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skeletal muscle metabolic changes. In this study, we examined

the effect of theaflavins on disuse muscle atrophy model mice by

hindlimb suspension. Mice were assigned to 4 groups; ground�

vehicle, ground�theaflavins, suspension�vehicle, and suspension�

theaflavins, dosed with theaflavins (250 mg/kg/day) for 2 weeks.

The peak of myotube size of cross sectional area was significantly

moved to the smaller side in the suspension�vehicle group

compared with the ground�vehicle group, and these shifts were

significantly reduced by the treatment with theaflavins in both

soleus and extensor digitorum longus. The level of phosphorylated

eukaryotic translation initiation factor 4E�binding protein (4EBP)�1,

located downstream of the Akt/mTOR pathway, was significantly

different between suspension�vehicle and suspension�theaflavins

in soleus. The ratio of forkhead box O (FoxO) 3a to phosphorylated

FoxO3a significantly increased in soleus or tended to rise in

extensor digitorum longus of suspension�vehicle group compared

with ground�vehicle. In contrast, these changes were not observed

in suspension�theaflavins group. These results suggested that

theaflavins inhibited the progress of disuse muscle atrophy through

modulation of protein metabolism.
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IntroductionAmeliorating skeletal muscle wasting is of high clinical
importance in order to improve quality of life.(1) Skeletal

muscle disuse including sedentary lifestyle or bed rest can lead to
muscle atrophy.(2) Skeletal muscle is a dynamic, plastic tissue
whose mass is regulated by the balance between the rate of muscle
protein synthesis and breakdown.(3)

The prevention of disuse muscle atrophy requires a mechanistic
understanding of the cellular signaling pathways that regulate both
protein synthesis and degradation.(4) Among the number of disuse
models, hindlimb suspension leads to significant skeletal muscle
atrophy. This model provides information on the morphological
and molecular changes responsible for the mechanisms of disuse-
induced muscle loss.(5,6)

Theaflavins are a type of polyphenols that are present in high
concentrations in black tea. Four major theaflavins, theaflavin,
theaflavin-3-O-gallate, theaflavin 3'-O-gallate, and theaflavin-
3,3'-di-O-gallate, are formed from co-oxidation of selected pairs
of green tea catechins during fermentation.(7,8) During the
processing of black tea, fresh leaves are crushed and allowed
to undergo oxidation by polyphenol oxidase, resulting in the
formation of polyphenolic dimers known as theaflavins.(8)

In previous meta-analyses, it was shown that consumption of

black tea results in significant primary prevention of cardio-
vascular diseases by decreasing plasma LDL cholesterol levels
and blood pressure.(9,10) We previously reported that repeated
treatment with theaflavins showed a significant reduction of
blood pressure in rodents.(11) In addition, a single dose of
theaflavins enhanced energy expenditure with an increase in
proliferator-activated receptor gamma coactivator-1a (PGC-1a)
transcription resulting in acceleration of AMP-activated protein
kinase (AMPK) phosphorylation in mouse skeletal muscle.(12) We
also reported previously that 10 weeks’ supplementation of a
theaflavins-rich capsule improved body composition, including a
reduced ratio of body and subcutaneous fat and increased skeletal
muscle percentage in healthy subjects.(13) These results suggested
that theaflavins affect not only the circulatory system but also
skeletal muscle metabolism.

In the present study, we examined the effect of repeated oral
administration of theaflavins on disuse muscle atrophy induced
by hindlimb suspension in mice, and also assessed the protein
levels involved in proteosynthesis and proteolysis in their
hindlimb skeletal muscles.

Materials and Methods

Materials. Crude theaflavins fraction was obtained from
reaction if green tea catechin extract and polyphenol oxidase.
theaflavins were further purified by HPLC. Briefly, crude
theaflavins fraction was eluted with 15% methanol and 15%
acetonitrile by using YMC-DispoPackAT ODS column (YMC
Co. Ltd., Kyoto, Japan) after removing catechins and caffeine
with a gradient mobile phase of 3 to 6% methanol containing
0.1% phosphoric acid. The concentrations of theaflavins were
determined by using HPLC as shown below; HPLC system, Series
LC-20 (Shimazu, Kyoto, Japan); Column, Cadenza CL-C18
(100 ´ 4.6 mm, 3 mm, Imtakt Corporation, Kyoto, Japan); mobile
phase, 20% acetonitrile with 0.1% formic acid; flow rate, 1 ml/min;
column temp, 40°C; Detection, 280 nm. The fraction contained
98.4% theaflavins and the composition was as follows; theaflavin,
38.1%; theaflavin-3-O-gallate, 37.0%; theaflavin 3'-O-gallate,
11.0%; and theaflavin-3,3'-di-O-gallate, 12.3%. Unless otherwise
noted, the chemicals using this study were purchased from
FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan).

Animals and diets. The study was approved by the Animal
Care and Use Committee of the Shibaura Institute of Technology
(Permit Number: 27-2956). All mice received humane care under
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the National Institutes of Health guide for the care and use of
Laboratory animals in this institution. All surgery was performed
under anesthesia, and all efforts were made to minimize suffering.
Male C57BL/6J mice aged 17 to 19 weeks were obtained from
Charles River Laboratories Japan, Inc. (Tokyo, Japan). The mice
were kept in a room with controlled lighting (12/12 h light/dark
cycles) at a regulated temperature of 23–25°C. A certified rodent
diet (MF) was obtained from Oriental Yeast Company Limited
(Tokyo, Japan).

Animal experiment. Thirty-two mice were fed a basal diet
for 7 days and divided randomly into four groups as follows:
ground-vehicle treatment, ground-theaflavins treatment, suspension-
vehicle treatment, and suspension-theaflavins treatment. Mice in
the vehicle treatment groups were administered 20% glycerol
orally in saline, whereas animals in theaflavins treatment groups
were dosed with theaflavins (gavage administration, 250 mg/kg
body weight/day) dissolved in vehicle for 2 weeks. Hindlimb
unloading was performed as described previously.(14) Briefly, the
animals in hindlimb suspension groups were elevated to a spinal
orientation of 40–45° above horizontal using a clip for tail suspen-
sion (Yamashita Giken, Tokushima, Japan) equipped with a block
which was movable in a vertical direction. The proximal two-
thirds of the tail of the animals was wrapped with orthopedic
traction tape. Hindlimb elevation was adjusted so that the
hindlimb paws were suspended, while the forelimbs were free to
ambulate around the entire range of the cage. At the end of this
treatment period, the animals were sacrificed under anesthesia
with 50 mg/kg s.c. pentobarbital (Tokyo Chemical Industry,
Tokyo, Japan). Soleus (SOL), extensor digitorum longus (EDL),
gastrocnemius (GASTRO) and tibialis anterior (TA) were
removed, weighed and stored at –80°C. For histological analysis,
SOL and EDL were blocked with FSC 22 Blue (LEICA, Tokyo,
Japan) and frozen with isopentane on dry ice and stored at -80°C
until sectioning.

Histological analyses. All samples blocked with FSC
were cut into 8 mm-thick sections using the LEICA CM1950
(LEICA, Wetzlar, Germany), and sections were stained with
hematoxylin-eosin (HE) staining. Microscopic observation was
carried out with an Olympus CX41 light microscope (Olympus
Co., Tokyo, Japan). The muscle cross-sectional area (CSA) was
quantified using ImageJ software (http://rsb.info.nih.gov/ij/
index.html, 11 June 2019).

Western blotting. The SOL and EDL were homogenized in
a microtube with lysis buffer (CelLytic MT cell lysis reagent;
Sigma-Aldrich, St. Louis, MO) containing a protease inhibitor
(Sigma-Aldrich) and (±)-dithiothreitol (FUJIFILM Wako Pure
Chemical Corporation) using a Qsonic Model XL-2000 Series
Sonicator (Arc Scientific, Los Angeles, CA). Protein concentra-
tions were determined by Coomassie Blue staining (Thermo

Fisher Scientific, Waltham, MA). Protein (50 mg) was separated
by SDS-PAGE using a 5–12% and 10–20% Bis-Tris gel and
transferred onto a 0.45 mm and 0.2 mm pore size polyvinylidene
difluoride membrane (Life Technologies, Carlsbad, CA). The
membrane was blocked with membrane-blocking reagent (GE
Healthcare, Buckinghamshire, UK) for 1 h. After being blocked,
the membrane was incubated with a rabbit polyclonal primary
antibody against phospho-Akt (1:1,000; ab1283, Abcam,
Cambridge, UK) or Akt (1:2,000; ab28422, Abcam), phospho-
eukaryotic translation initiation factor 4E-binding protein (4EBP-1,
1:1,000; #2855, Cell Signalling Technology, Inc., Beverly, MA)
or 4EBP-1 (1:1,000; #9452, Cell Signalling Technology, Inc.),
forkhead box (Fox) O3a (1:1,000; #2497, Cell Signalling
Technology, Inc.) or phospho-FoxO3a (1:1,000; #13129, Cell
Signalling Technology, Inc.) or Ubiquitin (1:1,000; #3933, Cell
Signalling Technology, Inc.) under 4°C overnight. After the
primary antibody reaction, the membrane was incubated with the
horseradish peroxidase-conjugated secondary antibody (1:10,000)
for 1 h. Immunoreactivity was detected by chemiluminescence
using the ECL Select Western Blotting Reagent (GE Healthcare,
Madison, WI). Chemiluminescence band images were detected
and analyzed by the C-DiGit Blot Scanner (LI-COR technology,
Lincoln, NE).

Statistical analyses. All data were reported as mean ± SD.
Statistical analyses were performed by two-way ANOVA
followed by post hoc comparisons between experimental groups
using Dunnett’s test, or non-parametric Wilcoxon and Mann-
Whitney U tests. A probability of p<0.05 was considered to be
statistically significant.

Results

There were no significant differences in body weight or tissue
weight of liver, heart, kidney, adrenal gland or spleen of the
experimental animals as shown in Table 1. The weight of SOL,
GASTRO, TA and EDL in both hindlimb suspension groups
(vehicle or theaflavins treatment group) were significantly
decreased compared with ground-vehicle group.

We carried out the histological observation on SOL and EDL
(Fig. 1 and 2). The distribution of myofiber size in SOL was
determined as shown in Fig. 1B. The peak of myotube size was
significantly moved to the smaller side in the suspension-vehicle
group compared with the ground-vehicle group. This shift was
significantly reduced by treatment with theaflavins (Fig. 1B and
Table 2). The peak of myotube size of EDL also significantly
moved to the smaller side in the suspension-vehicle group
compared with the ground-vehicle group. This shift tended to
be reduced by treatment with theaflavins (Fig. 2B and Table 2).

No significant changes were observed between experimental

Table 1. Body weight, tissue weight, and hindlimb skeletal muscle weight after repeated oral adminisrtrationadministration of vehicle or theaflavins
with or without hindlimb suspention

Each value represents the mean and SD (n = 6, each). Significantly different from the ground�vehicle group: **p<0.01.

Ground Suspension

Vehicle Theaflavins Vehicle Theaflavins

Body weight (g) 28.05 ± 1.05 27.72 ± 0.66 25.97 ± 1.43 25.58 ± 1.69

Heart (mg) 123.4 ± 15.2 122.0 ± 7.8 120.1 ± 6.2 124.2 ± 14.5

Liver (mg) 1,169.3 ± 101.0 1,222.5 ± 72.7 1,222.5 ± 72.7 1,097.6 ± 82.5

Spleen (mg) 70.9 ± 11.1 63.0 ± 3.5 63.5 ± 16.4 62.1 ± 14.0

Kidney (mg) 319.5 ± 29.2 299.6 ± 9.3 311.1 ± 26.0 328.6 ± 25.7

Adrenal grande (mg) 5.6 ± 0.9 4.8 ± 0.8 4.8 ± 0.7 4.6 ± 0.5

Soleus (mg) 9.1 ± 0.7 8.9 ± 0.6 6.0 ± 0.5** 6.6 ± 0.8**

Gastrocnemius (mg) 163.4 ± 10.9 161.9 ± 4.5 136.0 ± 6.6** 137.4 ± 8.1**

Tibialis anterior (mg) 51.1 ± 3.2 48.6 ± 5.3 43.0 ± 2.8** 42.6 ± 3.5**

Extensor digitorum longus (mg) 13.6 ± 1.0 12.4 ± 0.8 11.3 ± 0.8** 11.5 ± 0.9**
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groups in phosphorylation of Akt level in SOL (Fig. 3). 4EBP-1
phosphorylation was not altered in ground groups, and there was a
significant difference between suspension-vehicle and suspension-
theaflavins (Fig. 3). Dephosphorylation of FoxO3a was signifi-
cantly increased in suspension-vehicle compared with ground-
vehicle group. These changes were reduced by treatment with
theaflavins (Fig. 3). There were no significant changes in the
level of ubiquitin between experimental groups in SOL (Fig. 3).
There was no significant changes in phosphorylation of Akt in
EDL (Fig. 4). 4EBP-1 phosphorylation was not altered in the ground
groups, and it slightly increased in the suspension-theaflavins
group (Fig. 4). Dephosphorylation of FoxO3a tended to increase
in EDL in the suspension-vehicle group compared with the
ground-vehicle group. This change was significantly reduced by
the treatment with theaflavins (Fig. 4). There were no significant
changes in the level of ubiquitin between experimental groups in
EDL (Fig. 4).

Discussion

An interim hindlimb suspension period was reported to cause
significant muscle atrophy in mammals.(5) We found significant
muscle atrophy in all skeletal muscles in hindlimb after 14 days
of tail suspension (Table 1). These changes were more prominent
in SOL with rich in slow muscle fibers than GASTRO, EA, and
EDL. It was reported that rodent muscles that express predomi-

nantly slow motor units reported to be more sensitive to the
unloading stimuli compared to muscles expressing primarily fast
motor units.(15) In addition, these atrophy were reduced by the
treatment with theaflavins (Fig. 1A and 2A). The peak of myotube
size was significantly moved to the smaller side in the suspension-
vehicle group compared with the ground-vehicle group, and these
shifts were significantly reduced by the treatment with theaflavins
in both SOL and EDL (Fig. 1B, 2B, and Table 2).

It was known that skeletal muscles adapt to change in their
workload by regulating fibre size by both Akt/mTOR, anabolic
signal, and FoxO pathway, catabolic signal.(16) The Akt/mTOR
pathway acts as a key regulator in the translation initiation step
of protein synthesis in skeletal muscle. Under normal physio-
logical conditions, it is activated by insulin like factor (IGF-1);
therefore stimulated PI3K activates Akt. Phosphorylated Akt
further activates mTORC1, resulting in activated mTORC1 phos-
phorylating both 4EBP-1 and ribosomal protein S6 kinase b-1,
which ultimately leads to proteosynthesis.(17) In contrast, IGF-1/
PI3K/Akt signaling reduces unloading and joint immobilization-
induced muscle atrophy.(16) In the present study, the level of phos-
phorylation of 4EBP-1 was higher in suspension-theaflavins
compared with suspension-vehicle both in SOL and EDL (Fig. 3
and 4). According to these results, it was suggested that repeated
oral treatment with theaflavins induces phosphorylation of
4EBP-1 as a result of the anabolic Akt/mTOR pathway. It is
well investigated that FoxO3a controls transcriptional regulation

Fig. 1. The evaluation of skeletal muscle atrophy induced by hindlimb suspension with or without theaflavins; representative myofiber cross
section of SOL stained with HE (A) and distribution of cross�sectional area of SOL (B). Statistical analyses were performed by Wilcoxon and Mann�
Whitney U tests (Table 2).
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Fig. 2. The evaluation of skeletal muscle atrophy induced by hindlimb suspension with or without theaflavins; representative myofiber cross
section of EDL stained with HE (A) and distribution of cross�sectional area of EDL (B). Each value represents mean and SD (n = 6, each). Statistical
analyses were performed by Wilcoxon and Mann�Whitney U tests (Table 2).

Table 2. Statistical results between experimental groups of the cross�sectional area in SOL (A) or EDL (B)

Each number represents p value performed by non�parametric Wilcoxon and Mann�Whitney U tests. #p<0.1, *p<0.05, **p<0.01.

(A) SOL

Group
Cross�Sectional Area (mm2)

–100 –200 –300 –400 –500 –600 –700 –800 –900 –1,000 –1,100 –1,200 –1,300 –1,400 –1,500 –1,600

Ground�
vehicle

vs ground�
theaflavins

0.182 1.000 0.849 1.000 0.699 0.699 0.485 0.589 0.937 0.394 0.310 0.485 0.191 0.645 0.303 0.849

vs suspension�
vehicle

1.000 0.002** 0.002** 0.002** 0.015* 0.937 0.041* 0.240 0.015* 0.026* 0.041* 0.370 0.546 0.103 0.455 0.455

vs suspension�
theaflavins

0.455 0.303 0.019* 0.002** 0.041* 0.041* 0.699 0.589 0.009** 0.180 0.026* 0.039* 0.513 0.168 1.000 0.455

Suspension�
vehicle

vs ground�
theaflavins

0.182 0.002 0.002** 0.002** 0.002** 0.310 0.041* 0.009** 0.015* 0.004** 0.009** 0.091# 0.058# 0.182 0.697 0.455

vs suspension�
theaflavins

0.692 0.041* 0.699 0.026* 0.818 0.009** 0.009** 0.015* 0.485 0.394 0.859 0.987 1.000 1.000 0.455 1.000

(B) EDL

Group
Cross�Sectional Area (mm2)

–300 –600 –900 –1,200 –1,500 –1,800 –2,100 –2,400 –2,700 –3,000 3,000–

Ground�
vehicle

vs ground�
theaflavins

0.307 0.937 0.240 0.310 0.818 0.818 0.208 0.099# 0.697 1.000 0.455

vs suspension�
vehicle

0.015* 0.026* 0.002** 0.485 0.09# 0.004** 0.208 0.060# 0.455 1.000 1.000

vs suspension�
theaflavins

0.582 0.240 0.002** 0.015* 0.180 0.015* 0.208 0.060# 0.455 1.000 0.455

Suspension�
vehicle

vs ground�
theaflavins

0.026* 0.026* 0.002** 0.937 0.026* 0.067# 1.000 0.455 0.455 1.000 1.000

vs suspension�
theaflavins

0.026* 0.180 0.818 0.064# 0.309 0.093# 0.922 1.000 1.000 1.000 0.455
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of muscle-specific ubiquitin ligase when the disuse atrophy
progresses.(18) We confirmed that the FoxO3a/p-FoxO3a ratio
was significantly increased in SOL and tended to increase in
EDL by the hindlimb suspension. These changes were reduced
by the administration of theaflavins (Fig. 3 and 4). These results
suggested that repeated supplementation of theaflavins inhibited
the activation of the catabolic FoxO pathway.

In previous studies, it was reported that oral administration of
100 to 200 mg/kg theaflavins prevented hyperglycemia in diabetes

model rats.(19,20) It is well known that increased skeletal muscle
metabolism promotes glucose uptake into skeletal muscle and
improves hyperglycemia. Our present result supported these pre-
vious results, showing about almost similar amount of theaflavins
promote skeletal muscle metabolism.

In addition, a regular cup of black tea contains ~16–24 mg of
theaflavins per serving of 200–230 ml.(21) It was also reported
that drinking four or more cups of black tea on a daily basis
inhibited the risk associated with stroke by an extensively study

Fig. 3. Ratio of phosphorylated Akt to Akt, phosphorylated 4EBP�1 to 4EBP�1, FoxO 3a to phosphorylated FoxO and ubiquitin of SOL. Each value
represents mean and SD (n = 6, each). Statistical analyses were performed by two�way ANOVA followed by Dunnett’s test. Significant differences
between experimental groups; *p<0.05.

Fig. 4. Ratio of phosphorylated Akt to Akt, phosphorylated 4EBP�1 to 4EBP�1, FoxO 3a to phosphorylated FoxO and ubiquitin of EDL. Each value
represents mean and SD (n = 6, each). Statistical analyses were performed by two�way ANOVA followed by Dunnett’s test. Significant difference
between experimental groups; *p<0.05.
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on 74,961 stroke patients during the course of 10.2 years.(22)

However, the effective dose of theaflavin for reducing the risk of
stroke has not been elucidated. As one of the causes, several
methods have been developed for measuring theaflavins in blood
or tissues,(23,24) but there was limited research on the theaflavins
concentration in blood after theaflavins supplementation. These
studies suggested that theaflavins had relatively low bioavail-
ability compared with other polyphenols. Despite this poor
bioavailability, theaflavins has been reported to cause significant
primary prevention of cardiovascular diseases by decreasing
plasma LDL cholesterol levels and blood pressure.(9,10) In addition,
a single oral dose of theaflavins as black tea was reported to
improve vascular endothelial function in healthy volunteers.(25,26)

In our previous report, we confirmed a similar improvement of
vascular endothelial function, measuring skeletal muscle blood
flow and phosphorylation of eNOS in mammalian aorta after a
single dose of theaflavin mixture or four major theaflavins each.(11)

These changes were significantly reduced by treatment with an
adrenalin blocker such as carvedilol. According to this result, it
was suggested that an oral dose of theaflavins induced sympa-
thetic nerve activation.

It is well known that the sympathetic nervous system plays a
key role in physiological adaptation not only in the circulatory
system but also in the metabolic system.(27,28) Catecholamines, are
secreted from the end of the sympathetic nerve or adrenal medulla,
bind to adrenergic receptors, and maintains homeostasis by
expressing various actions. In circulation, catecholamines tran-

siently increases heart rate and blood presser in sympathetic
hyperactivity and these changes are inhibited by the pretreatment
of adrenalin blocker. Nonshivering thermogenesis is also
exhibited in brown adipose tissue through activation of uncou-
pling protein 1by the sympathetic hyperactivity such as cold
exposure, and this change is also inhibited by the treatment of
adrenalin blocker. In our previous research, we confirmed that a
single oral dose of theaflavins showed not only the transient
hemodynamic changes but also nonshivering thermogenesis.(11,12)

During exercise, the increase of plasma catecholamines secreted
from the adrenal medulla by sympathetic hyperactivity bind to
skeletal muscle b2 receptor and enhancing skeletal muscle
protein synthesis through Akt/mTOR pathway.(29) In addition, b2
adrenaline agonists, such as formoterol or clenbuterol were
reported to inhibited skeletal muscle atrophy and induce skeletal
muscle hypertrophy.(30–33) Taken together these findings, the effect
of theaflavins on skeletal muscle atrophy showing in the present
study was suggested as adrenergic activity (Fig. 5). However,
further research is needed to elucidate how theaflavins induce
sympathetic hyperactivity.

In conclusion, we found that repeated doses of theaflavins
reduced disuse muscle atrophy induced by hindlimb suspension.
It was suggested that repeated oral doses of theaflavins modulated
protein metabolism of skeletal muscle. Further experiments are
needed to elucidate the mechanisms, including the adrenomimetic
activity of theaflavins.

Fig. 5. Possible mechanism of action of theaflavins on the disuse muscle atrophy.
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