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Abstract

Background: Classical statistics is a well‑established approach in the analysis of medical 
data. While the medical community seems to be familiar with the concept of a statistical 
analysis and its interpretation, the Bayesian approach, argued by many of its proponents 
to be superior to the classical frequentist approach, is still not well‑recognized 
in the analysis of medical data. Aim: The goal of this study is to encourage data 
analysts to use the Bayesian approach, such as modeling with graphical probabilistic 
networks, as an insightful alternative to classical statistical analysis of medical data. 
Materials and Methods: This paper offers a comparison of two approaches to analysis 
of medical time series data: (1) classical statistical approach, such as the Kaplan–Meier 
estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian 
network modeling. Our comparison is based on time series cervical cancer screening 
data collected at Magee‑Womens Hospital, University of Pittsburgh Medical Center 
over 10 years. Results: The main outcomes of our comparison are cervical cancer risk 
assessments produced by the three approaches. However, our analysis discusses also 
several aspects of the comparison, such as modeling assumptions, model building, dealing 
with incomplete data, individualized risk assessment, results interpretation, and model 
validation. Conclusion: Our study shows that the Bayesian approach is (1) much more 
flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, 
which is more cumbersome for classical statistical approaches.

Key words: Cervical cancer screening, Cox proportional hazards regression model, 
dynamic Bayesian networks, Kaplan–Meier estimator, time series data

INTRODUCTION

Classical statistics is the most often used approach in 
the analysis of medical data. The medical community 
seems to be most familiar with the concept of statistical 
modeling and its interpretation. Classical statistics has 
also become a common language for published medical 
data analyses. There are several approaches in statistics 
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that allow one to analyze time series data. For example, 
life tables[1] express a lifetime risk, which is the number 
of patients who survive at each time interval instead of an 
actual point in time. Feuer et al.,[2] for example, applied 
a multiple decrement life table to calculate the lifetime 
risk of developing breast cancer. The Kaplan–Meier (KM) 
estimator[3] is another approach used in classical statistics 
to calculate risk expressed by a survival function 
estimated from time series data.[4,5] Cox proportional 
hazards regression (CPHR) model[6] allows for predicting 
the time at which an event of interest (e.g., death, disease 
recurrence) will occur. The method estimates the hazard 
ratio that expresses the impact of various explanatory 
variables on a response variable that represents the event 
of interest.[7-10]

One of the alternatives to classical statistical data analysis 
is based on subjectivist Bayesian view of probability. 
In this view, probability is a subjective measure of 
belief, rather than the limiting frequency in an infinite 
number of trials. An important practical consequence 
of adopting the Bayesian view of probability is that it 
allows for starting with an estimate of the probability 
that can be subsequently refined by observation. This 
opens up the possibility of applying sound statistical 
analysis to problems where data are scarce or missing 
altogether, and one has to start from a best guess 
estimate. A prominent tool used in Bayesian modeling 
is the Bayesian network[11] or its temporal version called 
dynamic Bayesian network (DBN).[12,13] While Bayesian 
networks have been used as modeling tools for almost 
three decades, their temporal extension, DBNs, found 
their way into medical modeling only in the last decade. 
There have been several practical applications of DBNs in 
medicine. For example, NasoNet, a system for diagnosis 
and prognosis of nasopharyngeal cancer,[14] or a DBN for 
the management of patients suffering from a carcinoid 
tumor.[15] DBNs have been also used in genomics and 
proteomics,[16,17] for example, in a prediction of protein 
secondary structure,[18] modeling peptide fragmentation[19] 
and cellular systems,[20] or in identifying gene regulatory 
networks from time course microarray data.[21-23] Other 
applications include reconstructing functional neuronal 
networks from spike train ensembles[24] or modeling 
dynamics of organ failure in patients in intensive care 
units.[25]

Despite the sizeable number of successful applications 
of DBNs, it seems that the medical community is still 
not too familiar with the Bayesian network approach. In 
this paper, we compare classical statistical approaches, 
such as the KM estimator and CPHR model to DBN 
modeling. Our comparison is based on the application 
of these approaches to the problem of cervical cancer 
screening. A subsequent aim of this paper is to encourage 
the medical community to consider other than classical 
statistical methods in data analysis. In our paper, we do 

not provide a detailed description of the approaches since 
it can be found in various textbooks and publications. 
We instead focus on the intuition behind each of the 
approaches.

The remainder of this paper is structured as follows. 
Section 2 describes methods and materials that we used 
in our study. Section 3 presents the results of our time 
series data analysis based on the classical statistical 
methods and DBN modeling. Section 4 discusses different 
aspects of the comparison. Finally, Section 5 summarizes 
our comparison study.

MATERIALS AND METHODS

We based our comparison study on a cervical cancer 
screening data set collected at the Magee-Womens 
Hospital (MWH), University of Pittsburgh Medical 
Center, Pittsburgh, USA. Screening for cervical cancer is 
a well-established practice that has dramatically reduced 
the incidence and mortality of this type of cancer.[26] Our 
data were collected over 10 years (from January 2005 to 
July 2015) and contain mainly the results of screening 
tests for cervical cancer. The primary screening test 
for cervical cancer in the USA is a cytology test called 
a PAP test (the term PAP comes from the last name 
of Dr. George Papanicolaou, who developed a cytology 
test), which is accompanied in some cases by a high-risk 
human papillomavirus (hrHPV) test (hrHPV test).

The MWH data contain 1,009,058 PAP test results 
belonging to 356,285 women. Around 29.4% of all PAP 
test results are accompanied by the hrHPV test results. 
Since we deal with a screening population, most of the 
patients in our data set are healthy women and only 
around 10% of the PAP test results are followed by a 
histopathological examination which is a diagnostic 
procedure. The data have been collected by means 
of advanced technologies, for example, cytology test 
interpretations were assisted with a computer-based 
system that identifies abnormal cells. The data contain 
also some clinical information such as a history of 
infections, cancer, use of contraceptives, or the human 
papillomavirus (HPV) vaccine status. To date, there are 
2,864 patient cases with the HPV vaccine status recorded.

While building any model based on time series data, 
follow-up becomes a crucial issue. In our analysis, we 
excluded the vaginal PAP test results and those patients 
who had only one cytology test performed and did not 
have any follow-up data recorded. This led us to the 
analysis of 753,278 cytology test results belonging to 
211,980 patients. Table 1 captures more information on 
the follow-up data.

Year 0 indicates the year when a patient showed up for 
a screening or a diagnostic test for the first time. Of all 
patients who appeared in the database, 63.5% appeared 
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for the follow-up screening in year 1, whereas 49.3% 
appeared for year 2, etc., Only 0.8% of all patients 
appeared in year 10 (this corresponds to 1,678 patients). 
In the reminder of this paper, we will indicate the 
beginning of a follow-up as t = 0. We will also apply 
two different time granularities: (1) a day granularity and 
(2) a year granularity. Table 1 contains the mapping of 
years to days.

In our study, we have applied classical statistics 
approaches such as the KM estimator and CPHR, and 
the alternative method: DBN modeling. Because the 
approaches that we describe use different terminology, 
we included a mapping of various terms in Table 2. For 
example, the second row in Table 2 describes the terms 
used for the output variable, which is called depending 
on the approach: a failure, an event of interest, response, 
or a target. For the purpose of this paper, we will use the 
regression approach terminology, that is, we will refer 
either to a covariate or to a response variable.

RESULTS

In this section, we present the results of the analysis that we 
have performed based on the MWH data. To analyze the 
cervical cancer screening data, we have selected those cases 
that have both screening test results available at t = 0 and 
that have at least one cytological or histological follow-up. 
There were 32,968 cases that met this requirement. In 
our analysis, we have included three covariates: PAP 
test, hrHPV test, and age with the values that were 
recorded at the beginning of the follow-up (t = 0) 
and a response variable representing the occurrence of 
precancer or invasive cervical cancer (CIN3+ includes the 
following diagnostic categories: precancer represented  by 
cervical intraepithelial neoplasia Grade 3 (CIN3) and 
adenocarcinoma in situ (AIS), and invasive cervical 
cancer). We were interested in predicting the risk of 
CIN3+ over a period of 5 years. The two covariates were 
categorical: (1) the PAP test with the results: Negative, 
low-grade squamous intraepithelial lesion (LSIL), atypical 
squamous cells of undetermined significance (ASCUS), 
atypical glandular cells (AGC), atypical squamous cells 
- cannot exclude HSIL (ASC-H), high-grade squamous 
intraepithelial lesion (HSIL), suspicious or positive 
malignant cells (SUSP/POS); (the Pap test results follow 
the Bethesda classification) and (2) the hrHPV test with 
the results: positive and negative. The third covariate, age, 
was continuous with a mean value equal to 39.2 and a 
standard deviation equal to 13.3.

Table 3 presents the cumulative number of cases 
that developed CIN3+ for the two possible results 
of the hrHPV test: Positive and negative. There were 
8,555 women with a positive hrHPV test result and 
24,413 women with a negative hrHPV test result at 
the beginning of the follow-up. For example, we can 

see that in the period between 1,460 and 1,825 days of 
the follow-up, there were 13 new cases that developed 
CIN3+ (those cases had a positive hrHPV test result at 
t = 0). For a negative hrHPV test result, there were seven 
such cases during the same period.

The Kaplan–Meier Estimator
The KM estimator is calculated based on the exact failure 
and censoring observations. For cervical cancer screening 
data, a failure, that is, an event of primary interest, is 
the presence of cervical precancer or cervical invasive 
cancer (CIN3+). Similarly to,[5] we have censored the 
patient data at the last registered testing date (cytological 
or histopathological) or at the time when they were 
diagnosed with CIN3+. The main outcome of the KM 
estimator is its survival function, which usually outlines 
the cumulative proportion of patients that survived. 
Since our analysis involved calculating a cumulative 
proportion of patients that developed the disease, 

Table 1: The follow‑up data

Year Day Patients Percentage

0 ≤365 211,980 100.0
1 ≤730 134,620 63.5
2 ≤1095 104,421 49.3
3 ≤1460 82,978 39.1
4 ≤1825 67,669 31.9
5 ≤2190 55,461 26.2
6 ≤2555 39,470 18.6
7 ≤2920 29,373 13.9
8 ≤3285 21,291 10.0
9 ≤3650 10,605 5.0
10 ≤4015 1678 0.8

Table 2: Terminology mapping between the 
approaches

KM estimator CPHR model DBN model

Grouping variable Covariate, predictor, 
explanatory variable

Observation 
variable

Failure, event of interest Response variable Target variable
Censored observation Censored 

observation
Missing value

CPHR: Cox proportional hazards regression, DBN: Dynamic Bayesian network, 
KM: Kaplan–Meier

Table 3: Number of patients that developed 
CIN3+ (cumulative)

Covariate Follow‑up time (days)

≤365 ≤730 ≤1095 ≤1460 ≤1825 ≤2190

hrHPV 
positive

275 330 359 377 390 395

hrHPV 
negative

54 58 63 72 79 84

hrHPV: High risk human papilloma virus
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instead of presenting a survival function, we will be 
plotting a 100% - survival function. This curve represents 
a cumulative proportion of patients that developed 
CIN3+ over 5 years.

Figure 1 presents the KM curves for the patients that had 
both screening test results available at the beginning of 
the follow-up (t = 0). It compares two different groups 
depending on the hrHPV test result at the beginning 
of the follow-up (t = 0). These two groups correspond 
to two possible results of the hrHPV test: positive and 
negative and are statistically significantly different (log-rank 
test, P < 0.0001). Figure 1a shows that the risk of 
developing CIN3+ for the group of patients with positive 
hrHPV (t = 0) test result is 9.2% after 2,190 days, whereas 
a negative result of hrHPV (t = 0) is associated with a risk 
of 1.3% after 2,190 days. In addition, we have included the 
analysis of the same data with a time granularity represented 
by a year [Figure 1b]. Please, note that by changing the 
time granularity, the risk decreases and reaches 6.9% for 
women with a positive hrHPV (t = 0) test result and 0.6% 
for women with a negative hrHPV (t = 0) test result.

The Cox Proportional Hazards Regression Model
The CPHR model[6] is used in time series data analysis. 
It allows for: (1) predicting the time at which a response 

variable will occur and (2) investigating the effect of 
covariates on the response variable. The analysis is based 
on the hazard function that explains how the risk changes 
over time.

We have built the CPHR model for the cervical cancer 
screening using the same data that we used for the 
KM model. Table 4 presents the results of this analysis. 
It captures the effect of the covariates on the response 
variable representing a development of CIN3+. Each 
covariate is associated with a P value calculated based on 
the Wald test. The results show that there is a statistically 
significant contribution of each of the covariates to the 
response variable. Negative PAP test result and negative 
hrHPV test result are reference states in our analysis, and 
for the covariate representing age, a reference state is 
a mean value, which is in this case 39.2. Positive value 
of a regression coefficient β for a covariate indicates an 
increase of the risk of developing CIN3+ and a negative 
coefficient indicates a decrease of risk of developing 
CIN3+. The fifth column in Table 4 represents a hazard 
ratio exp(β) and it shows quantitatively the impact of 
each covariate on the response variable. For example, as 
age increases by 1 year, the risk of CIN3+ increases by 
1% (exp(β) =1.01). The increase by 1 year refers to the 
mean age (i.e. 39.2 years). Similarly, for the hrHPV test, 

Figure 1: The Kaplan–Meier curves for a risk of CIN3+ stratified by the high risk human papilloma virus test result (t = 0) with two time 
granularities (a) day, and (b) year

ba

Table 4: Results of the Cox proportional hazards regression model

Covariates β SE P Exp(β) 95% CI of Exp(β)

Age 0.01 0.0037 0.004 1.01 (1.00, 1.02)
hrHPV test

Positive 1.91 0.13 <0.0001 6.75 (5.18, 8.79)
Pap test

LSIL 1.26 0.36 0.0004 3.53 (1.76, 7.10)
ASCUS 1.17 0.26 <0.0001 3.23 (1.95, 5.36)
AGC 3.37 0.30 <0.0001 29.13 (16.28, 52.13)
ASC‑H 3.15 0.27 <0.0001 23.40 (13.73, 39.88)
HSIL 4.28 0.27 <0.0001 72.29 (42.72, 122.34)
SUSP/POS 6.00 0.31 <0.0001 401.91 (221.06, 730.72)

SE: Standard error, CI: Confidence interval, hrHPV: High risk human papilloma virus, LSIL: Low‑grade squamous intraepithelial lesion, AGC: Atypical glandular cells, ASCUS: Atypical 
squamous cells of undetermined significance, HSIL: High‑grade squamous intraepithelial lesion, SUSP/POS: Suspicious or positive malignant cells, ASC‑H: Atypical squamous cells ‑ 
cannot exclude HSIL, β: Regression coefficient
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once the result goes from negative to positive, the risk 
increases by 675% (please note that exp (1.91) =6.75). 
With respect to the PAP test, once the result goes 
from negative to AGC result, the risk increases by 
2913% (exp(3.37) =29.13).

The CPHR model allows for generating also the survival 
curves. Figure 2 plots the survival curves for the two 
possible values of the hrHPV test and the mean value for 
other covariates in the model. We can see that the risk 
of developing CIN3+ depends on the initial result of the 
hrHPV test, that is, positive hrHPV test result at t = 0 
leads to the risk of CIN3+ equal to 3.6% after 2190 days 
while negative hrHPV test result at t = 0 leads to the 
risk of CIN3+ equal to 0.6% after 2190 days. Please, 
note that by changing the time granularity the risk 
decreases and is equal to 2.3% for women with a positive 
hrHPV (t = 0) test result and 0.4% for women with a 
negative hrHPV (t = 0) test result [Figure 2b].

Dynamic Bayesian Network Modeling
Bayesian networks[11] are probabilistic graphical models 
that are capable of representing complex, uncertain 
knowledge. A Bayesian network is an acyclic directed 
graph modeling a structure of the domain and a 
joint probability distribution over its variables. This 
multivariate method allows for modeling a subjective 
expert knowledge as well as objective data. Reasoning 
algorithms for the Bayesian networks compute the 
posterior probability distribution over some variables 
of interest given a set of observations. DBN models are 
a temporal version of Bayesian networks and allow to 
model systems changing in time.

The Pittsburgh Cervical Cancer Screening 
Model (PCCSM)[27-29] is a DBN model for cervical cancer 
screening. The current version of the model consists of 
15 variables. We based the structure of our model on 
textbook and expert knowledge and parametrized it by 
means of the MWH data. The graphical structure of the 
PCCSM model represents the existence of probabilistic 
relationships among the variables. We discretized the 

covariate age into three intervals: below 30, between 30 
and 50, and 50 and up. This discretization was suggested 
by our expert, and it corresponds to three different 
cervical cancer risk groups. The time step that we have 
chosen in the PCCSM model was 1 year. This is a 
consequence of cervical cancer screening guidelines in 
U.S., recommending a woman to come for her PAP test 
examination once a year. Furthermore, for each patient 
in the data set we defined the initial time as t = 0, 
the year when the woman got registered in the MWH 
database, that is, when she showed up for the PAP test 
or a diagnostic test for the first time. The time horizon 
modeled in the PCCSM model was 5 years. The PCCSM 
generates a risk of developing CIN3+ over time. This risk 
is represented by the posterior probability distribution 
calculated by the model.

To perform a fair comparison, for the purpose of this paper, 
we have limited the PCCSM model to the covariates 
included in the KM and CPHR analyzes: that is, the PAP 
test, the hrHPV test, and age. The response variable is 
modeled in the PCCSM by the node cervix [Figure 3] 
and the covariates are modeled respectively by the 
following nodes: Pap test, hrHPV test, and age. The node 
cervix represents possible diagnoses including CIN3+. 
In reality, our model includes more covariates and is 
capable of considering other relevant factors and offering 
patient-specific results. Figure 4 shows a complete version 
of the PCCSM model consisting of 15 variables.[29]

For each patient in the data set, we entered into the 
PCCSM model the evidence for the node representing the 
hrHPV test and then observed the posterior probability 
distributed over the node cervix over time. We were 
particularly interested in the posterior probability 
generated for the states CIN3/AIS (cervical precancer) and 
invasive cancer that represent CIN3+. Figure 5 captures 
the cumulative risk of CIN3+ over 5 years calculated by 
the PCCSM model. The risk is stratified by the results of 
the hrHPV (t = 0) test: positive or negative. Similarly to 
previous models, we can see that the risk of developing 

Figure 2: The Cox proportional hazards regression model: Survival curves for the risk of CIN3+ stratified by the high risk human papilloma 
virus test result (t = 0) with two time granularities (a) day; (b) year

ba
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CIN3+ depends on the initial result of the hrHPV test, 
i.e., positive hrHPV test result at t = 0 leads to the risk 
of 3.9% after 5 years while negative hrHPV test result at 
t = 0 leads to the risk of 0.5% after 5 years. Similarly to the 
CPHR model, we also checked how the risk of CIN3+ is 
changing when PAP test result goes from negative to AGC 
result. The 5 years risk increases from 0.22% for a negative 
PAP test observed at t = 0 to the risk of CIN3+ equal to 
4.2% for the PAP test with a result AGC at t = 0.

DISCUSSION

In this section, we compare the two approaches used in time 
series data analysis, that is, the classical statistical approaches 
with the DBN modeling. We based our comparison on the 
following aspects: model assumptions, model building, 
dealing with incomplete data, individualized risk assessment, 
results interpretation, and model validation.

Assumptions
The KM estimator can be applied to data that represent 
nonrecurrent response variable. The CPHR model 
assumes that the effect of each of the covariates 

(risk relative to the baseline risk) is constant over time. DBN 
models assume to be stationary, that is, while the values 
of covariates change over time, the model itself does not. 
However, in general, the DBN models can be used to model 
nonstationary processes.[30] In CPHR model, a relationship 
between the response variable and the covariates should be 
linear. In DBNs, the relationships between the variables do 
not need to be necessarily linear. In the case of continuous 
variables, exact algorithms exist for multivariate Gaussian 
case (please note that this implies linear dependencies), 
whereas other cases can be dealt with by means of Monte 
Carlo methods, converting all distributions to a mixture 
of Gaussians or mixture of truncated exponentials or 
through dynamic discretization. Both the CPHR and the 
DBN models allow for including in the analysis mixtures 
of categorical and continuous variables. Our DBN model 
presented above is based on categorical variables, although 
the DBN approach, in general, is not limited to categorical 
variables and discrete probability distributions.

Model Building
Data are important in all three, although they are 
crucial in the classical statistical approaches. Building 

Figure 3: A highly simplified version of the Pittsburgh Cervical Cancer Screening Model
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the KM estimator or the CPHR model is a data-driven 
process. If there are no data, the statistical analysis 
cannot be performed. Before building the KM estimator 
or the CPHR model, we have to prepare the data and 
identify patient cases that are censored. Subsequently, 
we estimate the survival function and calculate the 
regression coefficients for covariates. Building a DBN 
model does not, strictly speaking, require data, as the 
model can in the extreme, when no data are available, 
be based entirely on subjective estimates of probabilities. 
When data are available, they can potentially improve the 

model. Constructing a DBN model consists of two stages: 
(1) specification of the model structure and (2) elicitation 
of the numerical parameters. The structure of the 
model encodes typically causal relationships among 
the variables while the numerical parameters quantify 
these relationships. If there are no data available, expert 
opinion can be used to quantify the model. However, 
it is not an easy task, especially if the model requires 
thousands of probabilities to elicit. Both the structure 
and the numerical parameters of a DBN model can be 
also induced directly from the data by means of learning 
algorithms.[31,32]

The KM estimator, learned entirely from data, simply 
shows the relationship between two variables: the 
response variable and time. In addition, we can add a 
covariate that will group the data, and as a result, we will 
have a few survival functions corresponding to groups 
determined by a covariate. The CPHR model allows 
one to investigate the effect of several covariates on the 
response variable. The DBN modeling goes further, as it 
can model not only the relationships among covariates 
and the response variable, but it allows one to model 
interactions among all variables in the model. In addition, 
interactions can be immediate but can work over time 
including influences that span over several time steps.

The KM estimator and the CPHR model are flexible 
in terms of modeling time intervals, that is, we can 
choose different time granularity like day, month, or year. 

Figure 4: A complete version of the Pittsburgh Cervical Cancer Screening Model

Figure  5: Cumulative  risk  of CIN3+  generated  by  a  simplified 
Pittsburgh Cervical Cancer Screening Model stratified by the high 
risk human papilloma virus test result (t = 0)
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Theoretically, for a DBN model we could also choose a 
day as a possible transition interval between two slices, 
although in the presented application to cervical cancer 
screening it would be counter-productive to quantify 
the model with a day transition interval. First, there are 
no data available to assess numerical parameters since 
a screening test is usually performed annually. Second, 
modeling a time granularity as a day for the problem of 
cervical cancer screening seems to be unnecessary since a 
development of cervical cancer usually takes years.

Incomplete Data
The KM estimator and the CPHR analyzes can handle 
missing values in follow-up data. This incomplete 
information refers mainly to missing values for the 
response variable. Especially, it can handle right-censored 
data, that is, patient data that are lost from the follow-up 
before a response variable occurs. Censoring indicates 
removing the patient data from the calculations of the 
estimator at the end of their follow-up time. Censoring 
patient data decreases the sample size of patients at risk 
and by this, reduces the reliability of the KM estimator. 
If there are no censored cases in the data, then the KM 
curve will represent the true population distribution.

In case of a DBN model, there are two situations to 
consider in the context of possible missing values: 
(1) learning numerical parameters, and (2) reasoning 
with the model. DBNs can handle missing data naturally 
in both cases. Learning numerical parameters of a 
DBN model from incomplete data is facilitated by the 
expectation maximization algorithm,[33] which is designed 
to deal with missing observations. Reasoning with a 
DBN model does not require complete information on a 
patient to calculate risk for a response variable, that is, 
the posterior probability distributions is calculated only 
based on observed covariates that are not missing. This is 
different from the CPHR model, where every risk factor 
is assumed to be known and either present or absent.

Missing data for categorical variables in all three 
approaches can be treated as an additional state, although 
it can cause a problem if there is incomplete information 
for a continuous variable. In general, too many missing 
values may decrease the quality of the results. In case of 
the PCCSM model, the missing data were modeled as an 
additional state. Please, note that three nodes in Figure 3 
have a state NA that stands for not available. This kind 
of modeling has a significance in some situations, for 
example, around 50% of all cervical cancer cases in our 
data did not have a screening history. Therefore, if there 
is no screening test result available, the model indicates 
increased risk of cervical cancer.

Results Interpretation
The output of the KM estimator is a survival function, 
often presented graphically as a survival curve. The 
survival function represents a cumulative proportion of 

patients that have survived. This approach is often used 
to compare survival curves for several patient groups. 
A CPHR model allows for analyzing the effect of several 
covariates on the response variable. The model calculates 
whether the covariate significantly influences the 
response variable. The method shows also quantitatively 
how the risk is changing depending on the value of 
a covariate. The results of this analysis can be also 
presented graphically by a survival curve. The output of a 
DBN model includes posterior probability distribution for 
the response variable over time given observed covariates. 
This approach is more flexible in calculating the results 
for various queries, i.e., a response variable can be 
easily changed and risk can be calculated for any model 
variable in question. Bayesian networks, furthermore, 
allow to calculate a diagnostic value for each covariate. 
In  GeNIe software (BayesFusion LLC, Pittsburgh, USA), 
which we used in constructing our model, it is based on 
cross-entropy between each of the observed covariates 
and the response variable. Therefore, we can also quantify 
the effect of each covariate on the response variable.

Table 5 shows the cumulative 5 years risk assessments for 
CIN3+ produced by the three approaches. For example, 
according to the KM estimator, women with a positive 
hrHPV test result at the beginning of the follow-up will 
have after 5 years a risk of 9.2%, whereas the CPHR 
model produces for the same patient group a risk of 3.6% 
of developing CIN3+ after 5 years. A simplified DBN 
model shows a risk of 3.9% after 5 years while a complete 
DBN model shows a risk of 4.6%. Please note, that for 
the statistical approaches we have included also the 
results for two-time granularities: (1) a day and (2) a year. 
It seems like the selection of a time granularity effects 
the final results produced by the KM estimator or the 
CPHR model. The results produced by these models with 
a year granularity are lower by 25%–50% while compared 
to the same models with a day granularity.

Individualized risk assessment
The KM analysis focuses on the construction of a 
survival curve based on retrospective data rather than a 

Table 5: CIN3+risk assessments

Model Time 
granularity

hrHPV 
positive (%)

hrHPV 
negative (%)

KM 
estimator

Day 9.2 (7.1‑11.2) 1.3 (0.5‑2.1)
Year 6.9 (6.0‑6.9) 0.6 (0.6‑0.8)

CPHR 
model

Day 3.6 0.6
Year 2.3 0.4

Simplified 
DBN model

Year 3.9 0.5

Complete 
DBN model

Year 4.6 0.6

CPHR: Cox proportional hazards regression, DBN: Dynamic Bayesian network, 
KM: Kaplan–Meier, hrHPV: High risk human papilloma virus, the values in the brackets 
indicate 95% confidence intervals
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classification of new cases. Theoretically, it is possible to 
prepare the data in such way that a patient in question 
will belong to the group of patients representing the 
survival function. In that case, for each patient, we would 
need to prepare a separate analysis. Thus, it may happen 
that there are too few patient cases in the data having 
the same set of observations as the patient in question 
for which we want to assess an individual risk.

Calculating individualized risk for a new patient based on 
a CPHR model consists of using the baseline cumulative 
hazard and then combining coefficients of various model 
covariates. However, combining the effect of different 
covariates is not straightforward, especially if a variable is 
continuous with a reference state equal to a mean value, 
which sometimes can be difficult to interpret.

The DBN approach allows for individualized management 
of patients and computes patient-specific risk based on 
observed covariates. Calculating an individualized risk 
for a new patient is pretty straightforward: All available 
patient information is entered into the model and the 
risk, expressed by the posterior probability, is instantly 
generated. It is important to note that not all information 
on a patient needs to be observed. Furthermore, we can 
calculate risk for different variables that are modeled. For 
example, in case of the PCCSM model, we can calculate 
the posterior probability for any variable in the model, 
not only for the response variable.

Stratification of risk categories
The KM estimator can calculate survival curves 
representing different groups of patients. Furthermore, 
these groups can be compared by means of a statistical 
test, which will show whether there is a statistically 
significant difference between the groups. Figure 1 shows 
two groups of patients categorized based on the hrHPV 
test result at the beginning of the follow-up, a log-rank 
test was used to verify whether the groups represent 
statistically significantly different risk of developing 
CIN3+. A CPHR model allows to calculate the survival 
functions for all categories of the covariate (if it is 
categorical) and for mean values for all other covariates 
in the model. The DBN modeling allows to look at risk 
assessments from different perspectives. For example, it 
allows to identify groups of patients that are at a higher 
or at a lower risk of developing CIN3+ given a set of 
values of covariates.

Model Validation
The regression models, such as the CPHR model can 
be validated externally.[34] External validation includes a 
comparison of models constructed from two independent 
data sets that are often called: (1) derivation data and 
(2) validation data. Unfortunately, most of the published 
Cox regression analyses do not include the results of 
such external validation. Mallett et al.[35] have analyzed 
47 studies of which 44 were based on Cox regression 

model. The report shows that the assumption of 
proportional hazards was performed and presented only 
in around of 23% of the studies, while model validation 
was reported in around of 34% of the studies. There are 
also several measures such as-2 LogL, AIC, SBC, R2 or 
likelihood ratio used in regression models. However, 
they express goodness of data fit to the model rather 
than its validation. Validation of DBN models is usually 
performed based on cross-validation techniques such as 
k-fold validation or its special case, the “leave-one-out” 
method.[36]

CONCLUSIONS

In this paper, we have compared two classes of approaches 
to time series data analysis in medicine: (1) the classical 
statistical approaches of the KM estimator and the CPHR 
model and (2) the DBN modeling. The two presented 
classical statistical approaches are well-established 
methodologies in medical data analysis, whereas DBN 
modeling is only starting to penetrate the field. We 
have compared these approaches along the following 
dimensions: assumptions, model building, dealing with 
incomplete data, individualized risk assessment and its 
interpretation, and model validation. In this comparison, 
we have used models based on the cervical cancer 
screening data collected at the MWH, University of 
Pittsburgh Medical Center, Pittsburgh, USA.

One of the limitations of the KM estimator is that it 
is based only on categorical variables. The other two 
approaches, that is, the CPHR and DBN models allow for 
including in the analysis both categorical and continuous 
variables.

Statistical approaches, like the KM estimator and the 
CPHR model, are fully dependent on data. If there are 
no data, the statistical analysis cannot be performed. 
The DBN modeling also rely on data. However, if data 
are not available, expert opinion can be used to build and 
quantify the model. Elicitation of numerical parameters 
for DBN from experts is not an easy task due to the 
number of probabilities that have to be acquired. There 
exist a variety of approaches to this problem, including 
standardized distributions and tools for semi-automatic 
estimation of probabilities.

The KM analysis is a method that estimates a survival 
function for a response variable, where time is considered 
the most important variable. Therefore, if there are 
any (other than time) significant covariates that influence 
the response variable, then the results of the KM analysis 
may be misleading and can obscure important differences 
between the groups of patients formed by these covariates. 
The CPHR and DBN approaches allow for multivariate 
analysis that models relationships among the variables. 
The CPHR analysis includes only modeling relationships 
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between covariates and the response variable. The DBN 
modeling is more flexible, and it allows for modeling 
the relationships between any variables included in the 
analysis, that is, it can model not only the relationships 
among covariates and the response variable, but it can 
also capture the relationships among the covariates.

Our comparison shows that the DBN approach is more 
flexible in terms of an individualized risk assessment than 
the classical statistical approaches. The DBNs allow for 
looking at risk assessments from different perspectives 
and identify groups of patients that are at higher risk 
of developing a disease. Statistical approaches are quite 
well-established in the field while it seems that the 
Bayesian approach is still undervalued and only starting to 
penetrate the field. In the classical statistical approach, a 
final decision is based on the resulting P value, while in a 
Bayesian approach, such as the DBN modeling, a decision 
is made based on the posterior probability generated by 
the model. Because the result of a Bayesian analysis is 
the posterior probability distribution, individualized for a 
patient, it is straightforward to extend the analysis with a 
utility function and support the patient’s decision using 
both the patient’s current state and his or her preferences. 
It looks like medical community is much more familiar 
with the classical statistics, and they understand how to 
interpret the resulting P value. We have experienced in 
our practice that medical doctors typically expect the 
results of analysis to produce a P value and frame their 
analysis in terms of the difference between two posterior 
probabilities which are or are not statistically significant. 
This approach suffers from fundamental problems 
discussed by several authors.[37-40]

Financial Support and Sponsorship
Nil.

Conflicts of Interest
There are no conflicts of interest.

REFERENCES

1. Spiegelman M. The versatility of the life table. Am J Public Health Nations 
Health 1957;47:297‑304.

2. Feuer EJ, Wun LM, Boring CC, Flanders WD, Timmel MJ, Tong T. The lifetime 
risk of developing breast cancer. J Natl Cancer Inst 1993;85:892‑7.

3. Kaplan EL, Meier P. Nonparametric estimation from incomplete 
observations. J Am Stat Assoc 1958;53:457‑81.

4. Castle PE, Sideri M, Jeronimo J, Solomon D, Schiffman M. Risk assessment 
to guide the prevention of cervical cancer. Am J Obstet Gynecol 
2007;197:356.e1‑6.

5. Dillner J, Rebolj M, Birembaut P, Petry KU, Szarewski A, Munk C, et al. Long 
term predictive values of cytology and human papillomavirus testing in 
cervical cancer screening: Joint European cohort study. BMJ 2008;337:A1754.

6. Cox DR. Regression models and life tables. J R Stat Soc Ser B 
1972;34:187‑220.

7. Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A, 
et al. Risk assessment for patients with chronic myeloid leukaemia before 
allogeneic blood or marrow transplantation. Chronic leukemia working 
party of the European group for blood and marrow transplantation. Lancet 
1998;352:1087‑92.

8. Liu J, Hong Y, D’Agostino RB Sr., Wu Z, Wang W, Sun J, et al. Predictive 
value for the Chinese population of the Framingham CHD risk assessment 
tool compared with the Chinese multi‑provincial cohort study. JAMA 
2004;291:2591‑9.

9. Thompson I, Stephenson AJ, Scardino PT, Eastham JA, Bianco FJ Jr., 
Dotan ZA, et al. Postoperative nomogram predicting the 10‑year probability 
of prostate cancer recurrence after radical prostatectomy. J Clin Oncol 
2005;23:7005‑12.

10. Moscicki AB, Ma Y, Wibbelsman C, Darragh TM, Powers A, Farhat S, et al. 
Rate of and risks for regression of cervical intraepithelial neoplasia 2 in 
adolescents and young women. Obstet Gynecol 2010;116:1373‑80.

11. Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference. San Mateo, CA: Morgan Kaufmann Publishers, Inc.; 1988.

12. Dean T, Kanazawa K. A model for reasoning about persistence and causation. 
Comput Intell 1989;5:142‑50.

13. Kjaerulff U. A computational scheme for reasoning in dynamic 
probabilistic networks. In: D’Ambrosio B, Dubois D, Wellman MP, Smets P, 
editors. Proceedings of the 8th Conference on Uncertainty in Artificial 
Intelligence (UAI‑92). San Mateo: Morgan Kaufmann; 1992. p. 121‑9.

14. Galán SF, Aguado F, Díez FJ, Mira J. NasoNet, modeling the spread of 
nasopharyngeal cancer with networks of probabilistic events in discrete 
time. Artif Intell Med 2002;25:247‑64.

15. van Gerven MA, Taal BG, Lucas PJ. Dynamic Bayesian networks as prognostic 
models for clinical patient management. J Biomed Inform 2008;41:515‑29.

16. Bender C, Henjes F, Fröhlich H, Wiemann S, Korf U, Beissbarth T. Dynamic 
deterministic effects propagation networks: Learning signalling pathways 
from longitudinal protein array data. Bioinformatics 2010;26:i596‑602.

17. Chen X, Hoffman MM, Bilmes JA, Hesselberth JR, Noble WS. A dynamic 
Bayesian network for identifying protein‑binding footprints from single 
molecule‑based sequencing data. Bioinformatics 2010;26:i334‑42.

18. Yao XQ, Zhu H, She ZS. A dynamic Bayesian network approach to protein 
secondary structure prediction. BMC Bioinformatics 2008;9:49.

19. Klammer AA, Reynolds SM, Bilmes JA, MacCoss MJ, Noble WS. Modeling 
peptide fragmentation with dynamic Bayesian networks for peptide 
identification. Bioinformatics 2008;24:i348‑56.

20. Ferrazzi F, Sebastiani P, Kohane IS, Ramoni M, Bellazzi R. Dynamic Bayesian 
Networks in Modelling Cellular Systems: A Critical Appraisal on Simulated 
Data. In: Proceedings of the 19th IEEE International Symposium on 
Computer‑Based Medical Systems (CBMS 2006), Salt Lake City, Utah, USA; 
22‑23 June, 2006. p. 544‑9.

21. Chaitankar V, Ghosh P, Perkins EJ, Gong P, Zhang C. Time lagged information 
theoretic approaches to the reverse engineering of gene regulatory 
networks. BMC Bioinformatics 2010;11 Suppl 6:S19.

22. Jia Y, Huan J. Constructing non‑stationary dynamic Bayesian networks 
with a flexible lag choosing mechanism. BMC Bioinformatics 
2010;11 Suppl 6:S27.

23. Zou M, Conzen SD. A new dynamic Bayesian network (DBN) approach for 
identifying gene regulatory networks from time course microarray data. 
Bioinformatics 2005;21:71‑9.

24. Eldawlatly S, Zhou Y, Jin R, Oweiss KG. On the use of dynamic Bayesian 
networks in reconstructing functional neuronal networks from spike train 
ensembles. Neural Comput 2010;22:158‑89.

25. Peelen L, de Keizer NF, Jonge E, Bosman RJ, Abu‑Hanna A, Peek N. Using 
hierarchical dynamic Bayesian networks to investigate dynamics of organ 
failure in patients in the Intensive Care Unit. J Biomed Inform 2010;43:273‑86.

26. Ries LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L, et al. SEER 
Cancer Statistics Review, 1973‑1999. Bethesda, MD: National Cancer 
Institute; 2002.

27. Austin RM, Onisko A. Increased cervical cancer risk associated with 
extended screening intervals after negative human papilloma virus (HPV) 
test results: Bayesian risk estimates using the Pittsburgh Cervical Cancer 
Screening Model. J Am Soc Cytopathol 2016;5:9‑14.

28. Austin RM, Onisko A, Druzdzel MJ. The Pittsburgh Cervical Cancer Screening 
Model: A risk assessment tool. Arch Pathol Lab Med 2010;134:744‑50.

29. Onisko A, Austin RM. Dynamic Bayesian network for cervical cancer 
screening. In: Lucas PJ, Hommersom A, editors. Foundations of Biomedical 
Knowledge Representations. Methods and Applications. Springer, Lectures 
Notes in Artificial Intelligence 2015:9521;207‑18.

30. Robinson JW, Hartemink AJ. Learning non‑stationary dynamic Bayesian 



J Pathol Inform 2016, 1:50 http://www.jpathinformatics.org/content/7/1/50

networks. J Mach Learn Res 2010;11:3647‑80.
31. Cooper GF, Herskovits E. A Bayesian method for the induction of 

probabilistic networks from data. Mach Learn 1992;9:309‑47.
32. Spirtes P, Glymour C, Scheines R. Causation, Prediction, and Search. 

New York: Springer Verlag; 1993.
33. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete 

data via the EM algorithm. J R Stat Soc Ser B Methodol 1977;39:1‑38.
34. Royston P, Altman DG. External validation of a Cox prognostic model: 

Principles and methods. BMC Med Res Methodol 2013;13:33.
35. Mallett S, Royston P, Waters R, Dutton S, Altman DG. Reporting performance 

of prognostic models in cancer: A review. BMC Med 2010;8:21.
36. Moore AW, Lee MS. Efficient algorithms for minimizing cross validation 

error. In: Proceedings of the 11th International Conference on Machine 
Learning. San Francisco: Morgan Kaufmann; 1994.

37. Cohen J. The earth is round (P <.5). Am Psychol 1994;49:997‑1003.
38. Falk R. Misconceptions of statistical significance. J Struct Learn 1986;9:83‑96.
39. Gregg LW, Simon HA. Process models and stochastic theories of simple 

concept formation. J Math Psychol 1967;4:246‑76.
40. Wasserstein RL, Lazar NA. The ASA’s statement on P values: Context, 

process, and purpose. Am Stat 2016;70:129‑33.


