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Abstract:
Gene-regulatory networks are an abstract way of capturing the regulatory connectivity between transcription
factors, microRNAs, and target genes in biological cells. Here, we address the problem of identifying enriched
co-regulatory three-node motifs that are found significantly more often in real network than in randomized
networks. First, we compare two randomization strategies, that either only conserve the degree distribution of
the nodes’ in- and out-links, or that also conserve the degree distributions of different regulatory edge types.
Then, we address the issue how convergence of randomization can be measured. We show that after at most
10 × |E| edge swappings, converged motif counts are obtained and the memory of initial edge identities is lost.
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1 Introduction

Gene-regulatory networks (GRNs) are typically formulated as directed mathematical graphs whereby nodes
stand for target genes, transcription factors (TFs), and microRNAs and edges stand for activating or repressing
regulatory interactions. By edges we refer to directed edges here. TFs either activate or repress the transcription
of target genes. MicroRNAs typically induce the degradation of messenger RNAs of their target genes. Hence,
modern GRNs address the regulation of messenger RNA levels at transcriptional and post-transcriptional lev-
els [1], [2]. Our group recently introduced a webserver termed TFmiR [1] that enables users to construct and
analyze disease-specific TF and miRNA co-regulatory networks. Please see the methods section for more details
on TFmiR.

Shen-Orr and Alon were the first to identify regulatory motifs in a GRN of E.coli that only consisted of TFs
and target genes [3]. They discovered that feed-forward loops (FFLs) involving two TFs whereby TF1 regulates
TF2 and both TFs jointly regulate a target gene are statistically significantly enriched in real GRNs with re-
spect to randomized GRNs. Besides, they also discovered that single-input modules and densely overlapping
regions are enriched too, but we will focus on FFL-type motifs here. Recently, several authors have expanded
the concept of FFL-motifs to GRNs with TFs, miRNAs, and target genes [1], [2], [4]. In this context, proper
randomization of GRNs becomes even more important for determining which FFL motifs are enriched in the
real GRN. In our original TFmiR paper [1], we did not distinguish between the three possible types of regula-
tory links, TF → target gene, TF → miRNA, and miRNA → target gene, during randomization. However, Ohler
and co-workers recently pointed out that an edge-type preserving randomization strategy may be beneficial
whereby switching of edge end-points only takes place between two edges that both belong to either one of the
three groups of regulatory links [4].

Another important technical question is how to quantify proper randomization. In our original TFmiR pa-
per, we randomized 2 × |E| times, where |E| is the number of links in the GRN. It was argued that 100 × |E|
switches of edge end points ensure proper randomization [5]. Based on two GRNs with different link densities,
we present here a thorough analysis what motifs are statistically enriched in these GRNs under the edge-type
conserving and non-conserving randomization strategies and how proper randomization can be quantified.
For comparison, we also used the established motif-discovery tool FANMOD [6].
Sepideh Sadegh is the corresponding author.

©2017 Sepideh Sadegh et al., published by De Gruyter.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

1

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Sadegh et al. DE GRUYTER

2 Related Works

There exist many motif finding tools including the well-known tools mfinder [7] and FANMOD [6]. mfinder
detects network motifs either by full enumeration of subgraphs, or by sampling of subgraphs for estimation of
subgraph concentrations. The latter method is faster but has a bias for sampling certain subgraphs more than
others [8]. mfinder provides several methods to generate random networks including the switching method,
the stub method, and the “go with the winners” algorithm [5]. FANMOD uses an algorithm called RAND-ESU
[8] that enables quick and accurate estimation of the total number of size-k subgraphs in a given network. A
new randomization algorithm named WaRSwap [4] provides a practical network motif discovery method for
large multi-layer networks such as co-regulatory networks. However, this technique must be used together
with a motif discovery tool such as FANMOD, which limits its applicability. WaRSwap generates randomized
networks by preserving the in-degree distribution of target nodes with respect to each source-target type rather
than the exact in-degrees. This randomization method seems to be more compatible with multi-layer networks
than the universal method where only the in- and out-degree of nodes are conserved.

3 Materials and Methods

3.1 Types of 3-Node Motifs in miRNA-TF Synergistic Regulatory Networks

miRNA and TF co-regulatory networks contain four types of regulations, TF → Gene, TF → miRNA,
miRNA → Gene and miRNA → TF, that can be combined in ten different ways as 3-node motifs, see Figure
1. Eight of these are synergistic motifs consisting of two different types of regulators (miRNA and TF), and
their directly/indirectly synergistically regulated target gene (first two rows of Figure 1). The last two motifs,
where the target gene is not cooperatively regulated, are not studied here.

Figure 1: 3-node motifs in miRNA & TF synergistic regulatory networks. In FFLs the gene is regulated via two paths: (1) a
direct regulation by a main regulator (TF/miRNA) and (2) an indirect regulation through an intermediate regulator (miR-
NA/TF) which is itself regulated by the main regulator. Composite-TF/miRNA-mediated: mutual regulation of TF and
miRNA besides regulation of the target gene by only one of them. Cascade-TF/miRNA-mediated: are non-loop forms,
including an indirect effect of the main regulator (TF/miRNA) on the target gene only via another type of regulator (miR-
NA/TF). The 3rd row shows two non-cooperative motifs where the target gene is not cooperatively regulated.

3.2 Data Sets

We used miRNA and TF co-regulatory networks for two different complex diseases as input to our motif finding
tool. The first network is associated with breast cancer (BC) [1] and the second network with glioblastoma
multiforme brain tumor (GBM) [9]. Table 1 lists topological properties of the two networks. The GBM network
is about four times denser than the BC networks.

Table 1: Density of Networks.
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|E| |V| density

BC-complete 378 258 0.0057
BC-disease 297 206 0.0070
GBM 4248 408 0.0256

In a study on breast cancer using gene and miRNA expression data from The Cancer Genome Atlas (TCGA)
portal, Hamed et al. [10] identified 1262 genes and 121 miRNAs that are deregulated in cancer tissue with
respect to matched normal tissue. With the TFmiR web server [1] we identified regulatory interactions for
the provided lists of up- and down-regulated genes and miRNAs using data from established and curated
regulatory databases of both predicted and experimentally validated interactions. The resulting network is
termed BC-complete in Table 1. Then we used TFmiR to intersect this global network with genes associated with
“breast neoplasms” based on the human miRNA disease database (HMDD) [11] and DisGeNET, a database for
gene-disease association [12]. This gave the breast cancer-specific subnetwork that we termed BC-disease.

A co-regulatory network for GBM with 415 genes and 124 mature GBM-related miRNAs was retrieved from
Sun et al. [9], who used a similar approach for constructing GRNs to the approach used in TFmiR. 428 human
TFs were retrieved from the TRANSFAC database [13]. The regulatory interactions between a TF, a miRNA,
and a target gene were predicted using computational approaches.

The main difference between the two networks considered here is in the last step. In the GBM network, the
authors included only miRNA-TF co-occurring pairs that are significant based on the hypergeometric test. In
contrast, TFmiR does not check for significance here. Another difference is that in building the GBM-specific co-
regulatory network only predicted interactions were utilized, while in the BC-complete/disease co-regulatory
networks both predicted and experimentally validated interactions were taken into account.

3.3 Motif Discovery Process

The sequential steps for the motif discovery are as follows: A subgraph census is conducted for the types of
desired motifs on the original network. An ensemble of N similar random networks is generated and sub-
graph enumeration is applied to each of these networks. Finally, after calculating the frequency of each type
of subgraph in all networks (original and randomized), its significance metrics are calculated, with the over-
represented subgraphs being reported as motifs. For the purpose of comparing two randomization strategies,
we implemented the entire process of motif finding as an in-house Cytoscape App [14], which is an OSGi Bun-
dle style App. This functionality will be made publicly available in the next release of TFmiR.

3.3.1 Enumeration of Desired Subgraphs

Typical algorithms for enumeration of subgraphs work on a connectivity matrix C, whose elements (Cij) are
equal to 1 if regulator i regulates target j and 0 otherwise. Then, they scan all n by n submatrices of C, that rep-
resent topologies of each desired type of size n motif. We modified this typical subgraph enumeration algorithm
by using the data models in Cytoscape (namely CyNetwork and CyTable).

3.3.2 Generating Random Networks

Randomization of networks must be conducted such that sampling is done as uniformly as possible from the
collection of all obtainable random networks. Megraw et al. [4] suggested that low-variance distributions of
motif counts in randomized networks (<1) are a sign of inadequate randomization, and that they can happen
due to edge switching in large multi-layer networks. To evaluate the adequacy of sampling and uniformity of
random networks generation, variances of subgraph count of all types of possible motifs in the randomized
networks should be considered (see Section 4.3.1).

The key aspect in assessing the statistical over-representation of motifs is to generate the random networks
in a way so that their characteristics are as similar as possible to the original network. The method using swap-
ping of end-points ensures that each node in the randomized networks has the same number of incoming and
outgoing edges (in- and out-degree) as the corresponding node in the real network. The universal method used
for this purpose is the so-called “switching method”, employed for the first time in the field of motif detection
by Shen-Orr et al. [3]. By construction, it strictly conserves the degree distribution of the graph and even of each
node. The algorithm generates a Markov chain of states by randomly selecting a pair of edges (A → B, C → D)
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and swapping their endpoints to create the new edges (A → D, C → B). Creation of self-edges and multiple
edges are not allowed and considered as failed attempts of switching. This process is repeated Q × |E| times,
where |E| is the number of edges in the graph and Q is chosen large enough so that the Markov chain shows
good mixing. Milo et al. [5] found that for many networks, values of around Q = 100 appear to be more than
adequate. In our approach failed attempts are not counted, i.e. we repeat swapping as many times as needed
to reach Q × |E| successful attempts. This algorithm returns a shuffled version of the original network as a
randomized network. We suggest some measures to assess proper mixing in Section 3.4.

Different Strategies
We modified the switching method to consider additional features of miRNA-TF synergistic regulatory

networks (different node and edge types). To deal with networks with multiple types of connections, we use
the terminology introduced by Yeger-Lotem et al. [15] where the extended degree of a node stands for the
number of edges per type that point to/from a node. Two nodes have the same extended degree if they have
the same number of incoming and outgoing edges for each edge type.

Based on this definition, one can develop a new switching strategy, which allows only swapping endpoints
of edges with the same regulatory relationship among miRNAs, TFs, and target genes. Hence, we distinguish
a “conserving method” that conserves the extended degree of nodes, i.e. edges are switched only between
edges of the same type, and a “non-conserving method” that does not conserve the extended degree of nodes,
i.e. switching is done without considering the edge type, consequently the frequency of each edge type is not
conserved. The latter method is equivalent to the original switching method. Note that the non-conserving
method can also create new edge types, which did not exist in the original network, unless this is prevented
(such as TF → TF, or miRNA → miRNA edges).

An efficient algorithm for the conserving method can be implemented by grouping network edges of differ-
ent edge types into different lists and then randomly selecting the second edge from the edge list of the first
selected edge type. This helps to improve the efficiency of the randomization algorithm in terms of run-time.

3.3.3 Comparison of Real and Randomized Networks by Significance Metrics

The goal of network motif discovery is to determine which subgraph types occur in the original network at
significantly higher frequencies than in random networks. For this, the occurrence of a particular subgraph in
the network of interest is compared to the distribution of counts for the same subgraph over a set of random-
ized networks using p-value and z-score. The p-value represents the probability of a motif to appear an equal
or greater number of times in a random network than in the original network [16]. This probability should be
smaller than a determined probability threshold to reject the null hypothesis. This can be empirically deter-
mined using a large number of randomized networks:

𝑝 - value =
𝑁u�ℎ
𝑁u�

where Nrh is the number of random networks in which a certain motif type is acquired more than or equal
to its number in the real network and Nt is the total number of randomized networks. It has been suggested
[1] that Nt = 100 is sufficiently large. Alternatively, let f real be the frequency in the real network and f rand be the
frequency in a random network. We can then define the z-score as follows (with σ being the standard deviation):

𝑧 - score =
(𝑓real − ̄𝑓rand)

𝜎(𝑓rand)
, 𝜎(𝑓rand) =

√
√√
⎷

∑u�(𝑓randu�
− ̄𝑓rand)

2

𝑁u�

Subgraphs with z-score ≥2 and p-value <0.05 are considered significant motifs as was previously done [3], [4],
[6].

3.4 Measures for Proper Mixing of Randomized Networks

One general drawback of randomizing networks by the switching method is that there is no measure of how
long one needs to iterate over the “select two edges and swap their endpoints” routine to attain well randomized
networks. Here we propose two measures to characterize whether randomized networks are properly mixed.

First, we measure the similarity of networks before and after randomization. Ideally, edges should be
switched until there are no common edges between the original network and each randomized network. In
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other words one should search for the maximum difference between the given network and each randomized
network to avoid the situation termed “under-shuffling” [17]. Under-shuffling means that only a small fraction
of the switchable edges were swapped. We defined a similarity metric to measure how similar is the ensemble
of randomized networks to the original network in terms of common edges:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =
✀��𝑆𝑖𝑚✀��

|𝐸|

Here, Sim is the number of common edges between the original and a particular randomized network, 〈Sim〉
is its average in all randomized networks, and |E| is the total number of edges in the original network. Lower
Similarity values indicate better randomization. The lowest possible value of zero happens in case of no common
edges. This definition considers the size of the network as well as the number of randomized networks. This
enables comparison of the similarity metrics of randomization approaches applied to different given networks.
A value close to zero indicates that under-shuffling is avoided.

Another measure is the convergence of subgraph counts during randomization. For 0.01 × |E| to 100 ×
|E| randomization iterations, we recorded how often the investigated subgraph types occurred in the random
networks and checked whether this number converged to a specific value or whether it did not follow any
pattern and changed erratically.

4 Results

4.1 Synergistic 3-node Motifs

Table 2 shows which co-regulatory 3-node motifs were significantly enriched in the real GRN vs. random-
ized GRNs when either the edge-type conserving randomization strategy was applied or the non-conserving
one. 100 × | E | iterations were used for this part of our study. In the BC-complete network, no significant
motif is found by the conserving method. In contrast, the composite-miRNA-mediated and cascade-miRNA-
mediated motifs are reported as significant by the non-conserving method. In the BC-disease network, only
the co-regulation type is identified as significant by the conserving method, whereas the non-conserving
method gives the same significant motifs as for the BC-complete network. In the GBM network, TF-FFL and
miRNA-FFL are reported as significant by the conserving method; whereas by the non-conserving method
all types of subgraphs except co-regulation are identified as significant. In all three networks, subgraphs of
types composite-miRNA-mediated and cascade-miRNA-mediated are identified as statistically significant by
the non-conserving method. All subgraphs meeting the p-value criterion (Table 2) also met the z-score criterion.
Note that p-value is a probability and can be slightly different in each run of the algorithm due to the generation
of different randomized networks.

Table 2: p-values for different 3-node subgraphs in the considered networks when either the non-conserving or the con-
serving randomization strategy is used.

BC-complete BC-disease GBM

Subgraph
type

Non-cons. Cons. Non-cons. Cons. Non-cons. Cons.

 Co-
regulation

0.77 0.33 0.96 0.04 1.00 1.00

 TF-FFL 1.00 0.77 0.98 0.61 0.00 0.00
 miRNA-
FFL

0.77 0.86 0.69 1.00 0.00 0.00

 Composite-
FFL

0.29 0.12 0.45 0.50 0.00 0.68

 Composite-
TF-Med.

0.62 0.26 0.66 0.42 0.00 0.55

 Composite-
miRNA-Med.

0.00 0.50 0.01 0.53 0.00 0.62

 Cascade-
TF-Med.

0.47 0.69 0.16 0.26 0.00 0.84

 Cascade-
miRNA-Med.

0.00 0.54 0.01 0.49 0.00 1.00
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Significant motifs are marked in bold.

The non-conserving method leads to detecting more subgraph types as significant compared with the con-
serving method. In randomization by the conserving method, swapping happens between all edges of the same
type, hence the chance of having the same types of subgraphs in randomized networks compared to the origi-
nal network is not decreased that much. This could result in higher p-values and consequently fewer subgraphs
will show significant differences.

In the GBM network, we found 3-node FFLs to be significant while in BC networks they are not. One reason
for this could be the higher density of the GBM network than the BC networks.

4.2 Motif Finding with FANMOD

FANMOD also employs the “switching method” for randomization of network. The randomization step can
optionally keep the extended degree of a node constant by exchanging edges only with edges of the same type.
This is equal to randomization by the conserving method in our approach. The same number of swappings per
edge (Q = 100) and the same criteria for p-value and z-score were chosen for both tools.

FANMOD gave similar motif finding results for all three miRNA-TF co-regulatory networks (Figure 2) to
those of our tool. The few dissimilarities can be due to slight differences of the randomization algorithms. In
the routine of randomly selecting edges for swapping, we only count successful attempts until a pre-defined
number of iterations is reached whereas FANMOD tries a limited pre-defined number of times to find an ap-
propriate candidate for swapping irrespective of whether this is successful or not. By inspecting the output
file of FANMOD we found that ∼80 % of the attempts were successful when randomization was done with the
conserving method and ∼50 % with the non-conserving method.

Figure 2: Significant 3-node motifs (highlighted in green) detected by the FANMOD tool with two different randomiza-
tion strategies.
(A) BC-complete. (B) BC-disease. (C) GBM.

4.3 Validation of Randomization

4.3.1 Uniform Sampling of Randomized Networks

Megraw et al. [4] observed many failed switches during the execution of FANMOD randomization, which
was also the case here. As mentioned, our approach counts only the number of successful attempts until a
pre-defined number of iterations is reached. By close inspection of the resulting background histogram of sig-
nificant motifs, we observed in the miRNA-TF synergistic regulatory networks of BC and GBM a high variance
of count distributions of subgraphs in randomized networks for all significant 3-node motifs (Table 3 and Table
4). This indicates an adequate randomization of networks in our approach. For the GBM network, much higher

6

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Sadegh et al.

variances were obtained than for the BC networks. It is suggestive to attribute this to the higher density of the
network.

Table 3: Variance of count distributions of subgraphs in randomized networks for the BC-complete/-disease networks.

Non-conserving method Conserving method

Subgraph type Variance Variance
BC-disease BC-complete BC-disease BC-complete

 Co-regulation 14.9 32.0 6.7 10.3
 TF-FFL 5.5 7.5 2.4 2.6
 miRNA-FFL 4.2 4.9 7.0 8.4
 Composite-FFL 1.7 1.5 2.0 1.7
 Composite-TF-
Med.

289.8 339.1 177.6 130.0

 Composite-
miRNA-Med.

85.1 74.0 391.9 458.5

 Cascade-TF-Med. 592.3 880.8 174.8 134.4
 Cascade-miRNA-
Med.

394.6 433.4 435.9 522.6

Significant motifs are marked in bold.

Table 4: Variance of count distributions of subgraphs in randomized networks for GBM network.

Non-conserving method Conserving method

Subgraph type Variance Variance
 Co-regulation 18,335.7 4729.6
 TF-FFL 4340.9 3298.5
 miRNA-FFL 1526.1 2344.3
 Composite-FFL 277.0 890.4
 Composite-TF-Med. 10,282.2 38,169.3
 Composite-miRNA-Med. 1690.0 6153.5
 Cascade-TF-Med. 53,127.1 37,486.1
 Cascade-miRNA-Med. 35,798.9 7742.2

Significant motifs are marked in bold.

4.3.2 Measures for Proper Mixing of Randomized Networks

Similarity Metric
Two sets of 100 randomized networks were generated from the BC-complete network using in one case the edge-
type conserving strategy and in the other case the non-conserving randomization strategy. Between 0.01 × |E|
and 100 × |E| iterations of edge swapping (Q × |E|) were carried out. Figure 3 shows the similarity between
original and randomized GRNs for varying Q. The number of iterations required to reach values close to zero
depends on the randomization strategy. For the non-conserving method, the similarity metric reaches zero
at fewer iterations (Q = 7 for BC-complete and Q = 8 for GBM) than the conserving method (Q = 14 for BC-
complete and Q = 15 for GBM). Results for the GBM network are very similar to those for the BC-complete
network, only slightly more iterations are needed to reach zero. Both methods of randomization for both net-
works reach similarities below 0.01 after Q = 3 iterations. This means that after 3 × |E| iterations, less than
1 % of the edges in the ensemble of randomized networks are in common with the original network. This low
percentage of similarity seems to be a good threshold for choosing a proper Q for our randomization method.
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Figure 3: Similarity metric vs. number of iterations for (A) the BC-complete and (B) the GBM networks.

Convergence of Subgraph Counts
Figure 4 shows how often subgraph types occurred in the set of randomized BC-complete networks after ran-
domization when Q was varied between 0.01 and 100. With the non-conserving method (Figure 4), the total
subgraph count converged to a fixed value after Q = 10 iterations and did not change erratically thereafter. With
the conserving method (Figure 4), the total number of subgraphs found in the randomized networks was quite
stable over the whole range of 0.1 < Q < 100.
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Figure 4: Total number of subgraphs vs. number of iterations for (A) the BC-complete and (B) the GBM networks.

Our empirical findings for both BC and GBM networks suggest that Q = 1 is adequate to obtain properly
mixed randomized networks by the conserving method; whereas for the non-conserving method Q = 10 ap-
pears suitable for ensuring good mixing of the randomized networks. Evaluation of network similarity for the
BC-complete network suggests Q∼3 as a good balance for both conserving and non-conserving methods of
randomization.

4.4 Network Centrality of Gene and miRNA Sets

Here, we analyzed the overlap between the genes and miRNAs participating in the enriched 3-node motifs
(here termed motif nodes) and the most central genes and miRNAs with respect to degree, betweenness, and
closeness centralities (here termed central nodes). Using either edge-type conserving or non-conserving ran-
domization gave 26 and 130 genes and miRNAs in enriched motifs, respectively. These sets were compared
to sets with the same number of most central genes and miRNAs. The centralities were measured using the
igraph package [18], considering only out-degree of nodes in the directed network. The motif nodes identified
by the conserved method had the highest overlap with the central nodes defined according to closeness and
betweenness centrality, respectively (Figure 5A). In contrast, the motif nodes defined with the non-conserved
method showed a similar overlap with the central nodes identified by all three centralities (Figure 5B). This
latter observation can be explained by noting that only 57 genes and miRNAs have out-degree greater than or
equal to 1 in the BC disease networks. The overlap of around 45 % with the central nodes means that essentially
all these 57 motif nodes are hub nodes in this network. A larger fraction of hub nodes (up to around 60 %) exists
in the smaller set of 26 motif nodes defined by the conserving method.
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Figure 5: Overlap of most central nodes (according to three different centralities) with the set of genes and miRNAs in the
statistically enriched motifs. (A) Conserved. (B) Non-conserved.

Next, we analyzed the overlap of the 26 motif nodes identified by the conserving method with a smallest
connected set of key regulatory genes and miRNAs that dominates the network. For this, we solved the ILP
formulation of the respective minimum connected dominating set (MCDS) in the largest strongly connected
component of this network [19] and obtained an MCDS of seven genes and miRNAs. Among these,TGFB1,
TP53, ESR1, and hsa-mir-22 belong to the motif nodes.

4.5 Biological Relevance of the Detected Motifs

The biological relevance of the genes among the motif nodes obtained by the conserved and non-conserved
randomization methods was evaluated based on the functional categories in GO Direct using the enrichment
analysis via DAVID (version 6.8) [20]. p-values below the threshold 0.05 obtained by the hypergeometric test
were adjusted for multiple testing using the Benjamini & Hochberg (BH) procedure [21]. Both methods re-
turned almost the same number of significant GO terms, mostly involving transcription and apoptotic pro-
cesses, although the non-conserving method considered 104 genes versus 14 genes considered by the conserv-
ing method.

5 Discussion

If the network of interest contains more than one node or edge type, different randomization strategies can be
applied for motif discovery. In this study, different strategies led to quite different enriched 3-node motif types.

The reason why FFLs were statistically significantly enriched only in the GBM network could originate
from the difference in constructing the GBM and BC networks, where only significant TF-miRNA co-occurring
pairs were considered in the regulatory network of GBM. This means that the TF → gene ← miRNA triad is
enriched a priori in this network. Our study suggests that the way of network construction and also the density
of the network may affect the results of motif finding. For the considered BC-networks, only subgraphs of types
other than FFLs were found to be significantly enriched. Our motif finding tool identified composite-miRNA-
mediated and cascade-miRNA-mediated as statistically significant motifs (by the non-conserving method). Al-
though the results are similar in BC-networks, the conserving method identified the co-regulation motif type
to be significant in the filtered BC-disease network that was not found significant in the BC-complete network.
We thus speculate that motif searches in filtered (i.e. more specific) networks may identify biologically more
meaningful motifs.

We suggest variance of motif counts and similarity of original and randomized networks as suitable auxil-
iary measures to judge whether randomization generates properly mixed networks. Our study suggests that the
density of networks does not affect the minimum required Q to obtain properly mixed randomized networks.

In conclusion, the non-conserving method leads to detecting more subgraph types as being statistically
significant compared with the conserving method. For the 2.5 networks studied here, we noticed that (a) the
conserving randomization method identified significant motifs containing a larger fraction of the most central
nodes (Figure 5) than the non-conserving method, and (b) both methods gave the same number of significant
Gene Ontology terms, although the conserving method considered much fewer genes for this than the non-
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conserving method. Certainly, the same analysis should be extended to a representative number of comparable
GRNs. So far, it seems that the conserving method gives biologically more meaningful results.
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