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ABSTRACT Interleukin-1 (IL-1) is a key player in the immune response to pathogens
due to its role in promoting inflammation and recruiting immune cells to the site of
infection. In tuberculosis (TB), tight regulation of IL-1 responses is critical to ensure host
resistance to infection while preventing immune pathology. In the mouse model of
Mycobacterium tuberculosis infection, both IL-1 absence and overproduction result in exacer-
bated disease and mortality. In humans, several polymorphisms in the IL1B gene have been
associated with increased susceptibility to TB. Importantly, M. tuberculosis itself has evolved
several strategies to manipulate and regulate host IL-1 responses for its own benefit. Given
all this, IL-1 appears as a promising target for host-directed therapies in TB. However, for that
to succeed, more detailed knowledge on the biology and mechanisms of action of IL-1 in
vivo, together with a deep understanding of how host-M. tuberculosis interactions modulate
IL-1, is required. Here, we discuss the most recent advances in the biology and therapeutic
potential of IL-1 in TB as well as the outstanding questions that remain to be answered.
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Interleukin-1 (IL-1) was described almost 80 years ago, by Menkin, as a factor mediating
tissue injury due to inflammation (1). At the time, this factor was termed “leukocytic pyro-

gen.” Thirty years later, this pyrogen protein was shown to induce the activation and prolifera-
tion of lymphocytes (2). Upon the introduction of the term “interleukin” in 1979, the leukocytic
pyrogen was coined “IL-1” (3). Two agonist molecules with IL-1 biological activity were later
discovered and named IL-1a and IL-1b (4). The discovery of other related molecules (IL-18, IL-
33, IL-36, and IL-38) led to the definition of the IL-1 superfamily (5). Members of this superfam-
ily exert their function by binding to one of the several members of the IL-1 family of receptors
and coreceptors (6). Both IL-1a and IL-1b (collectively referred to as IL-1) exert their activity by
binding IL-1 receptor 1 (IL-1R1) (6). Interestingly, the antagonist molecule (IL-1RA) also binds to
this receptor, preventing the binding of IL-1 molecules and consequently blocking their bio-
logical effects (6).

IL-1 plays many different roles, from mediating the immune response to infection
(7) to regulating vascular permeability and angiogenesis (8). Deregulated IL-1 responses
have been associated with the development and progression of cancer (9) and also with
autoimmune diseases such as rheumatoid arthritis (10). These findings eventually led to
the development of anakinra, a drug that mimics IL-1RA, thus blocking IL-1 responses
(11). Anakinra signals the potential of IL-1 modulation to treat disease as it proved effective
in the case of rheumatoid arthritis and other acute or chronic autoinflammatory conditions
(11). Nevertheless, the administration of anakinra may result in an increased risk of infections,
including tuberculosis (TB) (12–14).
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TB is a respiratory disease that has afflicted humans since primordial times. Despite
the decrease in TB incidence rates in the 21st century, about 10 million new TB cases and
1.4 million TB-related deaths were registered in 2019 (15). Furthermore, one-fourth of the
human population is estimated to be latently infected with Mycobacterium tuberculosis, a
fraction of whom will develop TB (15). The immune response to M. tuberculosis and the role
played by various cytokines have been extensively reviewed elsewhere (16–18). Within the
IL-1 family of cytokines, IL-1a, IL-1b , and IL-1RA have been the most studied in TB (16, 17).
In this review, we focus on the protective and regulatory effects of IL-1 during TB, how IL-1
is regulated by the interaction ofM. tuberculosiswith host cells, and the therapeutic/diagnos-
tic promise of IL-1.

IL-1 PLAYS (MOSTLY) A PROTECTIVE ROLE IN TB

Several studies were performed in cohorts of TB patients with the aim of defining
the contribution of IL-1 to TB protection/susceptibility. The genetic variants 2511(T/C)
and 13953(T/C) of the IL1B gene have been addressed in multiple studies, but various
associations with TB susceptibility have been described (19–26). As an example, the T allele
in position2511, which is functionally related to lower-level IL-1b production by stimulated
cells, has been associated with increased TB susceptibility in a Gambian population, whereas
in the same study, no association was found for polymorphisms in the 13953 position (20).
However, in another study, involving a Colombian population, the very opposite findings
were reported, with the13953 T allele being associated with low IL-1b expression levels and
conferring TB protection (21). Furthermore, the high-IL-1b-producing T allele in promoter posi-
tion231 was shown to be associated with an increased risk of active TB and poor clinical out-
comes, likely due to increased neutrophil infiltration (24). The observed discrepancies may
reflect variable numbers of patients as well as the genetic makeup of both the host and the
pathogen populations in the study cohorts. Additionally, different populations are subjected
to distinct infection pressures, which may influence transmission rates, doses of infection, and
outcomes of TB. These variations may in turn interfere with a protective or detrimental role for
IL-1 in TB. Therefore, collectively, the findings coming from genetic studies highlight the im-
portance of tight regulation of IL-1b during TB. This is further supported by observations com-
ing from the clinical manipulation of IL-1b . As mentioned above, therapeutic blockade of IL-1
with anakinra has been associated with the risk of TB, supporting a protective role of IL-1 in TB
(13, 14). However, increased levels of IL-1b and ratios of IL-1b/IL-1RA were shown to be asso-
ciated with tissue necrosis and cavity formation in TB patients (27).

Studies performed in the mouse model of infection unequivocally illustrate the importance
of IL-1 for host defense against TB. M. tuberculosis infection of genetically engineered mouse
models with abrogated synthesis of IL-1a and IL-1b or their target receptor IL-1R1 revealed
high mortality rates, accompanied by increased bacterial burdens and extensive pathology in
the lungs (28–34). Furthermore, abrogation of the adaptor molecule myeloid differentiation
factor 88 (MyD88) resulted in high susceptibility to experimental infection and premature
death (35–37), which did not result from defective Toll-like receptor (TLR) signaling but instead
resulted from defective IL-1R signaling (32, 38). Although the protection afforded by a compe-
tent IL-1R in experimental M. tuberculosis infection is indisputable, whether the determinant
protective role is played by IL-1a or IL-1b is still a matter of debate. Mice lacking IL-1b dis-
played acute mortality uponM. tuberculosis infection, similarly to IL-1R1-deficient mice, in sup-
port of a major role played by IL-1b (32). However, in other studies, genetic deficiency or neu-
tralization of IL-1a, but not of IL-1b , conferred higher susceptibility to infection (29, 39).
Moreover, while IL-1a and IL-1b double deficiency consistently recapitulated the phenotype
of IL-1R1-deficient mice, the presence of either cytokine ensured bacterial burden and pathol-
ogy control (40), thus suggesting a certain degree of redundancy. Although these various
studies use similar mouse (C57BL/6) and M. tuberculosis (H37Rv strain) genetic backgrounds,
there are some experimental differences that may account for the distinct results: the infection
route (aerosol versus intranasal), the dose of bacteria in infection (low versus high), the time
points chosen for the analyses, the inactivating mutations in the Il1b gene, and the use of
genetic abrogation versus antibody neutralization. Furthermore, it is possible that imbalances
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in the animal microbiome may explain some current contradictions, given the emerging evi-
dence for cross talk between the microbiota and TB outcomes (41). Of note, the reasons
underlying discrepant IL-1 impacts on TB in human and mouse studies are therefore parallel.
Different doses of bacteria used in experimental infections may relate to differences in infec-
tion pressures in human populations, data collected at different time points in vivomay reflect
differences across the spectrum of disease in human TB, and an influence of the microbiome
is likely to occur in mice and humans alike, especially considering the diverse environments
and life qualities that different populations experience around the globe. Thus, although the
interpretation of the role of IL-1 in TB needs to be taken with care, the parallel study of
human and mouse data as well as the modulation of the above-discussed variables in exper-
imental models are opening very challenging and promising avenues in TB research.

As discussed above, the protective role of IL-1 in TB seems to be a dynamic one. In
both nonhuman primates and a susceptible mouse model, the administration of anakinra 2
weeks after M. tuberculosis infection, as an adjunct to linezolid treatment, proved beneficial in
controlling inflammation and lung damage (42). Thus, whereas initial IL-1 responses may be
critical for protection, at a later stage, they may become detrimental and contribute to tissue
damage. It is tempting to speculate that this dynamic role, leading to protective or detrimental
effects of IL-1, results from changes in the cellular and molecular microenvironments. During
early time points postinfection, IL-1 would mainly affect stromal and innate immune cells,
possibly activating protective mechanisms. Later on, the establishment of acquired immune
responses induces a dramatic change in the lung microenvironment, with IL-1 potentially
acting on different cell types and possibly controlling different steps of the immune
response. The tuning of these different steps is likely set by the characteristics of the host,
the infecting M. tuberculosis strain, as well as the doses of infection. Importantly, a dynamic
role of IL-1 has been also demonstrated in other infectious diseases, where excessive pro-
duction leads to inflammatory damage, but too little of this cytokine is insufficient to trigger
an immune response to fight off the pathogen (43, 44).

CELLULAR SOURCES AND CELLULAR TARGETS OF IL-1 IN TB

Innate immune cells are described as the main in vivo cellular sources of IL-1b during
experimental M. tuberculosis infection. Inflammatory monocytes, macrophages, and den-
dritic cells all upregulate their production of IL-1 upon M. tuberculosis uptake in the lung
(16). Neutrophils are also recruited to the lung and take upM. tuberculosis, but their contri-
bution to IL-1 production seems to be much lower (16). Interestingly, lung-residing mye-
loid-derived suppressive cells have also been described to release IL-1b during M. tubercu-
losis infection despite maintaining their suppressive activity (45). More recently, alveolar
macrophages were also found to produce IL-1b in vivo upon infection with M. tuberculosis
(46). These findings are paralleled in vitro as the secretion of IL-1a and -b (and other cyto-
kines) was reported in a model of M. tuberculosis-infected alveolar macrophages (47). The
molecular mechanisms regulating the production of IL-1 by innate immune cells are dis-
cussed in more detail in the next section.

Myeloid cells are also well described as cellular targets of IL-1 during TB. The functional
consequences of IL-1R activation in myeloid cells are mainly studied in vitro and suggest
that IL-1 triggers several microbicidal mechanisms, thus offering a potential explanation for
the protective role of this cytokine during infection. Among the described microbicidal
mechanisms are the induction of autophagy in the macrophage cell line Raw264.7 (48) and
the potentiation of the production of tumor necrosis factor (TNF), through a caspase-3
(CASP-3)-dependent mechanism, in both human- and murine-derived macrophages (49).
Without the presence of a functional IL-1R, mouse macrophages are more easily infected by
M. tuberculosis, hinting at a further role for this molecule in preventing bacterial dissemina-
tion (28). Furthermore, IL-1 appears to instruct the type of cell death upon phagocytosis of
bacteria by enhancing the production of prostaglandins, particularly prostaglandin E2 (PGE2)
(31). Low-level prostaglandin production has been described to drive infected macrophages
into necrotic rather than apoptotic cell death, favoring the spread of M. tuberculosis within
the host (50). The cross talk between IL-1 and the production of PGE2 is also evident in
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human macrophages and in vivo, as the blocking of IL-1 or IL-1R results in lower-level pro-
duction of PGE2 in mice, culminating in the poor control ofM. tuberculosis (31).

A growing body of evidence highlights an important role for nonhematopoietic
cells as in vivo targets of IL-1. The course of M. tuberculosis infection has been assessed in
bone marrow chimeric mice lacking a competent IL-1R in hematopoietic or nonhemato-
poietic compartments. In one study, deficiency of IL-1R in hematopoietic cells resulted in
high susceptibility to infection, with mice succumbing to disease similarly to fully IL-1R-defi-
cient mice (29), therefore suggesting that immune cells are the main targets of IL-1 during
M. tuberculosis infection. However, another study reported that IL-1R signaling in hematopoi-
etic or nonhematopoietic cells was sufficient to afford a degree of protection similar to that
seen in wild-type (WT) mice (28). This conclusion was further reinforced by the observation
that CD45-restricted IL-1R-deficient mice did not show increased susceptibility toM. tubercu-
losis infection (28). Since in these two studies (28, 29), the experimental setups were similar,
with equivalent mouse and bacterial genetic backgrounds as well as routes and doses of
administration, further studies are required to unlock the cellular targets of IL-1 during M. tu-
berculosis infections. For this, the study of infection in hematopoietic versus nonhemato-
poietic cell-restricted IL-1R-deficient mice and detailed analysis of nonhematopoietic cells
upon in vivo infection would be important.

More recently, the migration of M. tuberculosis-infected alveolar macrophages into
the lung interstitium was shown to be dependent on IL-1R signaling triggering in lung
epithelial cells (46). Also, in an in vitro coculture system of macrophages and small air-
way epithelial cells, macrophages produced IL-1b in response to M. tuberculosis infec-
tion, but this IL-1b acted on the epithelial cells, inducing their production of the anti-
microbial peptide DEFB4/HBD2, which was effective in controlling M. tuberculosis replication
in these cells (51). The fact that IL-1 increases the expression of adhesion molecules on endo-
thelial cells (52, 53), in this way promoting the migration of immune cells from the vascula-
ture to the tissue, may also uncover a potential role of endothelial cells as targets for IL-1 in
TB. Collectively, these findings hint at a role played by IL-1R signaling not only in hematopoi-
etic but also in stromal compartments during the establishment of TB, as is the case for
other lung infections (54, 55). Consequently, it is possible that the in vivo role of IL-1 is not
limited to the activation of microbicidal mechanisms focused on pathogen elimination but
instead also includes the modulation of the immune response in a more holistic manner.
Analysis of infection progression together with a deep characterization of the local immune
response triggered in cell-restricted models of IL-1R deficiency will be important to clarify
the role of IL-1 in TB.

REGULATIONANDCROSS-REGULATIONOF IL-1 DURINGM. TUBERCULOSIS INFECTION

The production of IL-1b by myeloid cells is controlled following a two-step model
that involves regulation at the transcriptional and posttranslational levels (7). Briefly,
the transcription of the Il1b gene depends on the activation of pattern recognition receptors
(PRRs) in myeloid cells and the triggering of specific intracellular signaling cascades and tran-
scription factors (7). This first step results in the production of an inactive form of IL-1b (pro-
IL-1b). A second step, consisting of the assembly of inflammasome components and the en-
zymatic action of caspases (CASPs) (7), is then required to cleave pro-IL-1b and promote the
secretion of the bioactive molecule IL-1b .

In the context ofM. tuberculosis infection, the transcription of the IL-1b-encoding gene is
induced in human peripheral blood mononuclear cells (PBMCs) and human and mouse
macrophages through the activation of pathways downstream of TLR2/TLR6 and NOD2
receptors (56) (Fig. 1). These receptors recognize M. tuberculosis and engage the transcrip-
tion of the Il1b gene through mechanisms involving the signaling molecules extracellular
signal-regulated kinase (ERK), p38, and Rip2 (56) (Fig. 1). More recently, the transcription of
the Il1b gene was reported to also be regulated by the glycolytic reprogramming of the
macrophage upon M. tuberculosis infection (57, 58), via a mechanism involving the tran-
scription factor hypoxia-inducible factor 1-alpha (HIF-1a) (59) (Fig. 1). Both the blockade
of the glycolytic shift with the glucose analogue 2-deoxyglucose and the genetic
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abrogation of HIF-1a decreased IL-1b production by M. tuberculosis-infected macro-
phages (57, 58). However, it is important to mention that macrophage metabolic reprog-
ramming induced by M. tuberculosis infection is not completely understood. For example,
experiments with killed versus live bacteria yielded different metabolic effects (60), as did
experiments using macrophages of different origins (61) and using diverse M. tuberculosis
strains (62). Understanding these processes in more detail will better define the link between
IL-1b and immunometabolism in the context of TB.

The second step needed for IL-1b production consists of the processing of pro-IL-1b
into active IL-1b (Fig. 1). The NLR family pyrin domain containing 3 (NLRP3) inflammasome
and its apoptosis-associated speck-like protein containing a CARD (ASC) and CASP1 compo-
nents (Fig. 1) were implicated in the canonical processing of pro-IL-1b in in vitro M. tubercu-
losis-infected bone marrow-derived macrophages (63–65) and bone marrow-derived dendri-
tic cells (63, 66). The absent in melanoma 2 (AIM2) inflammasome was also shown to
contribute to in vitro IL-1b production by M. tuberculosis-infected monocytes and macro-
phages (65, 67, 68). However, in vivo, the situation is not so clear. Whereas mice deficient for
AIM2 or ASC showed greater susceptibility to infection with M. tuberculosis (67), those defi-
cient for NLRP3 or CASP1 showed little to no difference in their susceptibility compared to

FIG 1 Molecular mechanisms leading to IL-1b production in M. tuberculosis-infected cells. The recognition of M. tuberculosis
molecular patterns by TLR2/6 or NOD2 induces a series of signaling cascades that culminate in the transcription of the IL-1b mRNA.
The glycolytic reprogramming of the infected macrophage also enhances Il1b transcription. Biological activation of IL-1b requires
cleavage of pro-IL-1b through canonical or noncanonical mechanisms. Canonical activation consists of the assembly of NLRP3 and
AIM2 inflammasomes, which are triggered by the recognition of pathogen-associated molecular patterns/damage associated
molecular patterns (PAMPs/DAMPs) and bacterial DNA, respectively, resulting from the export of bacterial products from the
phagolysosome. The assembly of the inflammasomes leads to the recruitment of CASP1 by ASC. CASP1 becomes activated and
cleaves pro-IL-1b into active IL-1b . Noncanonical activation is much less studied in the context of M. tuberculosis but may be
mediated by elastases, matrix metalloproteinases (MMPs), other caspases, and chymases.
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wild-type mice and unimpaired IL-1b production (32, 63, 64, 69). The fact that the absence
of NLRP3 or CASP1 did not affect IL-1b production hints at the existence of noncanonical
mechanisms of IL-1b processing, which may operate in vivo independently of NLRP3. These
mechanisms may comprise other CASPs, matrix metalloproteases, chymases, elastases, and
cathepsins (Fig. 1), all previously proposed as alternatives to CASP1 for IL-1b processing (5).
Indeed, the induction and maturation of IL-1b in dendritic cells infected with M. tuberculosis
have been described downstream of Dectin-1 activation through a noncanonical CASP8-de-
pendent inflammasome (70). Another possibility, not yet proven in M. tuberculosis infection,
is the existence of a two-cell inflammasome-independent model, where invariant natural
killer cells instruct antigen-presenting cells to secrete IL-1b via CASP8 activation (71).

Several mechanisms for IL-1 cross-regulation have been reported in the context of
M. tuberculosis infection (Fig. 2), affirming the importance of maintaining a balance in
IL-1 activity. This cross-regulation may be achieved within the IL-1 family itself, through
the binding of IL-1RA to IL-1R1 or of IL-1R2 to IL-1 (Fig. 2), both of which prevent the
cell signaling response to IL-1, thus limiting its effects (72). Another IL-1R family member
with a role in dampening inflammation and tissue damage in M. tuberculosis infection is
toll/interleukin-1 receptor 8/single Ig IL-1-related receptor (TIR8/SIGIRR) (Fig. 2), a negative reg-
ulator of TLR/IL-1R signaling (73). In its absence,M. tuberculosis-infected mice succumb prema-
turely and exhibit massive liver necrosis as well as increased levels of IL-1b and TNF-a in lung
mononuclear cells and serum (73).

Although IL-1RA is also expressed during TB, therefore restraining the IL-1b-induced
response, the most notable cross-regulatory mechanism in the context of M. tuberculosis
infection is possibly the interplay established between IL-1b and type I interferons (IFNs)
(74) (Fig. 2). M. tuberculosis induces host production of type I IFNs via different processes,
from the activation of TLR4 (75, 76) to the activation of intracellular PRRs such as nucleotide-
binding oligomerization domain containing 2 (NOD2) (77), cyclic GMP-AMP synthase (cGAS)
(78, 79), and retinoic acid-inducible gene I/mitochondrial antiviral signaling protein (RIG-I/

FIG 2 Mechanisms of host and pathogen cross-regulation of IL-1 during M. tuberculosis infection. On the host
side, type I IFNs are major regulators of IL-1 responses, acting directly by inhibiting the transcription of pro-IL-
1b or indirectly by inducing IL-10, which downregulates the expression of pro-IL-1b , or upregulating IL-1R2
and IL-1RA. TIR8/SIGIRR also blocks IL-1R responses. PGE2 induced by IL-1b counterregulates the action of type
I IFN by blocking its transcription. At the posttranscriptional level, NO regulates the production of IL-1 by
inhibiting the NLRP3 inflammasome. On the pathogen side, M. tuberculosis (Mtb) has evolved multiple
mechanisms to downregulate IL-1b , from blocking macrophage glycolytic reprogramming to blocking the
inflammasome. Genetically diverse clinical isolates of M. tuberculosis have been shown to modulate the
production of IL-1b via impacting inflammasome activity. MDR, multidrug resistant.
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MAVS) (78). Type I IFNs directly downregulate the transcription of IL-1b (Fig. 2) in human
macrophages infected with M. tuberculosis (80). Molecular signals that negatively regulate
type I IFNs in M. tuberculosis-infected macrophages, such as tumor progression locus 2
(Tpl2), were shown to positively regulate IL-1b (81). Furthermore, the production of IL-1 by
murine inflammatory monocytes, macrophages, and dendritic cells during mycobacterial
infection was suppressed by type I IFNs in vivo (16). Interestingly, this activity of type I IFNs
in regulating IL-1 in vivo is not entirely direct, instead being mostly dependent on the induc-
tion of the anti-inflammatory cytokine IL-10 (16) (Fig. 2). Moreover, type I IFNs also upregu-
late IL-1RA and IL-1R2 (Fig. 2), thus again indirectly inhibiting IL-1 (16, 31, 82). Interestingly,
in turn, IL-1 produced during M. tuberculosis infection limits the production of type I IFNs at
the translational and transcriptional levels via the induction of PGE2 (Fig. 2) in myeloid cells,
which directly reduced type I IFN-driven bacterial proliferation and mortality (31).
Furthermore, an AIM2–IL-1b signaling pathway has been reported to downregulate the pro-
duction of Ifn genes by inhibiting the STING/TBK1 pathway (83). The cross talk between
type I IFNs and IL-1 in TB is likely implicated in the detrimental effects of the former, as
illustrated by the observation that the highly susceptible phenotype of IL-1R-deficient
mice is abrogated in mice deficient for both IL-1 and IFN receptors (31).

In addition to type I IFN, other immune mediators have been shown to cross-regulate IL-
1 responses (Fig. 2). T-cell-derived IFN-g downregulates the production of IL-1 although only
on monocytes and macrophages, implying that IL-1 production may be differentially regu-
lated within different myeloid subsets by different IFNs (16). Furthermore, a role for nitric ox-
ide (NO) in regulating the production of IL-1 (Fig. 2) has been proposed, via nitrosylation
and subsequent inhibition of the NLRP3 inflammasome (84). At the functional level, NO halts
the neutrophil recruitment cascade driven by IL-1, which, if uncontrolled, becomes detri-
mental to the host (85). Other molecules that might also intervene in similar processes of
inflammatory regulation are reactive oxygen species (ROS), as demonstrated by increased
IL-1b production and uncontrolled inflammation in the lungs of NADPH-deficient mice
infected withMycobacteriummarinum (86). However, it is important to note that the IL-1 sig-
naling cascade is necessary for the production of ROS and subsequent pathogen control
(29), illustrating the importance of regulating IL-1-driven inflammation so that it does not
become disadvantageous for the host.

MANIPULATION OF IL-1 RESPONSES BYM. TUBERCULOSIS

A competent bacterial ESX-1 secretion system is a determinant for the induction of IL-1 in
M. tuberculosis-infected cells (79, 87). This system, encoded by genes belonging to the region
of difference 1 (RD1) locus, is a virulence factor present in virulent mycobacteria (e.g.,M. tuber-
culosis and M. bovis) and necessary for bacterial phagosome evasion (88). Evasion of the
phagosome places several bacterial components in the cell cytoplasm, notably ESAT-6, which
has been described to activate the NLRP3 inflammasome (89, 90) and the canonical CASP1
processing of IL-1b through a mechanism that involves the induction of potassium ion efflux
in infected phagocytes (87, 91). Both RD1- and ESAT6-deficient M. tuberculosis mutants fail to
induce the production of IL-1b (and IL-18) in infected macrophages (87, 91). That a virulence
factor contributes to the activation of NLRP3 may seem counterintuitive. However, the ESX-1
secretion system also mediates the export of bacterial DNA and RNA from the phagosome
into the cell cytosol, thus triggering the production of type I IFNs through cGAS and RIG-I rec-
ognition, respectively (78, 79). Thus, the bacterial mechanisms leading to IL-1 production
potentiate, at the same time, the synthesis of type I IFN. The pathogen may be able to take
advantage of this cross-regulation by manipulating IL-1 levels, ensuring its survival and pro-
gression of disease (79, 80, 92). Moreover, NLRP3 activation may contribute to necrotic cell
death, favoring further bacterial escape from the phagosome (93), a process that also involves
the TLR2-MyD88 pathway (90, 94). Considering the links between IL-1, TLR, and NLRP3, it is
tempting to speculate that IL-1 itself may play a part in this subversion mechanism.M. tubercu-
losis also upregulates the production of LXA4 by human macrophages, which in turn downre-
gulates the synthesis of PGE2 and promotes necrotic cell death, favoring bacterial dissemina-
tion (50). Given that IL-1 is necessary for the upstream production of PGE2 (31), one could
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hypothesize that IL-1 manipulation by M. tuberculosis could also be related to the outcome of
cell death and consequent bacterial dissemination.

Several mechanisms interfering with inflammasome activation, and thus ultimately
modulating the secretion of IL-1b , have been described for M. tuberculosis (Fig. 2). The M. tu-
berculosis protein encoded by the zmp1 gene was found to prevent inflammasome activation
and IL-1b production (95) (Fig. 2). Mice infected with bacteria lacking zmp1 displayed higher
levels of production of IL-1b , lower bacterial burdens in the lungs, and enhanced bacterial
clearance, resulting in a positive outcome of the disease (95). More recently, differential induc-
tion of IL-1b by genetically distinct M. tuberculosis clinical isolates was found to be associated
with disease severity (65). Clinical isolates recovered from patients with mild TB disease consis-
tently induced high-level secretion of IL-1b in human PBMCs, THP-1 cells, and mouse bone
marrow-derived macrophages, which was related to stronger activation of the inflammasome
(65) (Fig. 2). Furthermore, M. tuberculosis clinical isolates of the modern lineage 4 were shown
to induce a higher-cytokine-production profile, including IL-1b , than those from ancient line-
ages such as lineage 1 and lineage 5 (96). Of note, the modulation of IL-1b production by iso-
lates ofM. tuberculosismay also occur through hitherto-unknownmechanisms (97, 98).

Another potential mechanism used by M. tuberculosis to regulate the production of
IL-1b relates to the modulation of the metabolic reprogramming of phagocytic cells
(99) (Fig. 2). As discussed above, M. tuberculosis infection drives a metabolic shift in the
macrophage toward glycolysis, which is linked to IL-1b production (58). By upregulating the
host production of microRNA 21 (miR-21) (Fig. 2), M. tuberculosis interferes with PFK-M, pre-
venting the glycolytic shift and decreasing the production of IL-1b , a process that culminates
in enhanced bacterial replication within macrophages (57). Interestingly, IFN-g was shown to
reverse this mechanism and to augment the production of proinflammatory cytokines like IL-
1b (57). These results may seem in contrast to others mentioned above, where IFN-g sup-
pressed the production of IL-1b (16), but these differences could be explained by the specific
cellular context as well as the use of different M. tuberculosis strains in these studies. Indeed,
bacterial diversity was shown to impact both the metabolic modulation of the macrophage
(99) and the production of IL-1b (65, 96–98). Another example of cross-modulation between
metabolism and IL-1 is seen in macrophages infected with M. tuberculosis strains carrying a
rifampicin drug resistance mutation (Fig. 2), which altered the expression of M. tuberculosis
lipid wall components, impacting macrophage metabolic reprogramming, bypassing IL-1 sig-
naling, driving the induction of IFN-b , and inhibiting glycolysis (62). Given that duringM. tuber-
culosis infection in vivo, macrophages of different ontogenies were shown to follow distinct
metabolic reprogramming (61), it will be of interest to understand how this may correlate
with IL-1b regulation by alveolar versus interstitial macrophages.

THE CLINICAL POTENTIAL OF IL-1 IN TB

Given the role of IL-1 in TB pathogenesis, the development of IL-1-based novel TB
interventions is an exciting possibility. A challenge will be to pinpoint the individuals
who will benefit more from such therapies, namely, whether they are latently infected or
have active TB, with or without comorbidities. Currently, commonly employed IL-1-based
therapies are aimed at treating inflammation, based on blocking the effect of IL-1 signaling.
These include the administration of the synthetic IL-1RA anakinra, soluble decoy receptors
for IL-1, or anti-IL-1 neutralizing antibodies (11). Since immune-suppressive treatments,
including anakinra (12–14), are associated with an increased risk of the development of TB,
it is tempting to speculate that enhancing IL-1 signaling without causing excessive inflam-
mation may be helpful in protecting the host from TB disease progression. A host-directed
therapy (HDT) that is intrinsically linked to IL-1 is the targeting of the host eicosanoid net-
work (31). As mentioned above, PGE2 is a downstream product of IL-1R signaling that pro-
motes apoptotic cell death and limits bacterial proliferation (31, 50). Since type I IFNs down-
regulate the production of PGE2, balancing the immune response between IL-1 and type I
IFNs is a promising HDT to manipulate PGE2 production, thus favoring bacterial containment
(31). Another interesting HDT based on IL-1 in TB relates to the potential role of IL-1 in
trained immunity (100). A recent study has shown that mice trained with b-glucan showed
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enhanced protection against M. tuberculosis infection, a phenotype that depended on a
competent IL-1R and that was associated with the expansion of hematopoietic stem and
progenitor cells in the bone marrow and increased myelopoiesis (101). Exploring a possible
role for IL-1 in myelopoiesis and the development of trained immunity during TB may be an
important HDT to further pursue in the future. Importantly, excessive IL-1 is detrimental in
TB, so the therapeutic control of this cytokine at certain stages of infection, and possibly ana-
tomical locations, may benefit the host. A recent study showed that the side effects of line-
zolid, a potent antibiotic effective in TB treatment, were abrogated upon IL-1 blockade, with-
out affecting host resistance to TB, in mice and nonhuman primates (42). Also, a recent
study suggested that for M. tuberculosis strains that elicit a high IL-1b response, NLRP3
inflammasome inhibition may reduce bacterial survival in macrophages (98). However,
increased amounts of IL-1 production elicited by clinical isolates of M. tuberculosis may
reflect better outcomes of TB severity (65). Altogether, the modulation of IL-1 responses in
TB requires a detailed understanding of the mechanisms through which IL-1 affords protec-
tion or pathology and will also likely need to take into consideration the levels of IL-1 induc-
tion provided by different host-M. tuberculosis pairs, exposed to different lifestyles and epi-
demiological conditions.

While IL-1-based HDTs may hold promise, there is also evidence that the IL-1 family
could be useful as a biomarker in TB. A larger amount of IL-1b produced ex vivo by M.
tuberculosis-stimulated macrophages from individuals with latent TB than from individuals
with active TB has been reported (102). The high-level production of IL-1b by monocytes
and dendritic cells upon TLR stimulation was associated with a lower incidence of TB recur-
rence, while IL-1b production upon stimulation with M. bovis BCG was correlated with a
higher risk of TB relapse (103). Furthermore, higher IL-1b levels measured in the peripheral
blood were associated with higher bacterial loads in the sputum, granuloma cavitation, and
elevated disease severity in TB patients, which were decreased upon TB treatment (104,
105). IL-1a, in combination with epidermal growth factor (EGF), sCD40L, vascular endothelial
growth factor (VEGF), and transforming growth factor a (TGF-a) produced upon antigen
stimulation of whole blood, was also used to distinguish between active and latent TB cases
(106). Finally, some studies place IL-1RA measured in antigen-stimulated whole blood and
QuantiFERON assays as a potential marker to distinguish cases of active versus latent infec-
tions (107–110). IL-1RA was also reported as a potential surrogate marker to monitor the effi-
cacy of TB treatment in HIV patients diagnosed with TB (111). A major limitation of these
studies, and indeed of using IL-1 family members as potential biomarkers of TB, relies on the
difficulty in drawing the threshold of their production relevant to each clinical scenario, an
issue that warrants further investigation.

CONCLUSIONS AND OUTSTANDING QUESTIONS

Compelling evidence positions IL-1 as a fundamental player in the immune response
against TB. The lack of functional IL-1R signaling results in an inability to control the infection,
as seen at a cellular level (28, 31, 49, 50) or in the complex setting of in vivo infections (16, 30,
32–34, 38, 112). However, it is also evident that enhanced IL-1 responses lead to severe inflam-
mation and tissue damage, thus also compromising host resistance to TB (42, 73, 98).
Importantly, there are still important gaps in our knowledge on the precise role of IL-1 and
its full contribution to the immune response in TB, specifically in the human context, as the
majority of studies are performed in vitro and in vivo with animal models. Some outstanding
questions persisting in this field are as follows:

n How does IL-1 modulate susceptibility or resistance to infection in humans?
n What is the role of less-studied IL-1 family members in TB?
n What are the hematopoietic and nonhematopoietic cellular targets of IL-1

during the course ofM. tuberculosis infection?
n Is the role of IL-1 in TB dependent on the anatomical location, e.g. alveolar space

versus lung interstitium or bone marrow versus lung?
n What is the role of IL-1 during early versus late stages of infection, and how does

that affect the outcome of TB?
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n Which molecular mechanisms operate in vivo to regulate the production of IL-1
duringM. tuberculosis infection?

n Can we explore the natural genetic diversity of M. tuberculosis to uncover novel
strategies directed at modulating host IL-1 responses?

All in all, given the enormous complexity of TB, developing and translating IL-1-based
therapies may seem a herculean task. However, the advances discussed here place us on
the right path to identify and understand the key points involved in this complexity. This in
turn is critical to lead to the right questions and, most importantly, design both meaningful
clinical studies and appropriate experiments, namely, to model human TB to animal models
and back. These concerted efforts will undoubtedly move the field toward the clinical appli-
cation of IL-1 in TB.
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