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Lithium-sulfur (Li-S) batteries as power supply systems possessing a theoretical energy density of as high as 2600Wh kg−1 are
considered promising alternatives toward the currently used lithium-ion batteries (LIBs). However, the insulation characteristic
and huge volume change of sulfur, the generation of dissolvable lithium polysulfides (LiPSs) during charge/discharge, and the
uncontrollable dendrite formation of Li metal anodes render Li-S batteries serious cycling issues with rapid capacity decay. To
address these challenges, extensive efforts are devoted to designing cathode/anode hosts and/or modifying separators by
incorporating functional materials with the features of improved conductivity, lithiophilic, physical/chemical capture ability
toward LiPSs, and/or efficient catalytic conversion of LiPSs. Among all candidates, molybdenum-based (Mo-based) materials are
highly preferred for their tunable crystal structure, adjustable composition, variable valence of Mo centers, and strong
interactions with soluble LiPSs. Herein, the latest advances in design and application of Mo-based materials for Li-S batteries are
comprehensively reviewed, covering molybdenum oxides, molybdenum dichalcogenides, molybdenum nitrides, molybdenum
carbides, molybdenum phosphides, and molybdenum metal. In the end, the existing challenges in this research field are
elaborately discussed.

1. Introduction

The rapid development in materials science and technology
has boomed the energy storage market, covering widespread
applications of smart grids, electric vehicles, portable electron-
ics, etc. [1–8]. Among all currently available battery systems,
Li-S rechargeable batteries have drawn great attention because
of their cost-effectiveness and extremely high energy density
with a theoretical value of 2600Whkg−1, which is much
higher than that of the most advanced LIBs [9–16] and can
meet the customers’ requirements on electric vehicles with
500 kilometers (corresponding to 500–600Whkgsul

−1) per
charge (Figure 1(a)) [17].

To date, the widely accepted reaction mechanism in Li-S
batteries is the multielectron transfer mode (S8 + 16Li+ +
16e− → 8Li2S), involving series reactions of S8 → Li2S8 →

Li2S6/Li2S4 → Li2S2/Li2S accompanied by a number of inter-
mediates generated during the charge/discharge process
(Figure 1(b)) [18]. Since Li2S (1.67 g cm−3) has a lower den-
sity in comparison with sulfur (2.36 g cm−3), there involves
a volume expansion of ~80% during lithiation, thereby caus-
ing electrode degradation/pulverization [17]. Moreover, the
insulation features of sulfur and Li2S2/Li2S further hinder
the electron transfer and slow down the reaction kinetics
[19, 20]. In contrast to Li2S2 and Li2S, the dissolvable lithium
polysulfides (LiPSs) diffuse through the porous separator to
the negative electrode and react with Li metal forming non-
dissolvable Li2S [21]. Such a “shuttle effect” results in the
consumption of sulfur cathodes and the passivation of metal
anodes, leading to the increase in internal resistance, the deg-
radation of cycling stability, and the depression of Coulombic
efficiency [22–25]. Meanwhile, the Li metal anode also suffers
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from high chemical reactivity, unstable solid electrolyte
interphase (SEI), and dendrite growth during the plating/
stripping process, resulting in capacity loss and safety issues
[26]. These issues hamper the commercialization of Li-S
batteries.

Numerous strategies have been raised to solve the above-
mentioned problems, such as designing cathode/anode hosts
and/or modifying separators [27]. Early tries focused on the
incorporation of sulfur into carbonaceous materials, such
as graphene foam [28], porous carbon [29], and carbon
nanotube network [30], which provide physical constraints
on LiPSs. However, the weak intermolecular interaction
between nonpolar hydrophobic carbonaceous hosts and
polar hydrophobic LiPSs is insufficient to prevent the shuttle
of LiPSs. Alternatively, polar substances, e.g., transition
metal oxides [31], sulfides [32], and carbides [33], were pro-
posed to enhance the adsorption of LiPSs; nevertheless, the
performance improvement remains moderate. Lately, the
strategies based on the acceleration of the conversion
between LiPSs and Li2S2/Li2S were developed and a number
of nanomaterials (e.g., oxides [34], sulfides [35], selenides
[36], nitrides [37], carbides, phosphides [38], and metal
[39]) have been proven to exhibit catalytic properties. Other
viable approaches include the modification of separators to
realize the limitation of LiPSs on the cathode side, thereby
weakening the shuttle effect, and the protection of Li metal
anodes [21]. In general, the overall principle is to incorporate
functional materials with the features of improved conduc-
tivity, physical/chemical capture ability toward LiPSs, and/or
efficient catalytic conversion of LiPSs so as to enhance the
device performance.

Molybdenum-based (Mo-based) materials are highly
preferred due to their tunable crystal structure, adjustable
composition, and variable valence of Mo centers, enabling
their strong interaction with the soluble LiPSs via a variety
of mechanisms for inhibiting the “shuttle effect,” such as
polar-polar adsorption, Lewis acid-base interaction, and con-
version reaction. Moreover, some Mo-based materials are
also reported lithiophilic, which is helpful to suppressing

the formation of Li dendrites on anodes and prolonging the
cycle life of Li-S batteries [40–42]. Herein, for the first time,
we comprehensively review the design and application of
Mo-based materials in Li-S batteries (Figure 2), elaborately
reveal the interaction betweenMo-based materials and LiPSs,
and critically discuss the basic mechanism in enhancing
adsorption and reaction kinetics. Finally, we summarize the
challenges and outline the future prospects of using Mo-
based materials in Li-S batteries.

2. Molybdenum Oxides

Molybdenum oxides possess a variable valence and adjust-
able bandgap, which have been widely applied in electronics
[43], catalysis [44], energy storage [45], and electrochromic
devices [46]. Their crystal and electronic structures can be
facilely manipulated through morphology control, defect
engineering (e.g., oxygen vacancy and dopants), and compo-
sition adjustment. Particularly, in this section, MoO3 and

LiPS shuttle

Theoretical
Practical

(b)(a)

Electron transfer number per S atom (e/S)Gravimetric energy density (Wh kg−1)

Target
500 km with > 400 (Wh kg−1)

0.00 200 400 600 1500 3000 4500 0.5 1.0 1.5

−

Slow

Fast

Li+

S3
2−

S8
S8

2−

S6
2−

S4
2−

Li2S2
Li2S

Li
PS

 re
du

ct
io

n

Ch
ar

ge

D
isc

ha
rg

e

Li0

2.0

E
 (V

 v
s. 

Li
/L

i+ )

1.5

1.7
Pb-acid

Na-ion

Li-ion

HT-Na-S

Na-S8

Li-S8

NiMH

1.9

2.1

2.3

Reaction
kinetics

Charge

Discharge

2.5
I

II

+

Figure 1: (a) The theoretical and practical gravimetric energy densities of different rechargeable batteries. Reproduced with permission from
the Royal Society of Chemistry [17]. (b) The sulfur-based species produced during the charge/discharge process. Inset: the shuttle mechanism
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MoO2 are introduced by discussing their intrinsic properties,
modification strategies, and critical roles in Li-S batteries.

2.1. MoO3.MoO3 (orthorhombic phase, α-MoO3) possesses a
layered structure composed of thin sheets with a thickness of
~0.7 nm which contains linked and distorted MoO6 octahe-
dra [40]. The bandgap of α-MoO3 is >2.7 eV, and the electri-
cal conductivity was reported to be ~10−5 S cm−1 [49]. When
used as a cathode matrix, the metal-oxygen bond enables α-
MoO3 strong polarity toward efficient LiPS trapping [50].
In this regard, Yi et al. hydrothermally synthesized MoO3
nanobelts with a width of ~200nm and a length of ~1.5μm,
then used them as a cathode matrix for sulfur loading
(Figures 3(a)–3(d)) [47]. Based on experimental results and
DFT (density functional theory) calculations, they found that
oxygen defects (ODs) not only improve the electrical con-
ductivity of MoO3 but also obviously enhance the binding
strength between MoO3 and Li2S6, effectively anchoring LiPS
intermediates during cycling. In addition, both MoO3 and
MoO3−x exhibited catalytic properties toward the reversible
conversion of LiPSs tested in symmetric cells using Li2S6
solution as the electrolyte. Comparably, MoO3−x showed
higher activity with a large current and distinct redox peaks
than MoO3, manifesting an enhanced conversion of LiPSs.
Compared to MoO3/S (1060mAhg−1 at 0.2C), MoO3−x/S
cathodes delivered a similar capacity of 1076mAhg−1 under
0.2C with superior cycling stability, retaining 690mAhg−1

after 200 cycles.
In addition to oxygen defects, the intrinsic properties of

MoO3 can also be adjusted by inserting guest atoms or
molecules into their van der Waals interlayer gaps [51].
Following this direction, Yang et al. prepared tin- (Sn-)
intercalated MoO3 (Sn0.063MoO3) via the disproportion-
ation of Sn(II) (Figures 3(e)–3(g)) [48]. DFT calculations
indicated that the electron transferred from the intercalated
Sn atoms toMoO3 resulted in the emergence of the spreading
states around the Fermi level. This led to enhanced electrical
conductivity and binding energies of Li2S4 and S8 to
Sn0.063MoO3, which therefore effectively improved the cath-
ode rate performance and depressed the LiPS shuttle. The
as-fabricated Li-S battery delivered an initial capacity of
906mAhg−1 at 1C with 79.6% retention after 500 cycles.

Hybridizing with carbonaceous materials is another
viable way to mitigate the low electrical conductivity of
MoO3. A typical work was presented by Chen et al., where
a freestanding membrane containing a cathode layer of
MoO3/CNT/S (FMC/S) and a LiPS-blocking layer of inter-
twined MoO3/CNTs was fabricated via a sequential filtration
method (Figure 4) [52]. In this manner, the interfacial bind-
ing strength between the two layers was improved, and the
poor conductivities of sulfur and MoO3 were effectively alle-
viated. Combined with the strong polarity of α-MoO3, LiPSs
were effectively trapped. The device delivered a specific
capacity of 1074mAhg−1 at 0.5C, retaining 666mAhg−1

after 350 cycles.
In addition to designing a cathode matrix, the idea of

modifying separators was adopted to relieve the shuttle effect
of LiPSs, which is comparably a low-cost strategy [56]. Imtiaz
et al. coated MoO3-based slurry onto the commercial separa-

tor forming a porous network (Figures 5(a)–5(c)) [53].
Such a hybrid separator in Li-S batteries enabled fast ion
transportation. Due to the catalytic property of MoO3 and
the intimate contact between the cathode and the separator,
the as-assembled symmetric cell provided increased current
density and sharper redox peaks compared to that based on
the routine separator and CNT-modified separator. The as-
fabricated Li-S battery exhibited a specific capacity of
1377mAhg−1 at 0.5C with retention of 49.7% after 200
cycles. Following this idea, Kaisar et al. further designed a
modified polypropylene separator with lithium-passivated
MoO3 nanobelts [57]. The as-prepared battery achieved an
improved capacity at 0.5C (717mAh g−1 after 500 cycles),
attributable to (i) the strong adsorption of MoO3 to LiPSs
and (ii) the increased conductivity of MoO3 owing to the
lithiation (LixMoO3) [58]. Further enhancement in the
adsorption ability of MoO3 can be achieved by hybridizing
with carbonaceous materials. The interwoven MoO3@CNT-
modified separator fabricated via the vacuum filtration
method by Luo et al. not only provided abundant charge
(electrons and ions) transport pathways but also effectively
mitigated the LiPS shuttle (Figures 5(d) and 5(e)) [54]. The
resultant Li-S cell showed a specific capacity of 1070mAhg−1

at 0.3C with 61.2% retained at 3C (655mAhg−1). Moreover,
when cycling at 1C for 400 cycles, the device maintained
53.4% of the initial capacity, corresponding to 641mAhg−1.

Since Li metal has high activity, the presence of LiPSs
leads to the generation of insulating Li2S2/Li2S on the Li
surface, promoting the formation of Li dendrites and short-
ening the anode lifespan. Therefore, in addition to the
enhancement of cathode performance, the effective inhibi-
tion of LiPS shuttling also protects Li metal anodes from
the corrosion by LiPSs. In a recent work shown in
Figures 5(f) and 5(g), a freestanding MoO3/carbon nanofi-
ber (MoO3/CNF) membrane was prepared by solvother-
mally depositing MoO3 nanoparticles on the carbonized
electrospun PAN nanofibers and used as an interlayer in
Li-S batteries [55]. The combination of the polar MoO3
and conductive CNF network efficiently facilitates the con-
version between Li2S2/Li2S and sulfur species, suppressing
LiPS shuttling. The symmetric battery (Li|Li) with the
MoO3/CNF interlayer exhibited improved cycling stability
over 400 h of testing at 0.5mAcm−2 under 1mAh cm−2

and smaller overpotential than the devices made of the
CNF interlayer and pristine separator (Figure 5(g)).

2.2. MoO2. Different from MoO3, monoclinic MoO2 has a
deformed rutile structure with a tetragonal orientation,
where the MoO6 octahedra share the opposite edges along
the crystallographic c-axis [40]. Typically, it displays higher
electrical conductivity compared with MoO3, due to the
small bandgap [61]. Wu et al. grew MoO2 hollow spheres
on N-doped graphene (MoO2/G) via hydrothermal reaction
and used them as the sulfur host (Figures 6(a)–6(c)) [59].
In comparison with the physical mixture of MoO2 and gra-
phene, MoO2/G exhibited enhanced rate performance and
stability attributable to the enlarged accessible surface of N-
doped graphene, the strong interaction between LiPSs and
MoO2, and the efficient electron transfer between N-doped
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graphene andMoO2 via the C-O-Mo bond. MoO2/G/S deliv-
ered specific capacities of 810mAh g−1 at 1C and maintained
664mAhg−1 after 500 cycles.

Porous structure was proposed to alleviate the volume
expansion of sulfur during lithiation and in the meantime
restrict the LiPS shuttle. Wang et al. prepared porous frame-
works composed of MoO2 and carbon (MoO2/C-NC)
through the carbonization of Cu-Mo-MOF (metal-organic
frameworks) followed by FeCl3 etching (Figures 6(d)–6(f))
[60]. Sulfur was homogeneously distributed in porous
MoO2/C-NC. In comparison with the bare carbonaceous
host, MoO2/C-NC exhibited high electrical conductivity
and strong interactions to LiPSs via Li-O and Mo-S bonds.
As a result, the MoO2/C-NC-based symmetrical cells pre-
sented improved reaction kinetics with higher current den-
sity and lowered overpotential with minimized potential
separation between redox peaks, confirming that MoO2

accelerated the electrochemical reactions of LiPSs. At 0.5C,
the MoO2/C-NC/S electrode delivered 801mAhg−1 after
200 cycles, corresponding to 73.4% retention of the initial
capacity. Following this direction, Razaq et al. prepared the
MoO2/rGO host by annealing Mo-based MOF (Mo-MOF)
wrapped with graphene oxide (GO) in Ar [62]. The obtained
MoO2 microrods featured crispy rice-like mesoporous struc-
ture and exhibited high electron and Li+ conductivity, good
confinement for LiPSs, and catalytic conversion of LiPSs to
thiosulfates (polythionates). Consequently, the MoO2/rGO/S
cathode showed good charge/discharge stability at 0.5C for
500 cycles with a capacity of 1027mAhg−1, corresponding
to 90.0% retention of the initial value.

The interlayer based on the combination of MoO2 and
carbon materials was inserted between the sulfur cathode
and the separator [64]. Zhuang et al. incorporated MoO2
nanoparticles into carbon nanofibers by carbonizing the
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electrospun membrane that consisted of PAN fibers and
phosphomolybdic acid (PMA: H3PO4·12MoO3) (Figure 7)
[63]. The obtained MoO2-CNF interlayer can effectively
trap LiPSs and improve the reversibility of sulfur reaction
during charge/discharge. The as-fabricated battery with
the MoO2-CNF interlayer showed capacity retention of
73.0% at 0.4mAcm−2 after 150 cycles, corresponding to
1006mAhg−1.

Molybdenum oxides have strong polarity with Lewis acid
sites (Mo) and Lewis base sites (O) for capturing LiPSs and
the subsequent catalytic conversion. However, they typically
have low conductivity and small specific surface areas [23],
which are not conducive to the electron transfer and LiPS
adsorption/conversion during cycling. Therefore, in order
to improve their performance in Li-S batteries, defect
engineering (e.g., oxygen vacancies), intercalation (e.g., Sn),
hybridization with conductive filaments (e.g., CNT and
rGO), and structure design (e.g., hollow cages and porous
frameworks) are highly necessitated.

3. Molybdenum Dichalcogenides

During the past decade, the 2D molybdenum dichalcogen-
ides (e.g., MoS2 and MoSe2) have drawn great attention due

to their unique features of tunable compositions, crystal
structures, valence states, and morphologies, endowing them
with high electrochemical activities and potential applica-
tions in energy storage [35, 36, 65–68]. In this section, recent
advances in these two kinds of molybdenum dichalcogenides
are discussed.

3.1. MoS2. Single-layer molybdenum disulfide (MoS2) is
composed of Mo (+4) and S (−2) atoms arranged into a sand-
wiched structure via covalent bonds of S-Mo-S, whereas
MoS2 nanosheets are held together through relatively weak
interaction of van der Waals forces [73]. Due to the unsatu-
rated bonding at the defect sites (e.g., edge and vacancies),
MoS2 facilitates the catalytic conversion of LiPSs [74–76].
Babu et al. synthesized MoS2 nanoflakes by chemical vapor
deposition (CVD) and cycled them against lithium foil in a
cell containing LiNO3, LiTFSI, and Li2S4 as the catholyte
[69]. The experimental observation showed the unsaturated
sulfur sites on the edge of MoS2 facilitated the adsorption
and subsequent catalytic conversion of LiPSs to Li2S2/Li2S
(Figures 8(a) and 8(b)).

Recently, the combination of metal sulfides and oxides
has been confirmed to offer improved adsorption ability
toward LiPSs. In a typical work, Wang et al. grew
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MoO2/C-NC/S and C-NC/S cathodes at 0.5 C. (d–f) Reproduced with permission from the American Chemical Society [60].
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C@SnO2/1T-MoS2 (C@SnO2/TMS) arrays with hierarchical
architectures on carbon cloth via hydrothermal reaction
and used them as the host for sulfur [70]. In this hierarchical
structure, SnO2 nanosheets that consisted of small nanopar-
ticles were coated by 1T-MoS2 (Figures 8(c) and 8(d)). On
the one hand, the porous structure effectively suppressed
the volume change of sulfur and in the meantime allowed fast
transportation of Li+ [77]. On the other hand, SnO2 provided
stronger adsorption to Li2S4 compared to MoS2 (0.46 eV)
with a binding energy of 2.64 eV according to DFT calcula-
tions, while 1T-MoS2 nanosheets with high conductivity
and abundant edges accelerated the redox kinetics of LiPSs
effectively. The resultant C@SnO2/TMS/S cathode delivered
710mAhg−1 at 5C with 63.0% retained after 4000 cycles.

The catalytic activity of MoS2 can be further tuned via
defect engineering. For instance, Lin et al. introduced sulfur
vacancies in MoS2 and evaluated its effect on the catalytic
conversion of LiPSs (Figure 8(e)) [71]. In a typical synthesis,
MoS2 nanoflakes were prepared by liquid-phase exfoliation
and mixed with GO by filtration. Such composites were ther-
mally treated in hydrogen at 600°C for 6 h. The amount of
sulfur deficiencies was varied by changing annealing dura-

tion and temperature. The catalytic behavior of MoS2−x on
the conversion of LiPSs was revealed in symmetric cells with
0.2M Li2S6 as the electrolyte. The results indicated that the
sulfur deficiencies in MoS2−x rendered MoS2−x/rGO more
active sites and facilitated the redox conversion of sulfur to
LiPSs. The sulfur cathode with 4.0wt% of MoS2−x/rGO
showed specific capacities of 1159mAhg−1 and 827mAhg−1

at 0.5C and 8C, respectively. Liu et al. incorporated defect-
rich MoS2 into porous graphene aerogel (denoted as GA-
DR-MoS2) and further confirmed that abundant defects
assisted efficient adsorption and catalytic reactions of LiPSs
during electrochemical cycling [78]. The resultant GA-DR-
MoS2-based cathode containing 70.0wt% of sulfur presented
a discharging capacity of 581mAhg−1 under 5C.

In another work, Lin et al. decorated moss-like
Mo0.9Co0.1S2 nanosheets on the CNT surface by the hydro-
thermal method forming a core-shell tubular structure
followed by phosphorus doping (P doping) at elevated tem-
perature using red phosphorus as the precursor (Figure 8(f))
[72]. The experimental results demonstrated that MoS2 nano-
tubes codoped by Co and P atoms improved the catalytic con-
version of LiPSs in both directions (the sulfur reduction and

(a)

Cu
rr

en
t d

en
sit

y 
(A

 g
–1

)

A
re

a c
ap

ac
ity

 (m
A

h 
cm

–2
)

Cycle number

(b)

(c)

1200

1400

1000

1600

0

600

0 30 60 90 120 150
0

2

4

6

8
0.42 mA cm–2

Sulfur loading: 2.5 mg cm–2

MoO2-CNF membrane

CNF membrane
Pristine separator

PAN/PMA
Composite fibers

PMA
PAN

1 𝜇m

MoO2

Pre-oxidation Calcination/carbonization

850 C 4 h Ar260 C 2 h

MoO2-CNFs

800

400

200

Figure 7: (a) Formation process of MoO2-CNF. (b) SEM image of MoO2-CNF. (c) Cycling stabilities of the Li-S battery without the interlayer
and the devices with interlayers of CNF and MoO2-CNF, respectively. (a–c) Reproduced with permission from Wiley-VCH [63].

8 Research



the sulfur evolution). Particularly, Co doping induced the for-
mation of 1T-MoS2, guaranteeing low electron transport resis-
tance, while P dopants provided an electron-rich environment
in the Mo0.9Co0.1S2, which was conducive to the scission of
the S-S bonds. Consequently, the P-Mo0.9Co0.1S2/S showed
1187mAhg−1 at 0.5C after 150 cycles, corresponding to
89.0% retention of the initial capacity.

Similar to molybdenum oxides, MoS2 was also used to
modify the separator as a barrier to alleviate the LiPS shuttle
effect. As a typical example, Ghazi et al. exfoliated MoS2
nanosheets via Li+ intercalation and filtrated them on com-
mercial Celgard separators (MoS2/Celgard) for Li-S batteries
(Figures 9(a)–9(c)) [79]. Electrochemical impedance spec-
troscopy (EIS) disclosed that MoS2/Celgard showed rapid
Li+ diffusion with similar conductivity (2:0 × 10−1 mS cm−1)
to bare Celgard (3:3 × 10−1 mS cm−1) but much higher than
GO/Celgard (3:1 × 10−2 mS cm−1). The reason was assigned
to the high Li+ density on theMoS2 surfaces generated during
exfoliation. In addition, the MoS2/Celgard separator also
effectively blocked LiPSs due to the presence of MoS2. The
battery with the MoS2/Celgard separator exhibited
808mAhg−1 at 0.5C initially and retained 401mAhg−1 after

600 cycles. Zheng et al. modified the Celgard separator by
edge-rich MoS2/C hollow microspheres (Edg-MoS2/C
HMs) by hydrothermal reaction [81]. The Edg-MoS2/C
HMs enabled the efficient conversion of LiPSs and provided
abundant sites for Li2S absorption. The as-fabricated cells
with sulfur loading of 1.7mg cm−2 and 6.1mg cm−2 delivered
capacities of 896mAhg−1 and 554mAhg−1 at 0.5C, respec-
tively. Wu et al. designed a separator with dual functionality
via a layer-by-layer self-assembly strategy (Figures 9(d) and
9(e)) [80]. The positively chargedMoS2-poly(diallyl dimethyl
ammonium chloride) (PDDA) (denoted as M-P) hybrid and
the negatively charged poly(acrylic acid) (PAA) were alterna-
tively deposited on the commercial separator (denoted as M-
P/P) forming a “nanobrick wall” structure. The PAA mortars
selectively impeded the travel of large LiPSs (1–2nm) com-
pared to Li+ because of their strong binding energies toward
Li2S2, Li2S4, and Li2S6, while well-orientated MoS2 nanosheet
bricks catalyzed the conversion of LiPSs to the insoluble
thiosulfate and polythionate complex, which further
anchored LiPSs from solution and ultimately converted
to Li2S2/Li2S. As a result, the separator with 0.1mg cm−2

of M-P/P coating endowed the Li-S battery 423mAhg−1
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after 2000 cycles at 1C, corresponding to 42.0% retention
of the initial capacity.

In 2018, Cha and coworkers made the first attempt to
protect Li metal anodes by sputtering a thin layer of 2H
MoS2 with a thickness of ~10 nm (Figure 10(a)) [82]. The
subsequent lithiation transformed the crystal phase of MoS2
from semiconducting 2H to metallic 1T (Figure 10(b)),
thereby lowering the interfacial impedance (between the Li
metal and the electrolyte). Moreover, 1T-MoS2 has a small
Li migration energy barrier of 0.155 eV, which is beneficial
for the rapid diffusion of Li+ to Li metal and the homoge-
neous Li deposition. The modification of lithiated MoS2 led
to low-voltage polarization of ~52mV at 10.0mAcm−2, a
threefold improvement in the cycle life compared to bare Li
metal, and effective suppression of Li dendrites (Figures 10(c)
and 10(d)). The Li-S batteries made of the CNT-S cathode
and MoS2-modified Li anode exhibited a high capacity of
1105mAhg−1 with excellent retention of 84.0% over 1200
cycles at 0.5C (Figure 10(e)).

3.2. MoSe2. Molybdenum diselenides (MoSe2) have been
applied in LIBs as anode materials since the 1970s because
of their high capacity and long cycle life [36, 85, 86]. Similar
to MoS2, MoSe2 also exhibit preferential adsorption of LiPSs
at the edge sites due to the unsaturated bonding of Se [87].

Wong et al. synthesized the MoSe2/N-rGO hybrid as the sul-
fur host for Li-S batteries. The triangular-shaped MoSe2 with
a lateral size of 10–60 nm were loaded on N-doped graphene
by the CVD method (Figure 11(a)) [83]. Theoretical calcula-
tion (Figures 11(b) and 11(c)) indicated that MoSe2 exhibited
a lower Li diffusion energy barrier of 0.2374 eV compared
with graphene (0.3104 eV). The obtained MoSe2/N-rGO/S
electrode delivered a capacity of 887mAhg−1 after charged/
discharged at 0.2C for 100 cycles (Figure 11(d)), correspond-
ing to 86.3% retention.

Tian et al. decorated MoSe2 nanoflakes on rGO using
hydrothermal reaction and employed linear sweep voltamm-
etry (LSV) at the full discharge state and potentiostatic
method to study the catalytic properties of MoSe2 on the
LiPS conversion in Li-S batteries (Figures 11(e)–11(g))
[84]. The experimental results showed that the presence of
MoSe2 facilitated the full conversion of LiPSs and nucleation
of Li2S. Consequently, the MoSe2@rGO/S cathode retained
941mAhg−1 (78.4% of the initial capacity) after charged/
discharged for 200 cycles at 0.5C.

Molybdenum dichalcogenides show site-selective catalytic
performance and phase-dependent conductivity. Typically,
defect sites (e.g., edge and vacancies) exhibit higher catalytic
activity than basal planes, while the 1T phase has a lower
energy barrier for both electron transport (facilitating catalytic
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conversion) and Li+ migration (suppressing Li dendrites)
than 2H. However, the adsorption capability of molybdenum
dichalcogenides is moderate compared to that of molybde-
num oxides. Moreover, the synthesis of 1T phase molybde-
num dichalcogenides usually requires complex procedures
involving ion intercalation, heteroatom doping, and utiliza-
tion of explosive reagents.

4. Molybdenum Nitrides

Transition metal nitrides are widely adopted as a catalyst for
sensing and electroanalysis applications for their superior
reactivity and chemical robustness [33, 88–90]. In contrast
to their counterparts of oxides (1 × 10−3 Sm−1) and sulfides
(9:7 × 10−2 – 103 Sm−1) [49, 91], molybdenum nitrides pos-
sess improved electronic conductivity. Utilizing silica as the
template (Figures 12(a) and 12(b)), Jiang et al. prepared
highly conductive mesoporous Mo2N (1 × 105 Sm−1,
121m2 g−1) with an average pore size of 8.6 nm [92]. When
mesoporous Mo2N were immersed into Li2S6 solution, the
yellow color disappeared, suggesting its strong adsorption.
Benefiting from these merits, the mesoporous Mo2N/S cath-
ode showed high capacity retention of 92.0% (corresponding
to 914mAhg−1) after charged/discharged at 0.5C for 100
cycles, better than that based on nonporous Mo2N. Similarly,

Wang et al. synthesized the MoN@N-doped carbon (MoN-
NC) porous octahedron using MOF ([Cu2(BTC)4/3(H2-
O)2]6[H3PMo12O40]; BTC (benzene-1,3,5-tricarboxylate))
as precursors followed by thermal annealing, etching, and
nitridation at elevated temperature (Figure 12(c)) [93]. The
CV results tested in a symmetric cell using the Li2S6-contain-
ing electrolyte indicated MoN-NC promoted the chemisorp-
tion and conversion of LiPSs. The MoN-NC/S cathode with
77.0wt% sulfur loading had 88.0% capacity retention at
0.5C with 934mAhg−1 left after 100 cycles, superior to
MoN/S (71.0%) and NC/S (49.0%).

The design of heterostructures is another viable way to
enhance the performance of molybdenum nitrides. Ye et al.
prepared the 2D MoN-VN nanosheets (~7.1 nm thick) with
a lateral size of a few microns via a salt template method
and employed them as the sulfur host to regulate LiPSs
(Figures 12(d)–12(g)) [94]. The introduction of V atoms
can tailor the electronic states of Mo sites on theMoN surface
and enabled higher adsorption ability for V-MoN than MoN.
The MoN-VN/S cathode demonstrated capacity retention of
72.0% with 555mAhg−1 left after cycling at 1C for 500 times.

Yang et al. developed an in situ topotactical nitridation
strategy to prepare MoO2-Mo2N nanobelts that were incor-
porated as interlayer materials between the cathode and the
separator in Li-S batteries (Figure 13) [95]. DFT calculation
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disclosed that the binding strength of MoO2 surfaces to Li2S4
is higher than that of Mo2N. The potentiostatic discharge
tests of Li-Li2S8 batteries based on MoO2-Mo2N at 2.08V
exhibited a capacity of ~202mAhg−1 for Li2S precipitation,
better than that based on MoO2 (~103mAhg−1) and Mo2N
(~118mAhg−1), confirming the accelerated conversion of
LiPSs. Such heterostructures retained 73.6% (823mAhg−1)
after 300 cycles at 0.5C. In another work, Li et al. proposed
heterostructural MoO2-Mo3N2 holey nanobelts which exhib-

ited improved electrochemical kinetics compared with their
single-component counterparts (MoO2 or Mo3N2) [96]. This
noncarbon heterojunction substrate enabled a high loading
level of 75.0wt% sulfur. The initial capacity of MoO2-
Mo3N2/S with 75.0wt% of sulfur loading retained
762mAhg−1 (corresponding to 76.0% of initial capacity) after
cycling at 0.5C for 1000 times. Alternatively, Chen et al.
coated molybdenum nitride nanosheets, which were obtained
through a salt template method, on the Celgard separator
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(denoted as MoNx/Celgard), and the as-assembled Li-S batte-
ries delivered a capacity of 566mAhg−1 after 500 cycles at
0.5C, corresponding to 68.1% retention [97].

Very recently, the Mo2N@CNF matrix was prepared
by thermally annealing the hybrid film of CNF and
(NH4)6Mo7O24∙4H2O at 800°C and then used as a scaffold
for homogenous Li plating (Figure 14(a)) [98]. The XPS
spectrum of Mo 3d in lithiated Mo2N@CNF after etched
by Ar plasma unveiled that Mo2N reacted with Li generat-
ing Mo metal and Li3N via 3Li +Mo2N→ 2Mo + Li3N
(Figure 14(b)). In addition to the matchable lattice
between Li and Mo, a theoretical calculation based on
crystal orbital Hamilton population (COHP) indicated that
Li tends to bond with Mo rather than Li due to the higher
strength (Figure 14(c)), resulting in the uniform nucleation
and subsequent deposition of Li. The incorporation of
Mo2N@CNF enabled the symmetric cell outstanding
cycling stability at 6mAcm−2 for 1500 h (Figure 14(d)).

Molybdenum nitrides have excellent electrical conductiv-
ity, high catalytic properties, and robust structure, which are
beneficial for accelerating the conversion of LiPSs and allevi-
ating electrode fragmentation caused by the volume expan-

sion of the sulfur cathodes. Furthermore, their unique
lithophilicity can guide the homogeneous electrodeposition
of Li metal, thereby alleviating the dendritic growth. How-
ever, similar to molybdenum oxides, molybdenum nitrides
generally have low specific surface areas and lack a facile syn-
thetic strategy [33].

5. Molybdenum Carbides

Owing to its high catalytic activity, low cost, and good
conductivity, molybdenum carbide has been widely studied
during the past decades for catalysis [33, 121]. Chen et al.
synthesized porous Mo2C-C with a surface area of 196m2

g−1 through pyrolyzing Mo-based MOF at 800°C followed
by FeCl3 etching (Figure 15(a)) [109]. The hybrid showed
effective adsorption to LiPSs while the ultrafine β-Mo2C
nanocrystals encapsulated in carbon accelerated the redox
kinetics toward LiPS conversion. As a result, the Mo2C-C
NO/S cathode containing ~1.1mg cm−2 sulfur delivered a
capacity of 762mAhg−1 (72.5% of the initial value) after
the cycling test at 1C for 600 times. Razaq et al. anchored
Mo2C nanoparticles on carbon nanotubes (CNT/Mo2C) by
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annealing the mixture of CNTs and ammonium molybdate
at 800°C (Figures 15(b) and 15(c)) [120]. The strong binding
between Mo2C and CNTs ensured a highly conductive path-
way for efficient electron transfer, and the porous assembly
guaranteed rapid electrolyte infiltration, while the combina-
tion (CNT/Mo2C) prompted redox reactions of LiPSs. At
2C, CNT/Mo2C/S exhibited 417mAhg−1 (corresponding to
capacity retention of 52.0%) after cycling 900 times. Simi-
larly, Shang et al. achieved a device capacity of 1086mAhg−1

at 0.2C by decorating Mo2C nanoparticles on N-doped
carbon nanofibers (Mo2C-NCNF) as the sulfur host for Li-S
batteries [107]. Li et al. embedded necklace-like MoC in N-
doped carbon nanofibers (MoC@N-CNF) using bacterial cel-
lulose as a carbon source. The as-fabricated MoC@N-CNF/S
cathode containing 10.0mg cm−2 sulfur provided a capacity
of 911mAhg−1 at 1C retaining 70.6% after 350 cycles.

Apart from the application as the cathode host in sup-
pressing the shuttle effect, the lithiophilic Mo2C also has
the ability to facilitate the uniform Li deposition on anodes.
In a recent work, an interlayer between the separator and
the anode was prepared by uniformly anchoring Mo2C quan-
tum dots (MQDs) on N-doped graphene (MQD@NG) under
the assistance of poly(oxypropylene) diamines (D400)
(Figure 16(a)) [113]. The experimental results demonstrated
that the presence of the MQD@NG interlayer effectively sup-
pressed the Li dendrites. In contrast to the PP separator, the
lithiophilic MQD@NG-modified PP separator possessing
fast ion diffusion pathways promoted uniform Li+ flow to

the surface of Li metal anodes, leading to homogeneous
dendrite-free Li deposition. As a result, the Li|Li symmetric
cell with the MQD@NG/PP separator showed stable
voltage-time profiles with small hysteresis over 800 h at
5mAcm−2 and 1mAh cm−2, better than that composed of
the bare PP separator (130 h) and G/PP (~200h).

Molybdenum carbides have similar properties to molyb-
denum nitrides with excellent metallic conductivity, high cat-
alytic activity for LiPS conversion, good affinity to Li for
uniform plating, yet generally low specific surface areas
[33]. In addition, The preparation of molybdenum carbides
typically involves high-temperature calcination under a
reductive or inert atmosphere, making the process costly
and complicated.

6. Molybdenum Phosphides

Transition metal phosphides (TMPs) are a kind of widely uti-
lized active materials in catalysis and energy storage for their
high conductivity and stability [122, 123]. Particularly,
molybdenum phosphide is a well-known catalyst for the
hydrodesulfurization process in the petroleum industry
because of its chemical interaction with sulfur species [124,
125]. Inspirited by this principle, Yang et al. synthesized the
MoP-CNT hybrid by hydrolysis of (NH4)6Mo7O24 to MoOx
followed by phosphorization in PH3 and verified the electro-
catalytic properties of MoP nanoparticles (Figures 17(a)–
17(c)) [126]. The MoP-CNT/S cathode containing 10.0wt%
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of MoP-CNT showed a capacity of ~830mAhg−1 without
any obvious decay over 50 cycles at 0.8mAcm−2.

Phase engineering and heteroatom doping are considered
two effective strategies to adjust the properties of the catalyst
[128, 129]. Following this idea, Ma et al. transformed MoP to
Mo4P3 via Ru doping (Ru-Mo4P3) and demonstrated that
Ru-Mo4P3 can effectively facilitate the electrocatalytic con-
version of LiPSs (Figures 17(c)–17(f)) [127]. The separation
between the cathodic and anodic peaks was ~0.18V for the
devices composed of HCS-Ru-Mo4P3, suggesting an acceler-
ated LiPS conversion. The enhanced catalytic activity was
attributed to two aspects: (i) compared to MoP, the Mo/P
ratio in Mo4P3 became higher, exposing more Mo sites,

and (ii) the Ru doping optimized the adsorption/desorption
of reaction intermediates on Mo sites [130–132]. The
HCS-Ru-Mo4P3/S cathode delivered 1178mAhg−1 and
660mAhg−1 at 0.5C and 4C in the Li-S battery, respectively.

By drop casting molybdenum diphosphide (MoP2) nano-
particles on superaligned CNT films that were cross-stacked
together, Luo et al. designed a multifunctional interlayer on
the Celgard 2400 separator (Figure 18) [116]. According to
X-ray photoelectron spectroscopy (XPS) characterization,
when the battery was discharged to 2.08V, Mo4+ in the Mo
3d spectrum was detected, suggesting that the oxidation of
Li2S4 to thiosulfate may be accomplished by Mo6+. Li2S4
and Li2S2 Raman peaks were only observed on the side of
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the CNT/MoP2 interlayer facing to the cathode, indicating
that LiPSs were effectively blocked because of the physical
hindrance of CNT films and the catalytic contribution of
Mo sites. This was further confirmed by DFT calculations,
which showed that high-order LiPSs (Li2S4 and Li2S8) had
much larger binding energy to Mo sites in comparison with
P sites. The CNT/MoP2 modification enabled the as-
fabricated Li-S battery 1223mAhg−1 discharging capacity at
0.2C with retention of 74.0% after 100 cycles.

Molybdenum phosphides comparably exhibit superior
catalytic performance for the catalytic conversion of LiPSs
even under lean electrolyte conditions, which is beneficial
to increase the energy density of Li-S batteries. The Mo
centers are believed to be the active sites for the adsorption
and electrocatalytic conversion of LiPSs. Although molybde-

num phosphides can be synthesized under a relatively mild
condition, compared with molybdenum carbides and molyb-
denum nitrides, using NH4H2PO4 and NaH2PO2 as the P
sources, toxic gas (e.g., PH3) is generated during phosphori-
zation and phosphates are inclined to be oxidized in air.

7. Molybdenum Metal

Very recently, Li et al. prepared a Mo/CNT thin film by a
magnetron sputtering technique and used it as an interlayer
in Li-S batteries (Figure 19) [118]. It was claimed that the
sulfur-passivated Mo nanoclusters (~0.05mg cm−2) in
Mo/CNTs acted as capturing sites and catalytic centers for
the chemical immobilization and conversion of LiPSs, while
the compact CNT film functioned as a physical blocker for
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inhibiting the LiPS shuttle. As a result, the battery self-
discharge was effectively suppressed and 722mAhg−1 was
achieved at 1C with 65.0% retained after 500 cycles.

To date, there are only a few works reporting the direct
utilization of Mo metal in Li-S batteries. According to these
works of literature, the adsorption and catalytic properties
of Mo metal are attributed to the formation of Mo-S bonds,
yet further pieces of evidence are required. In addition, the
binding energy theoretically follows the sequence of Mo-

Mo>Mo-Li>Li-Li [98]. Therefore, the uniform loading of
Mo nanoparticles on a high specific surface substrate may
have the potential for the protection of Li metal anodes.

8. Conclusions and Prospects

We have comprehensively summarized the recent progress
on Mo-based materials for Li-S batteries. Comparably,
molybdenum oxides show strong adsorption capability
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toward LiPSs due to their polar Mo-O bond. However, the
reaction kinetics of absorbed LiPSs are lowered by their poor
intrinsic conductivity. Comparably, molybdenum dichalco-
genides have improved conductivity, moderate binding

energy, and catalytic performance with active centers mainly
concentrating at the edge and defect sites. Molybdenum
nitrides, carbides, and phosphides possess high electronic
conductivity, excellent catalytic properties, and chemical
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durability in the organic electrolyte (without reacting with Li),
which are promising materials for capturing LiPSs and cata-
lyzing their redox reaction. Moreover, these materials as a
scaffold facilitate the uniform deposition of insoluble Li2S,
thus alleviating the shuttle effect. Furthermore, the unique
lithophilicity of molybdenum nitrides and carbides facilitates
the uniform electroplating of Li metal, thereby alleviating the
dendritic growth of Li metal anodes. Although their catalytic
performance can be further enhanced by reducing particle

sizes so as to expose more electrochemical active surfaces,
complicated procedures and harmful gases (e.g., NH3 and
PH3) are inevitably involved. Mometal shows the highest elec-
tronic conductivity and moderate catalytic activity (probably
due to the formation of Mo-S bonds) toward the conversion
of LiPSs. However, Mo metal can be oxidized by O2 in air
and react with sulfur species during the charge/discharge pro-
cess, forming MoOx and Mo-S bonds on its surface, thereby
hindering the electron transport during the reaction [39].
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In addition to the abovementioned analysis, there are
several issues that need future endeavors:

(1) Although many materials have demonstrated cata-
lytic capability on the conversion of LiPSs [133],
there is currently a lack of criteria to horizontally
evaluate and compare their catalytic performance.
Therefore, it is of great importance to take the phys-
icochemical properties of Mo-based materials into
consideration. For example, the catalytic capability
of MoS2 is related to their different crystal structures,
types of defects, and/or active sites (or facets) exposed.
Moreover, the redox potential of sulfur hosts versus
lithium was reported to be the key parameter for the
adsorption and subsequent conversion of LiPSs [31].
As a result, it is highly necessary to exploit advance
in situ/ex situ techniques to identify the role of high-
valence Mo atoms during the catalysis

(2) An in-depth understanding of the chemical scission
of the S-S bond is necessitated. The conversion of
LiPSs accompanied by a series of chemical processes
severely depends on the chemical state of the material
surface. The coordination state of Mo atoms on the
surface of Mo-based materials has a significant
impact on the adsorption and catalysis of LiPSs. For
instance, Sun et al. revealed that Mo2C (101) surfaces
underwent a sulfurization process during the sulfur
loading and the resultant sulfurized Mo2C showed a
similar mechanism of adsorption and catalytic activ-
ity to that of TMDs [134]

(3) Material design is believed to be an effective strategy
for promoting the performance of Mo-based mate-
rials in Li-S batteries (Table 1). For example, the
Mo-based materials are expected to have high elec-
tronic conductivity, strong affinity to LiPSs (or Li+),
excellent catalytic capability, large specific surface
areas, and uniform loading (dispersion) to ensure full
utilization of cathode sulfur, efficient capture of LiPSs
and subsequent conversion, high energy density, and
dendrite-free Li plating. Several strategies that are
frequently adopted for improving the performance
of Mo-based materials include the introduction of
defection/heteroatoms (enriching active sites and
enhancing conductivity), the hybridization with con-
ductive carbonaceous materials (e.g., rGO, CNT, and
CNF for improving conductivity), the synthesis of
hierarchical structures (enlarging active sites and
providing physical blockage), and the design of het-
erostructures (engineering the adsorption and cata-
lytic properties)

(4) It is highly desired to develop a scalable, cost-effective,
and environmentally friendly method for synthesizing
cathode materials toward the commercialization of
Li-S batteries. The state-of-the-art strategies reported
in the lab typically involve complicated procedures,
expensive equipment, toxic substances (e.g., gases
and solvents), and high-temperature calcination,

which are unfavorable for mass production. In addi-
tion, the low sulfur loading, typically 0.5–2.0mg cm−2

as reported in the literature, further hinders the prac-
tical application of Li-S batteries with the target
energy density of ~500Whkg−1
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