICSRs would have 
been needed from the EudraVigilance database, therefore 
the ROR results and their 95% confidence interval lower 
bound values [ROR(−)] were provided, after additional 
data request, by the EMA. The equal comparability of 
ROR and NEWS scores was still ensured, considering that 
to investigate the selected cardiovascular adverse event-
related DECs we needed the full dataset for ROR, but for 
NEWS score calculations the adverse event-related ICSRs 
were sufficient.

To determine whether the differences between the 
AUROC values of ROR(−),  NEWSFull,  NEWSAE, and 
 NEWSD scores were significant, pairwise DeLong tests 
were applied [36] with a significance level of p < 0.05, and 
Bonferroni correction was applied to adjust for multiple 
comparisons. Assessment was performed using edges where 
all methods could be calculated. The same assessment was 
performed using edges over three reports for ROR calcula-
tions in order to provide a description of the dataset with the 
similar settings as in the ROR methods applied by the EMA 
[7]. This process was implemented using the R programming 

Fig. 3  A Formulas of NEWS score calculation for a certain edge 
considering the RW,  TWFull,  TWAE, and  TWD algorithms. B  Edge 
weights of drug–adverse event edges between AMI, CEF, NIF, and 
ROF) nodes in networks presented in Fig. 2. C Calculated  NEWSFull, 
 NEWSAE, and  NEWSD scores for drug–adverse event edges. * NEWS 
score was considered 0, if the given TW algorithm resulted in a 0 
denominator. NEWS normalized edge weight for signals, RW report-

based weighting, TWFull full topological weighting, TWAE adverse 
event topological weighting, TWD drug topological weighting, AMI 
acutemyocardial infarction, CEF cefalexin, NIF nifedipine, ROF 
rofecoxib, NEWSFull full topological weighting normalized edge 
weight for signals, NEWSAE adverse event topological weighting nor-
malized edge weight for signals, NEWSD drug topological weighting 
normalized edge weight for signals
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language [37] with pROC (v1.18.0) [38] and rjson (v0.2.20) 
[39] packages.

Receiver operating characteristic (ROC) curves were 
further analyzed for the investigation of sensitivity 
and specificity on different thresholds. Threshold was 
searched at which the NEWS scores yielded the same sen-
sitivity as ROR(−) on signal level [ROR(−) >1], and at 
that threshold, specificity of the NEWS scores and ROR 
was compared. The classification differences of the posi-
tive and negative controls by ROR(−) and NEWS score 
methods were shown in a Venn diagram. The same pro-
cedure was repeated by searching NEWS thresholds for 
fixed specificity and comparing the sensitivities.

3  Results

3.1  Data Access

In the PRAC signal list (data cut-off date: February 2018), 
we identified five signals (temsirolimus–myocardial 
infarction, daclatasvir, sofosbuvir, sofosbuvir and ledipas-
vir–arrhythmia, human papillomavirus vaccine– postural 
orthostatic tachycardia syndrome (POTS), leflunomide-
pulmonary hypertension (PH), agomelatine–QT prolonga-
tion) that satisfied our predefined criteria. As a result, the 
cardiovascular adverse event PTs were AMI, arrhythmia, 
POTS, PH, and ‘electrocardiogram QT prolonged’ (QTP, 
QT prolongation). We accessed all ICSRs of the selected 
five adverse events from the EudraVigilance database 
post-authorisation module on access level 2A in the form 
of five XLSX file packages (one for each adverse events) 
with a data cut-off date of July 2018.

The largest was the arrhythmia dataset with 26,028 
ICSRs, while the POTS dataset was the smallest with only 
539 ICSRs, as shown in Table 1. Only spontaneous ICSRs 
were processed further by Vigilace™.

3.2  Data Processing

We identified the drugs and adverse events that could not be 
coded using the dictionaries in Vigilace™. The number of 
ICSRs including non-coded drugs and adverse events is pre-
sented in electronic supplementary material (ESM) Table 1. 
Overall, 93 AMI, 314 arrhythmia, 6 POTS, 32 PH, and 468 
QTP ICSRs were filtered out as these ICSRs did not have at 
least one successfully coded drug and at least one success-
fully coded adverse event node after data processing. The 
remaining, filtered ICSRs were used for network building.

3.3  Network Analysis

Drug–adverse event networks were built by the RW,  TWFull, 
 TWAE, and  TWD algorithms, resulting in GML output files. 
These networks were analyzed to obtain the basic charac-
teristics, such as overall node count, drug type node count, 
adverse event type node count, and edge count. The char-
acteristics of RW networks for all five cardiovascular ICSR 
datasets are presented in Table 2. The characteristics of 
the three subtypes of TW networks are presented in ESM 
Tables 2, 3, and 4. The highest node and edge count were 
found in the RW networks for each cardiovascular dataset. 
 TWFull networks contained the most edges among differ-
ent types of TW networks. The edge count difference of 
 TWFull networks compared with RW networks arose from 
those edges that were not included in triangles, therefore the 
respective edge weights were 0, while the node count differ-
ence represented the isolated nodes compared with RW net-
works.  TWD networks contained the least edges among all 
networks, showing that more triangles existed with adverse 
event node as the third node.  TWAE networks had less edges 
compared with  TWFull networks, but the node counts were 
equal, representing that no node became isolated in  TWAE 
networks due to these missing edges.  TWD networks had the 
lowest node count, but only drug type nodes were isolated.

Table 1  Number of accessed, 
spontaneous, and filtered 
individual case safety reports 
from EudraVigilance for each of 
the five selected cardiovascular 
ICSR datasets

Data cut-off date: July 2018
ICSRs individual case safety reports
a Medical Dictionary for Regulatory Activities, Preferred Term
b Filtered ICSRs are spontaneous ICSRs where at least one drug and at least one adverse event was success-
fully coded in Vigilace™ software

Adverse  eventa Accessed ICSRs Spontaneous 
ICSRs

Filtered  ICSRsb

Acute myocardial infarction 17,546 12,252 12,159
Arrhythmia 26,028 20,682 20,368
Postural orthostatic tachycardia syndrome 539 484 478
Pulmonary hypertension 11,627 8190 8158
Electrocardiogram QT prolonged 16,734 13,501 13,033
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In order to identify possible structural characteristics, 
we visualized the networks by loading the GML files into 
Cytoscape. We found that the complete networks rep-
resenting all nodes and edges (Fig. 4a) were not suitable 
for visual investigation, as these are too dense to identify 

separate modules. Therefore, only the sub-networks repre-
senting nodes connected by edges of the top 100 weights 
were visualized for demonstration purposes (Fig. 4b). The 
thickness of the edges shows the edge weight, meaning that 
the higher the weight is, the thicker the edge appears. In 

Table 2  Topological characteristics of report-based weighted networks

ICSR individual case safety report
a Medical Dictionary for Regulatory Activities, Preferred Term
b Filtered ICSRs are spontaneous ICSRs where at least one drug and at least one adverse event was successfully coded in Vigilace™ software

Adverse  eventa Filtered  ICSRsb Node count Drug type node Adverse event-
type node

Edge count

Acute myocardial infarction 12,159 6163 2041 4122 740,837
Arrhythmia 20,368 8421 2835 5586 1,282,706
Postural orthostatic tachycardia syndrome 478 1556 383 1173 92,067
Pulmonary hypertension 8158 6902 1799 5103 1,266,979
Electrocardiogram QT prolonged 13,033 5252 2060 3192 488,356

A.

B.

Fig. 4  Acute myocardial infarction RW network generated by Vigi-
lace™ software and visualized in Cytoscape. A Visualization of the 
complete acute myocardial infarction RW network. B  Sub-network 
representing nodes that were connected by edges of the top 100 
weights and visualized for demonstration purposes for acute myo-

cardial infarction. Nodes representing drugs are shown as blue dia-
monds, while nodes representing adverse events are shown as green 
ovals. Acute myocardial infarction as the central adverse event is 
labelled with dark green ovals. Edge thickness represents the weight. 
RW report-based weighted
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Fig. 5, the sub-networks for each edge weighting algorithm 
are presented for AMI. In Fig. 5a, the RW sub-network 
contains 29 adverse event nodes and 34 drug nodes besides 
the AMI central adverse event node. In this sub-network, 
rofecoxib (edge weight: 2543) and coronary artery disease 
(edge weight: 2157) edges have the highest weight with AMI 
among all drugs and adverse events. In Fig. 5b, the  TWFull 
sub-network contains 28 adverse events and 12 drug nodes 
besides AMI, and acetylsalicylic acid (edge weight: 3822) 
and coronary artery disease (edge weight: 3592) edges have 
the highest weight. In Fig. 5c, the  TWAE sub-network con-
tains 29 adverse events and 8 drug nodes besides AMI, and 
acetylsalicylic acid (edge weight: 2443) and coronary artery 
disease (edge weight: 2690) edges have the highest weight. 
In Fig. 5d, the  TWD sub-network contains 11 adverse events 
and 25 drug nodes besides AMI, and acetylsalicylic acid 

(edge weight: 1379) and chest pain (edge weight: 1017) 
edges have the highest weight.

Sub-networks of arrhythmia, POTS, PH, and QTP are 
visualized in ESM Figs. 1, 2, 3, and 4, respectively.

3.4  Signal Detection Analysis

3.4.1  Reference Dataset

The reference dataset of known drug–adverse event rela-
tionships was formed using the SIDER and IMI Protect—
Adverse Drug Reaction Database. In this merged reference 
dataset for the drug–adverse event edges of our networks, 
16, 306, 1, 30, and 90 positive controls were found for AMI, 
arrhythmia, POTS, PH, and QTP, respectively, for which all 
methods could be calculated. Based on the created edges, 

Fig. 5  Acute myocardial infarction networks visualized by different 
edge weighting algorithms. The panels represent the sub-networks 
containing the nodes that were connected by edges of the top 100 
weights. Nodes representing drugs are shown as blue diamonds, 
while nodes representing adverse events are shown as green ovals. 

Acute myocardial infarction as the central adverse event is labelled 
with dark green ovals. Edge thickness represents the weight. A RW 
network; B   TWFull network; C   TWAE network; D   TWD network. 
RW report-based weighted, TWFull full topological weighted, TWAE 
adverse event topological weighted, TWD drug topological weighted
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1541 AMI, 1713 arrhythmia, 298 POTS, 1391 PH, and 1544 
QTP negative controls were included in the analysis. Con-
sidering that there was only one positive control in the refer-
ence dataset for POTS, we excluded it from further analysis, 
as it did not provide sufficient amount of data for AUROC 
analysis.

3.4.2  Signal Detection Efficiency

In order to assess the performance of our novel  NEWSFull, 
 NEWSAE, and  NEWSD scores for signal detection purposes, 
we performed AUROC analysis along with ROR(−) as the 
control method. All drug–central adverse event edges were 
included, where all methods could be calculated, and the 
reference dataset was used to determine the sensitivity and 
specificity at the different thresholds. AUROCs of differ-
ent methods within the same selected cardiovascular ICSR 
dataset were compared with each other by DeLong test. In 
Fig. 6, the results of the AUROCs are presented, and the 
significance of the NEWS scores compared with ROR(−) 
values is indicated on the bar plots.

NEWSD and  NEWSFull scores both performed sig-
nificantly better on the AMI, PH, and QTP ICSR datasets 
(adjusted p < 0.05, with Bonferroni correction) compared 
with ROR(−). On the arrhythmia dataset, only  NEWSD 
scores performed better compared with ROR(−) [AUROC 
0.657 vs. 0.614, p-value < 0.05, without Bonferroni cor-
rection), while  NEWSFull performed poorer in tendency on 
arrhythmia (0.608 vs. 0.614, p = 0.77).

We found that on three (arrhythmia, PH, QTP) of the four 
analyzed cardiovascular datasets,  NEWSD scores yielded 
slightly more favourable results compared with  NEWSFull 
scores (AMI 0.856 vs. 0.863; arrhythmia 0.657 vs. 0.608; 
PH 0.861 vs. 0.827, QTP 0.830 vs. 0.819).

NEWSAE score gave the lowest AUROC values among 
all methods on all four ICSR datasets. In comparison with 
ROR(−), it significantly performed poorer on arrhythmia 
(0.512 vs. 0.614, adjusted p < 0.05, with Bonferroni cor-
rection) and poorer on QTP (0.693 vs. 0.749, p < 0.05). 
 NEWSAE performed better compared with ROR(−) in ten-
dency on AMI (0.739 vs. 0.720, p = 0.77) and PH (0.725 
vs. 0.720, p = 0.89).

Fig. 6  AUROC of full, adverse event, and drug normalized edge 
weight for signal scores  (NEWSFull,  NEWSAE,  NEWSD) was com-
pared with the AUROC of ROR(−) in acute myocardial infarction, 
arrhythmia, pulmonary hypertension, electrocardiogram QT pro-
longed networks. AUROCs were compared using the DeLong test (# 
indicates p < 0.05 without Bonferroni correction; * indicates adjusted 

p < 0.05 with Bonferroni correction). AUROC area under the receiver 
operating characteristic curve, ROR(−) 95% confidence interval lower 
bound of the reporting odds ratio, NEWSFull full topological weight-
ing normalized edge weight for signals, NEWSAE adverse event topo-
logical weighting normalized edge weight for signals, NEWSD drug 
topological weighting normalized edge weight for signals
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To better understand the AUROC results, the ROC curves 
of the different datasets are presented in Fig.  7. These 
results show that the overall higher AUROCs of  NEWSD 
and  NEWSFull scores compared with the ROR(−) originate 
from higher sensitivity and specificity. Additionally, we 
determined the specificity at a fixed sensitivity level, set with 

an ROR(−) >1 signal threshold, for each method. On this 
threshold, the sensitivity was 0.688, 0.477, 0.667 and 0.744, 
while the specificity was 0.623, 0.692, 0.628 and 0.607 for 
AMI, arrhythmia, PH and QTP, respectively. On the same 
level of sensitivity, the specificity of  NEWSD scores was 
0.812, 0.727, 0.853 and 0.784, respectively.

Fig. 7  ROC curves are presented for full, adverse event, and drug 
normalized edge weight for signals  (NEWSFull,  NEWSAE,  NEWSD) 
scores, and ROR(−) on different adverse event datasets. Thresh-
old was searched at which the NEWS scores yielded the same sen-
sitivity as 1.001 ROR(−) signal threshold, and at that threshold the 

specificity of the  NEWSD scores and ROR(−) was compared and was 
labelled with grey lines. A Acute myocardial infarction; B arrhyth-
mia; C pulmonary hypertension; D electrocardiogram QT prolonged. 
ROC receiver operating characteristic, ROR(−) 95% confidence inter-
val lower bound of the reporting odds ratio
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The classification differences of the positive and negative 
controls in the reference dataset by ROR(−) and  NEWSD 
scores were illustrated in Fig. 8 by Venn diagrams at a 
fixed sensitivity level of 1.001 ROR(−) signal threshold. 

Figure 8a, b show the true positive and true negative find-
ings, while Figs. 8c, d show the false positive and false 
negatives. As the sensitivity is fixed, the true positive and 
false negative ratio is equal for both methods, while the true 

Fig. 8  Venn diagram of A true positive; B true negative; C false neg-
ative; and D false positive results of ROR(−) and  NEWSD scores at 
a fixed sensitivity level of 1.001 ROR(−) signal threshold for acute 
myocardial infarction, arrhythmia, pulmonary hypertension, and QT 
prolongation. Reference data classified properly are included in A and 

B, while the falsely classified reference data are included in C and D. 
NEWSD drug topological weighting normalized edge weight for sig-
nals, ROR(−) 95% confidence interval lower bound of the reporting 
odds ratio
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negative and false positive ratio shows that  NEWSD scores 
have greater specificity at this sensitivity level.

ESM Figs.  5  and 6 show similar representation for 
 NEWSFull and  NEWSAE scores, while ESM Data 1 pro-
vides the list of true positive findings (i.e. signals) of ROR 
and NEWS score-based classification. The results for fixed 
specificity are presented in ESM Figs. 7, 8, and 9, and ESM 
Data 2.

In ESM Fig. 10, we present a comparison of the AUROC 
values on bar plots, considering only edges with over three 
reports. These limited AUROC results were comparable with 
the results of the full analysis in Fig. 6. The ROC curves are 
shown for edges over three reports in ESM Fig. 11, where 
similar results were found as for the full dataset, except for 
arrythmia, where at a 1.001 ROR(−) signal threshold the 
ROR(−) yields slightly better specificity compared with 
 NEWSD score (0.676 vs. 0.672) on sensitivity level 0.505. 
Elsewhere, the  NEWSD score ROC curve shows higher sen-
sitivity and specificity.

4  Discussion

We have shown here for the first time that network-based 
NEWS scores developed by us, can outperform the stand-
ard disproportionality-based ROR method.  NEWSD score, 
which is the RW (i.e. the number of ICSRs in which the 
DEC appears), divided by the co-reported drug count in 
connection with a drug–adverse event edge in the network 
 (TWD) performed better compared with ROR(−) on four 
different cardiovascular adverse event ICSR datasets.

We accessed all ICSRs of the selected cardiovascular 
adverse events from EudraVigilance. Cardiovascular adverse 
events were selected for analysis, as a high percentage of 
drug withdrawals were triggered by these adverse events in 
the postmarketing phase [26], and therefore a network theo-
retical description of such adverse events might improve 
future signal assessment. We included signals only where the 
adverse event was defined with a single PT, as we intended 
to describe the basic correlations of network-based statisti-
cal signal detection. If signals from higher  MedDRA® levels 
or Standardized MedDRA Queries (SMQs) were included in 
the analysis, the impact of multiple nodes for the same event 
would have required a more complex assessment.

EudraVigilance access level 2A for academia was used as 
it allowed us to access more ICSR data fields in structured 
format compared with access level 1, which is the publicly 
available ICSR data for EudraVigilance on the www. adrre 
ports. eu webpage. The features of the www. adrre ports. eu 
website are useful in terms of transparency and ICSR analy-
sis of certain active substances and products, but they are 
not suitable for statistical signal detection-related research 
due to the limitations of query functions. For a streamlined 

analysis of ICSR data from EudraVigilance, a user-friendly, 
web-based application, called Vigilace™ (www. vigil ace. 
com), which is able to handle the reported drugs and adverse 
events of the ICSRs from EudraVigilance in access level 
2A, was developed by our research group. Even the ICSR 
datasets published by the EMA contained non-coded data 
(i.e., that could not be associated with standardized drug 
names), therefore further data processing was needed. In 
the absence of a widely accepted method for handling such 
non-coded ICSR data, we applied additional drug coding in 
order to enable the inclusion of as many ICSRs as possible in 
the network analysis. Vigilace™ performs internal coding of 
data with the use of two drug dictionaries for reported drugs, 
and  MedDRA® for reported adverse events, then builds a 
set of networks from the filtered ICSRs for further network 
analysis. Currently, there are only a limited number of pub-
licly available tools that allow network theoretical analysis 
on ICSR datasets [1, 20, 23, 29, 40, 41], therefore we believe 
that Vigilace™ could facilitate the related research projects. 
For this purpose, the use of Vigilace™ is free of charge for 
academic research.

In order to develop and test our network-based signal 
detection metrics, the five selected cardiovascular ICSR 
datasets were processed by Vigilace™. After ICSR filtering, 
96.5–99.6% of the spontaneous ICSRs were kept for further 
analysis. Based on the data loss, we found that  MedDRA® 
[28] provided a solid framework for standardized adverse 
event coding, however for drug coding, there were no such 
efficient dictionary, which made the data processing chal-
lenging. The International Organization for Standardization 
(ISO) for the identification of medicinal products (IDMP) 
standards [42] might help to solve this problem in the future, 
as more structured data will be available for drug data.

Vigilace™ built four networks from the ICSRs that 
allowed us to investigate the network characteristics of 
selected cardiovascular adverse events (AMI, arrhyth-
mia, POTS, PH, QTP) using report-based and topological 
edge weighting algorithms (RW,  TWFull,  TWAE,  TWD), 
as described by Botsis et al. [29]. Our network analysis 
proved that the different edge weighting algorithms high-
light distinct characteristics of each dataset. The networks 
and network edges alone are not suitable for signal detec-
tion, and high edge weight does not necessarily imply a 
signal. For example, in the Results section, we described 
acetylsalicylic acid with the highest edge weight for all 
AMI TW networks. However, without normalization, 
this result only shows that the acetylsalicylic acid–AMI 
edge was co-reported with the most adverse events and 
drugs, which, for example, can be caused by bystander 
effect [43]. We also need to take into account that the TW 
algorithm uses all created triangles within the networks 
irrespective of the reporting frequency, therefore a sin-
gle report contributes with the same weight as the most 

http://www.adrreports.eu
http://www.adrreports.eu
http://www.adrreports.eu
http://www.vigilace.com
http://www.vigilace.com
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co-reported drugs. There are methods to filter out such 
week associations in the network field [44], however, in 
signal detection, they need to be applied carefully, as by 
removing weak links from networks may result in losing 
weak true associations. In the future, by further improv-
ing our network theoretical approach, we might be able to 
incorporate not just mathematical descriptions for single 
drug–adverse event relationships but also a comprehensive 
description for multiple drug–drug, adverse event–adverse 
event, and drug–adverse event relationships. This might 
help us to solve the problem of confounders in the case of 
the currently used disproportionality methods, and to also 
include simple drug interaction analysis based on sponta-
neous reporting datasets.

In our present study, we hypothesized that the high 
number of overall reported drugs with a DEC reduces the 
chance that there is real causal relationship between the 
drug and the adverse event included in the DEC. To prove 
this, we calculated the so-called NEWS scores, of which the 
 NEWSD score was suitable to investigate this hypothesis. In 
this study, drug–adverse event edges in connection with a 
given central adverse event node were analyzed, as sufficient 
data for NEWS scores calculation were available only for 
the related edges of requested central nodes in the accessed 
ICSR datasets. In contrary to the ROR, which requires all 
ICSRs within the database, to calculate NEWS scores for 
DECs of an adverse event it is sufficient to have only those 
ICSRs that contain the investigated adverse event. These 
less-limiting data requirements for the application of NEWS 
scores can be an advantage over the ROR method.

The AUROC analysis showed that  NEWSD scores per-
form better compared with ROR(−) on the selected cardio-
vascular ICSR datasets. By investigating the ROC curves, 
we demonstrated that the gain of AUROC compared with 
ROR(−) is in connection to the overall higher sensitivity and 
specificity. These results show the potential of the original 
edge weighting algorithms by Botsis et al., and suggest that 
higher numbers of overall co-reported drugs and adverse 
events occurring with a given edge (i.e. DEC in signal 
detection) reduces the chances of having a real connection 
between the investigated drug–adverse event pair. Previous 
publications in the ICSR network analysis field were mainly 
focused on descriptive analysis of spontaneous reporting 
databases [18, 19, 30], while other studies provided support 
for case review during signal evaluation by network visuali-
zation [23, 29], or described certain adverse events [21, 22]. 
Furthermore, two recent studies applied network metrics for 
signal detection purposes [24, 25], but the approach was dif-
ferent from NEWS scores.

These findings highlighted that investigating ICSR net-
works during signal detection might have added value, as it 
can describe the characteristics of connections among not 
just drug–adverse events within the ICSRs but also adverse 

event–adverse event and drug–drug interaction with addi-
tional signal detection-related metrics.

4.1  Limitations

The first limitation of this study was that only five adverse 
events were accessed, from which only four were analyzed, 
therefore an extension of this study is required in order to 
better generalize our observations regarding NEWS scores. 
To limit this identified bias, an additional data request that 
would allow the full analysis based on our coding standards 
was submitted, to access all ICSRs within EudraVigilance, 
but it was not supported by the EMA. Nevertheless,  NEWSD 
scores showed promising performance in four of four ICSR 
datasets, which is robust evidence for the utility of such 
metrics.

The lack of proper data standards further limited our study, 
as the accessed ICSRs contained data that could not be mapped 
against XEVMPD, and therefore EMA provided them in the 
originally reported text format. As no IDs were available in the 
dataset, a repeated coding was applied, which carries the risk 
of not fully coding in line with EudraVigilance. To manage this 
limitation, the same dictionary was used as that used by the 
EMA. To limit the excluded ICSRs due to missing drugs within 
the network representation, additional coding was applied by 
DrugBank IDs, however this might have an effect on the com-
parability with ROR calculations by the EMA.

The filtering settings of ICSRs based on report types, drug 
roles, inclusion and exclusion criteria might also have an impact 
on the results of this study.

The limited and out-of-date reference datasets of known 
DECs are plaguing the proper evaluation of performance for 
signal detection methods. Both applied reference datasets were 
text-mined from product information, but those mining algo-
rithms had their own limitations, therefore one needs to account 
for additional false positive and false negative relationships. We 
did not apply internal text-mining algorithms to produce our 
own reference dataset, as that would have exceeded the scope 
of our current work; hence, we worked with the widely used 
datasets of the SIDER and IMI Protect projects to allow compa-
rability. The eProduct Information approach, which is planned 
to be introduced in the future by EMA, might solve this issue, 
given that it will also be available for research purposes. [45]

5  Conclusions

This is the first demonstration of using edge-weighting 
normalization-based metrics for statistical signal detection 
purposes. Our results showed that RW normalized by TW 
of co-reported drugs, termed  NEWSD score, can perform 
better when compared with ROR(−), which is promising 
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for the application of network analysis on signal detection, 
therefore we are planning to further develop our approach.

The Vigilace™ software was developed for the network-
based analysis of ICSR data, which could facilitate the 
research on this field and the calculation of NEWS scores for 
the improvement of signal detection. Vigilace™ is a flexible, 
user configurable, web-based application for the purpose of 
building and analyzing networks from selected ICSRs. Vigi-
lace™ could be a useful tool for researchers in the investiga-
tion of the possible further applications of network metrics, 
and may lead to beneficial effects in drug safety.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40264- 022- 01225-9.

Declarations 

Funding Open access funding provided by Semmelweis University. 
This study was supported by the National Research, Development 
and Innovation Office of Hungary (NKFIA; NVKP-16-1-2016-0017 
National Heart Program). The Ministry for Innovation and Technology 
in Hungary provided funding to this study under Thematic Excellence 
Programme (2020-4.1.1.-TKP2020), 2020-1.1.5-GYORSÍTÓSÁV call 
programme (2020-1.1.5-GYORSÍTÓSÁV-2021-00011), TKP2021-
EGA funding scheme (TKP2021-EGA-23), Research Excellence Pro-
gramme (TKP/ITM/NKFIH). This study was also supported by Project 
no. RRF-2.3.1-21-2022-00003 implemented with the support provided 
by the EU. BÁ was supported by the New National Excellence Pro-
gram of the Ministry for Innovation and Technology from the National 
Research, Development and Innovation Fund source (ÚNKP-20-4-I-
SE-7, ÚNKP-21-4-II-SE-18), and MP was supported by EFOP-3.6.3-
VEKOP-16-2017-00009 “Semmelweis 250+ Kiválósági PhD Ösz-
töndíj” grant.

Conflict of Interest/Competing Interests PF is the founder and CEO 
of, and BÁ is employed by, Pharmahungary Group, a group of research 
and development (R&D) companies (www. pharm ahung ary. com) and 
the provider of Vigilace™. MP is the founder and CEO of Sanovigado 
Kft, a pharmaceutical consultancy and R&D company. BB, OB, and 
BP declare they have no conflicts of interest.

Ethical Approval Ethics approval was obtained from the Semmel-
weis University Regional and Institutional Committee of Science and 
Research Ethics (SE RKEB 82/2018)

Consent to Participate This study was based on administrative claims 
data and therefore did not require patient consent.

Consent for Publication Not applicable.

Availability of Data and Material Unpublished data related to this study 
are available from the corresponding author on reasonable request.

Code Availability The code is the intellectual property of Pharmahun-
gary Group and Semmelweis University.

Author Contributions MP: Software coding and architecture design; 
study design; data curation, analysis, and interpretation; drafting of 
the manuscript. BB: Statistical analysis, data interpretation. OB, BP: 
Software coding. BÁ: Software architecture, study design, data inter-
pretation, critical revision of the manuscript. PF: Funding acquisition, 

study design, critical revision of the manuscript. All authors read and 
approved the final manuscript.

Open Access This article is licensed under a Creative Commons Attri-
bution-NonCommercial 4.0 International License, which permits any 
non-commercial use, sharing, adaptation, distribution and reproduction 
in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other 
third party material in this article are included in the article's Creative 
Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article's Creative Commons 
licence and your intended use is not permitted by statutory regula-
tion or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit 
http:// creat iveco mmons. org/ licen ses/ by- nc/4. 0/.

References

 1. Lindquist M. VigiBase, the WHO Global ICSR Database System: 
basic facts. Drug Inf J. 2008;42:409–19.

 2. FDA Adverse Event Reporting System (FAERS). https:// www. fda. 
gov/ drugs/ drug- appro vals- and- datab ases/ fda- adver se- event- repor 
ting- system- faers. Accessed 6 Jun 2022.

 3. EudraVigilance | European Medicines Agency. https:// www. ema. 
europa. eu/ en/ human- regul atory/ resea rch- devel opment/ pharm 
acovi gilan ce/ eudra vigil ance. Accessed 6 Jun 2022.

 4. European Medicines Agency. 2020 Annual Report on EudraV-
igilance for the European Parliament, the Council and the Com-
mission. 2020. https:// www. ema. europa. eu/ en/ docum ents/ report/ 
2020- annual- report- eudra vigil ance- europ ean- parli ament- counc 
il- commi ssion_ en. pdf

 5. Bate A, Evans SJW. Quantitative signal detection using spon-
taneous ADR reporting. Pharmacoepidemiol Drug Saf. 
2009;18:427–36.

 6. Candore G, Juhlin K, Manlik K, Thakrar B, Quarcoo N, Sea-
broke S, et al. Comparison of statistical signal detection methods 
within and across spontaneous reporting databases. Drug Saf. 
2015;38:577–87.

 7. Screening for adverse reactions in EudraVigilance. 
EMA/849944/2016. 2016. https:// www. ema. europa. eu/ en/ docum 
ents/ other/ scree ning- adver se- react ions- eudra vigil ance_ en. pdf. 
Accessed 6 Jun 2022.

 8. IME list inclusion-exclusion criteria | Enhanced Reader. 
moz-extension://5e9ac340-9326-460e-810f-793f4312e4d6/
enhanced-reader.html?openApp&pdf=https%3A%2F%2Fwww.
ema.europa.eu%2Fen%2Fdocuments%2Fother%2Feudravigila
nce-inclusion%2Fexclusion-criteria-important-medical-events-
list_en.pdf. Accessed 17 Dec 2018.

 9. Postigo R, Brosch S, Slattery J, van Haren A, Dogné JM, Kurz X, 
et al. EudraVigilance medicines safety database: publicly acces-
sible data for research and public health protection. Drug Saf. 
2018;41:665–75.

 10. European Medicines Agency. European Medicines Agency pol-
icy on access to EudraVigilance data for medicinal products for 
human use. EMA/759287/2009 Revis. 4. 2019. https:// www. ema. 
europa. eu/ en/ docum ents/ other/ europ ean- medic ines- agency- pol-
icy- access- eudra vigil ance- data- medic inal- produ cts- human- use- 
revis ion-4_ en. pdf.

 11. Caster O, Sandberg L, Bergvall T, Watson S, Norén GN. vigiRank 
for statistical signal detection in pharmacovigilance: first results 

https://doi.org/10.1007/s40264-022-01225-9
http://www.pharmahungary.com
http://creativecommons.org/licenses/by-nc/4.0/
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-adverse-event-reporting-system-faers
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-adverse-event-reporting-system-faers
https://www.fda.gov/drugs/drug-approvals-and-databases/fda-adverse-event-reporting-system-faers
https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance
https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance
https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance
https://www.ema.europa.eu/en/documents/report/2020-annual-report-eudravigilance-european-parliament-council-commission_en.pdf
https://www.ema.europa.eu/en/documents/report/2020-annual-report-eudravigilance-european-parliament-council-commission_en.pdf
https://www.ema.europa.eu/en/documents/report/2020-annual-report-eudravigilance-european-parliament-council-commission_en.pdf
https://www.ema.europa.eu/en/documents/other/screening-adverse-reactions-eudravigilance_en.pdf
https://www.ema.europa.eu/en/documents/other/screening-adverse-reactions-eudravigilance_en.pdf
https://www.ema.europa.eu/en/documents/other/european-medicines-agency-policy-access-eudravigilance-data-medicinal-products-human-use-revision-4_en.pdf
https://www.ema.europa.eu/en/documents/other/european-medicines-agency-policy-access-eudravigilance-data-medicinal-products-human-use-revision-4_en.pdf
https://www.ema.europa.eu/en/documents/other/european-medicines-agency-policy-access-eudravigilance-data-medicinal-products-human-use-revision-4_en.pdf
https://www.ema.europa.eu/en/documents/other/european-medicines-agency-policy-access-eudravigilance-data-medicinal-products-human-use-revision-4_en.pdf


1438 M. Pétervári et al.

from prospective real-world use. Pharmacoepidemiol Drug Saf. 
2017;26:1006–10.

 12. Reps JM, Garibaldi JM, Aickelin U, Gibson JE, Hubbard RB. 
A supervised adverse drug reaction signalling framework imitat-
ing Bradford Hill’s causality considerations. J Biomed Inform. 
2015;56:356–68.

 13. Li J, Ji X, Hua L. Improving the prediction of adverse drug events 
using feature fusion-based predictive network models. IEEE 
Access. 2020;8:48812–21.

 14. Ahmed I, Dalmasso C, Haramburu F, Thiessard F, Broët P, Tubert-
Bitter P. False discovery rate estimation for frequentist pharma-
covigilance signal detection methods. Biometrics. 2010;66:301–9.

 15. Ahmed I, Thiessard F, Miremont-Salamé G, Bégaud B, Tubert-
Bitter P. Pharmacovigilance data mining with methods based on 
false discovery rates: a comparative simulation study. Clin Phar-
macol Ther. 2010;88:492–8.

 16. Raschi E, Fusaroli M, Ardizzoni A, Poluzzi E, De Ponti F. Cyclin-
dependent kinase 4/6 inhibitors and interstitial lung disease in 
the FDA adverse event reporting system: a pharmacovigilance 
assessment. Breast Cancer Res Treat. 2021. https:// doi. org/ 10. 
1007/ s10549- 020- 06001-w.

 17. Avillach P, Salvo F, Thiessard F, Miremont-Salamé G, Fourrier-
Reglat A, Haramburu F, et al. Pilot evaluation of an automated 
method to decrease false-positive signals induced by co-prescrip-
tions in spontaneous reporting databases. Pharmacoepidemiol 
Drug Saf. 2014;23:186–94.

 18. Botsis T, Ball R. Network analysis of possible anaphylaxis cases 
reported to the US vaccine adverse event reporting system after 
H1N1 influenza vaccine. Studies in Health Technologies and 
Informatics. New York: IOS Press; 2011. p. 564–8. https:// doi. 
org/ 10. 3233/ 978-1- 60750- 806-9- 564.

 19. Scott J, Botsis T, Ball R. Simulating adverse event spontaneous 
reporting systems as preferential attachment networks: application 
to the vaccine adverse event reporting system. Appl Clin Inform. 
2014;5:206–18.

 20. Nazir A, Ichinomiya T, Miyamura N, Sekiya Y, Kinosada Y. Iden-
tification of suicide-related events through network analysis of 
adverse event reports. Drug Saf. 2014;37:609–16.

 21. Kim MG, Jeong CR, Kim HJ, Kim JH, Song YK, Kim KI, 
et al. Network analysis of drug-related problems in hospitalized 
patients with hematologic malignancies. Support Care Cancer. 
2018;26:2737–42.

 22. Martinez-De la Torre A, van Weenen E, Kraus M, Weiler S, Feu-
erriegel S, Burden AM. A network analysis of drug combina-
tions associated with acute generalized exanthematous pustulosis 
(AGEP). J Clin Med. 2021;10:4486.

 23. Botsis T, Jankosky C, Arya D, Kreimeyer K, Foster M, Pandey 
A, et al. Decision support environment for medical product safety 
surveillance. J Biomed Inform. 2016;64:354–62.

 24. Fusaroli M, Raschi E, Gatti M, De Ponti F, Poluzzi E. Develop-
ment of a network-based signal detection tool: the COVID-19 
adversome in the FDA adverse event reporting system. Front 
Pharmacol. 2021;12:3542. https:// doi. org/ 10. 3389/ fphar. 2021. 
740707/ full.

 25. Lavertu A, Hamamsy T, Altman RB. Quantifying the severity of 
adverse drug reactions using social media: network analysis. J 
Med Internet Res. 2021;23(10): e27714.

 26. Onakpoya IJ, Heneghan CJ, Aronson JK. Worldwide withdrawal 
of medicinal products because of adverse drug reactions: a sys-
tematic review and analysis. Crit Rev Toxicol. 2016;46:477–89.

 27. PRAC recommendations on safety signals | European Medi-
cines Agency. https:// www. ema. europa. eu/ en/ human- regul atory/ 

post- autho risat ion/ pharm acovi gilan ce/ signal- manag ement/ prac- 
recom menda tions- safety- signa ls. Accessed 6 Jun 2022.

 28. Brown EG, Wood L, Wood S. The medical dictionary for regula-
tory activities (MedDRA). Drug Saf. 1999;20(2):109–17.

 29. Botsis T, Scott J, Goud R, Toman P, Sutherland A, Ball R. Novel 
algorithms for improved pattern recognition using the US FDA 
adverse event network analyzer. Studies in health technologies and 
informatics. New York: IOS Press; 2014. p. 1178–82. https:// doi. 
org/ 10. 3233/ 978-1- 61499- 432-9- 1178.

 30. Davazdahemami B, Delen D. A chronological pharmacovigilance 
network analytics approach for predicting adverse drug events. J 
Am Med Informatics Assoc. 2018;25:1311–21.

 31. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, 
et al. DrugBank 5.0: A major update to the DrugBank database 
for 2018. Nucleic Acids Res. 2018;46:D1074–82.

 32. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage 
D, et  al. Cytoscape: A software Environment for integrated 
models of biomolecular interaction networks. Genome Res. 
2003;13:2498–504.

 33. Ágg B, Császár A, Szalay-Bekő M, Veres DV, Mizsei R, Ferdi-
nandy P, et al. The EntOptLayout Cytoscape plug-in for the effi-
cient visualization of major protein complexes in protein–protein 
interaction and signalling networks. Valencia A, editor. Bioinfor-
matics. 2019;35:4490–2.

 34. Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER database of 
drugs and side effects. Nucleic Acids Res. 2016;44:D1075–9.

 35. PROTECT Home. http:// www. imi- prote ct. eu/ adver seDru gReac 
tions. shtml. Accessed 13 Jan 2018.

 36. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the 
areas under two or more correlated receiver operating character-
istic curves: a nonparametric approach. Biometrics. 1988;44:837–
45. https:// doi. org/ 10. 2307/ 25315 95.

 37. R: The R Project for Statistical Computing. https:// www.r- proje 
ct. org/. Accessed 6 Jun 2022.

 38. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, 
et al. pROC: an open-source package for R and S+ to analyze and 
compare ROC curves. BMC Bioinform. 2011;12:77. https:// doi. 
org/ 10. 1186/ 1471- 2105- 12- 77.

 39. CRAN—Package rjson. https:// cran.r- proje ct. org/ web/ packa ges/ 
rjson/ index. html. Accessed 6 Jun 2022.

 40. Zhang Y, Wu P, Luo Y, Tao C. Identification of sex-associated 
network patterns in Vaccine-Adverse Event Association Network 
in VAERS. J Biomed Semantics. 2015;6:33.

 41. Tao C, Wu P, Luo Y, Zhang Y. Linked vaccine adverse event data 
from VAERS for biomedical data analysis and longitudinal stud-
ies. BioData Min. 2014;7:36.

 42. Data on medicines (ISO IDMP standards): Overview | European 
Medicines Agency. https:// www. ema. europa. eu/ en/ human- regul 
atory/ overv iew/ data- medic ines- iso- idmp- stand ards- overv iew. 
Accessed 6 Jun 2022.

 43. Dijkstra L, Garling M, Foraita R, Pigeot I. Adverse drug reac-
tion or innocent bystander? A systematic comparison of statistical 
discovery methods for spontaneous reporting systems. Pharma-
coepidemiol Drug Saf. 2020;29:396–403.

 44. Epskamp S, Borsboom D, Fried EI. Estimating psychological net-
works and their accuracy: a tutorial paper. Behav Res Methods. 
2018;50:195–212.

 45. European Medicines Agency. Electronic product information for 
human medicines in the EU: key principles A joint EMA-HMA-
EC collaboration. https:// www. ema. europa. eu/ en/ elect ronic- produ 
ct- infor mation- human- medic ines- europ ean- union- key- princ iples. 
Accessed 6 Jun 2022.

https://doi.org/10.1007/s10549-020-06001-w
https://doi.org/10.1007/s10549-020-06001-w
https://doi.org/10.3233/978-1-60750-806-9-564
https://doi.org/10.3233/978-1-60750-806-9-564
https://doi.org/10.3389/fphar.2021.740707/full
https://doi.org/10.3389/fphar.2021.740707/full
https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/signal-management/prac-recommendations-safety-signals
https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/signal-management/prac-recommendations-safety-signals
https://www.ema.europa.eu/en/human-regulatory/post-authorisation/pharmacovigilance/signal-management/prac-recommendations-safety-signals
https://doi.org/10.3233/978-1-61499-432-9-1178
https://doi.org/10.3233/978-1-61499-432-9-1178
http://www.imi-protect.eu/adverseDrugReactions.shtml
http://www.imi-protect.eu/adverseDrugReactions.shtml
https://doi.org/10.2307/2531595
https://www.r-project.org/
https://www.r-project.org/
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1186/1471-2105-12-77
https://cran.r-project.org/web/packages/rjson/index.html
https://cran.r-project.org/web/packages/rjson/index.html
https://www.ema.europa.eu/en/human-regulatory/overview/data-medicines-iso-idmp-standards-overview
https://www.ema.europa.eu/en/human-regulatory/overview/data-medicines-iso-idmp-standards-overview
https://www.ema.europa.eu/en/electronic-product-information-human-medicines-european-union-key-principles
https://www.ema.europa.eu/en/electronic-product-information-human-medicines-european-union-key-principles

	Network Analysis for Signal Detection in Spontaneous Adverse Event Reporting Database: Application of Network Weighting Normalization to Characterize Cardiovascular Drug Safety
	Abstract
	Introduction 
	Objectives 
	Methods 
	Results 
	Conclusion 

	1 Introduction
	2 Methods
	2.1 Data Access
	2.2 Data Processing
	2.3 Network Analysis
	2.3.1 Network Characterization and Visualization
	2.3.2 Normalized Edge Weight for Signals (NEWS) Scores

	2.4 Signal Detection Analysis

	3 Results
	3.1 Data Access
	3.2 Data Processing
	3.3 Network Analysis
	3.4 Signal Detection Analysis
	3.4.1 Reference Dataset
	3.4.2 Signal Detection Efficiency


	4 Discussion
	4.1 Limitations

	5 Conclusions
	References




