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A weakly supervised deep 
learning‑based method for glioma 
subtype classification using WSI 
and mpMRIs
Wei‑Wen Hsu1, Jing‑Ming Guo1, Linmin Pei2*, Ling‑An Chiang1, Yao‑Feng Li3, 
Jui‑Chien Hsiao1, Rivka Colen4,5 & Peizhong Liu6

Accurate glioma subtype classification is critical for the treatment management of patients with brain 
tumors. Developing an automatically computer‑aided algorithm for glioma subtype classification is 
challenging due to many factors. One of the difficulties is the label constraint. Specifically, each case 
is simply labeled the glioma subtype without precise annotations of lesion regions information. In this 
paper, we propose a novel hybrid fully convolutional neural network (CNN)‑based method for glioma 
subtype classification using both whole slide imaging (WSI) and multiparametric magnetic resonance 
imagings (mpMRIs). It is comprised of two methods: a WSI‑based method and a mpMRIs‑based 
method. For the WSI‑based method, we categorize the glioma subtype using a 2D CNN on WSIs. 
To overcome the label constraint issue, we extract the truly representative patches for the glioma 
subtype classification in a weakly supervised fashion. For the mpMRIs‑based method, we develop a 
3D CNN‑based method by analyzing the mpMRIs. The mpMRIs‑based method consists of brain tumor 
segmentation and classification. Finally, to enhance the robustness of the predictions, we fuse the 
WSI‑based and mpMRIs‑based results guided by a confidence index. The experimental results on the 
validation dataset in the competition of CPM‑RadPath 2020 show the comprehensive judgments from 
both two modalities can achieve better performance than the ones by solely using WSI or mpMRIs. 
Furthermore, our result using the proposed method ranks the third place in the CPM‑RadPath 2020 in 
the testing phase. The proposed method demonstrates a competitive performance, which is creditable 
to the success of weakly supervised approach and the strategy of label agreement from multi‑
modality data.

Brain tumors, originating in the glial cells, are cancerous masses in the central nervous system (CNS)1. In 
2011–2015, there are 23 out of 100,000 population diagnosed with brain tumors in the  US2. Prior to 2016, World 
Health Organization (WHO) categorizes the CNS gliomas into grades I–IV based on the histological features 
of a heterogeneous population of the  tumor3. However, a new brain tumor classification criterion was released 
from the WHO in 2016. According to the new criterion, the tumor classification is determined based on both 
phenotypic and genotypic  information4. There are many glioma subtypes: diffuse astrocytoma, isocitrate dehy-
drogenase (IDH)-mutant/-wildtype, anaplastic astrocytoma IDH-mutant/-wildtype, oligodendroglioma, IDH-
mutant and 1p/19q-codeleted, glioblastoma, IDH-mutant/-wildtype, etc. The prognosis of a patient with brain 
tumors is highly related to the tumor  grade2. In general, patients with higher-grade gliomas have a less survival 
period. Especially, for patients with glioblastoma (GBM), the median survival period still remains 12–16 months, 
even with treatment  advancement5. Consequently, an accurate and robust glioma subtype prediction provides 
a valuable guide for diagnosis and treatment management. Conventionally, brain tumor diagnosis or grading is 
performed by pathologists, who examine tissue sections fixed on glass slides under a light microscope. Yet, the 
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manual diagnosis/grading process is time-consuming and susceptible to human errors. Therefore, computer-
aided brain tumor subtype classification is highly desired.

Prior to 2016, digital pathology images are the primary sources for the glioma subtype classification. Digital 
pathology is the digitized process of whole slide images (WSI) transforming into high-resolution  images6. Digi-
tal pathology has become increasingly common because of the rich context information on the WSI. There are 
extensive studies on tumor subtype classification in the literature: Kothari et al. utilize a multi-class model for 
histological  classification7. Chang et al. use the spatial pyramid matching framework (SPM) with a linear Sup-
port Vector Machine (SVM) classifier to classify glioblastoma multiforme (GBM)8. A hybrid machine learning 
method using SVM, random forest (RF), and neural network (NN) is proposed for glioma grading based on 
the  WSI9. Barker et al. exploit an elastic net for brain tumor type  classification10. However, a common limita-
tion of these conventional machine learning methods is feature extraction, which requires professional clinical 
background and computer vision knowledge. In recent years, deep learning (DL)-based approaches have shown 
superior performance, and have been widely applied in many domains, e.g., computer  vision11, medical image 
 analysis12,13, and natural language processing (NLP)14. The deep learning-based methods is also adopted for 
glioma classification based on  WSI15 and for glioma  grading16,17.

On the other hand, MRI is an alternative source for glioma grading because of the noninvasive property. 
The MRI-based approaches also provide promising results for glioma classification and grading. Zacharaki 
et al. apply a SVM-based method to classify tumor type on  MRI18. In the paper, they first extract radiological 
features, e.g., tumor shape and intensity characteristics. They then apply feature selection using a SVM with 
recursive feature elimination. Finally, they perform the tumor classification using another SVM. In addition, 
a hybrid method using a SVM and k-nearest neighbour classifiers (named as SVM-KNN) is also utilized for 
brain cancer  classification19. In Refs.20,21, Random Forest (RF)-based methods are used for tumor classification 
as well. Recently, CNN-based methods have been becoming prevalent for such  tasks22,23. Sajjad et al. propose a 
deep learning-based method for multi-grade brain tumor  classification24. Liu et al. present a multi-task CNN 
algorithm for joint segmentation and genotype prediction of brainstem  gliomas25. Pei et al. utilize a 3D CNN-
based method for brain tumor subtype classification, and achieve the state-of-the-art  performance26.

Unsurprisingly, a combination of pathology and radiology images provides more comprehensive context 
information than using a single modality alone. Ma et al. propose CNN-based methods for tumor classification 
on WSI and  MRI27–30. Kurc et al. investigate brain tumor classification using machine learning and deep learn-
ing on WSI and  MRI31. The work of using both WSI and MRI in Refs.27–30 offers state-of-the-art performance. 
However, all the methods are fusion-based at the feature level. We argue that these methods undermine the 
priority of pathology in tumor classification, which conflicts with the criterion defined by the WHO. We should 
develop a computer-aided diagnosis system and should take pathological modality as the primary source for 
tumor classification.

Therefore, we propose a novel hybrid fully convolutional neural network (CNN)-based method for glioma 
subtype classification using both whole slide image (WSI) and multiparametric magnetic resonance image (mpM-
RIs). The proposed method primarily focuses on the WSI-based result while taking the mpMRIs-based result as 
the complementary reference to enhance the robustness.

Methodology
In this section, the proposed two approaches (the WSI-based approach and the mpMRIs-based approach) are 
elaborated. In addition, the label agreement strategy for fusing the prediction is also covered.

Overall pipeline. Figure 1 shows the overall pipeline of the proposed method. It consists of a WSI-based 
approach at the top and a mpMRIs-based approach at the bottom. Each approach outputs a probability of each 
subtype for each case. The final prediction is primarily derived from the WSI-based result. However, the final 
prediction is corrected as the mpMRIs-based result when the confidence index of WSI-based result is less than 
a threshold value. The threshold value is obtained in the validation phase of the Challenge, which achieves the 
best performance by using the proposed method.

WSI‑based approach. Even the training data with paired image and classification label is available in the 
CPM-RadPath 2020  challenge32, the classification task is still challenging because of the small number of cases 
and the label constrain issue. The label of the WSI is given, however, the precise lesion region information is 
missing. The issue becomes worse when considering the massive size of WSI. The inexact labeling in a weakly 
supervised learning task results in inaccurate samples in the training process. Extracting representative patches 
is of importance for the task. To overcome the label constrain issue, we extract multiple patches according to 
the intensity distribution, and assign the corresponding label, as shown in Fig. 2. These patch candidates are 
randomly selected from the areas with tissues on each WSI. In addition, to further screen out those samples 
without dense cell distribution, we apply two following criteria to the selecting patches: (1) The mean of all pixel 
intensities for each sampling patch should lie in between 50 and 150, and the standard deviation of pixel intensi-
ties in each channel of R, G, and B should be greater than 20. (2) The difference of maxima and minima of pixel 
intensity mean should be smaller than 100. The first condition ensures the selecting patches having rich context, 
rather than blank samples. The second condition screens out those patches that contain color markers. By fol-
lowing the rules, we extract 300 patches for each WSI in both the training and inference phases. Since the ratio 
of noisy samples is unknown and unpredictable, the prototype selection method can reduce the impact of noisy 
samples in the training process. Figure 3 shows the pipeline of the training phase in the WSI-based approach. 
First, all sampling patches for each category are collected to train using a  ResNet5033. Subsequently, the trained 
CNN model is used to extract the convolutional representations (deep features) for each sampling patch. To 
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reduce the impact of non-representative samples in each class, several prototypes for each category are selected 
by pair-wise similarity check. The extracted prototypes (e.g. 100 prototypes for each category in our experiment) 
are selected according to the similarity of intensity distribution. However, non-representative prototypes may 
also be collected because of the existence of irrelevant tissues such as lymphocytes, red blood cells, and mostly 
stroma, etc. In addition, astrocytoma and oligodendroglioma have similar morphological features and are com-
monly confounded diagnoses with large intraobserver  variabilities34,35. Last, an expert intervention step is to 
screen out the non-representative prototypes further or re-assign to another category.

The purpose of the prototype approach is to measure the morphological similarities among all patches in 
each category for clustering and then select the representative patches from the major clusters. In this case, noisy 
samples or outliers will be excluded. The WSI-based method’s detail is as the following: first, all sampling patches 
in the same category are fed into the CNN model to derive deep features. Subsequently, the similarity matrix S 
is computed by pair-wise comparison of patches using cosine similarity, and each entity sij in the matrix can be 
derived by Eq. (1)

(1)sij =
G(xi)

TG(xj)

�G(xi)�2�G(xj)�2
,

Figure 1.  Overall pipeline of the proposed method in inference phase.

Figure 2.  Patch sampling: Patches are randomly sampled from the densely cell-distributed areas of a WSI. All 
sampled patches have the same category as the label of the corresponding WSI.
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where G(xi) or G(xj) is the deep feature vector derived from the forward propagation of convolutional layers of the 
ith or jth sampling patch ( xi or xj ) in the CNN model. The entity sij reflects the similarity between two arbitrary 
sampling patches. A similarity threshold, st, is set to be the average value of all pair-wise similarity values in a 
category. The measurement of density for the ith sampling patch, ρi , is computed by Eq. (2).

It counts how many patches over the total m patches in a category.

For prototype selection in each category, the largest similarity value indicates the most representative index 
of the category. An ideal prototype set is able to distinguish all categories. To meet the requirements, another 
index of  is to measure the diversity of prototypes. The diversity index for each patch in a category is designed 
by Eq. (3)36.

.
Figure 4 shows the scheme of prototype selection for each category with the rules as follows: All sampling 

patches for a category are fed into the CNN model for feature extraction. Subsequently, the similarity matrix S 
is derived by performing pair-wise similarity comparison among patches in the category. Afterwards, the meas-
urements of density ( ρi ) and diversity (  ) of each patch are computed to determine the selection priority and 
selection condition. All patches in the category are ranked based on their corresponding density value ρ , which 
reflects the selection priority. In addition, the diversity threshold  is set to avoid the selected prototypes being 
too similar, resulting in redundancy during selection.

(2)ρi =

m
∑

j=1

sign
(

sij − st
)

.

(3)

Figure 3.  The pipeline of training phase in the WSI-based approach.

Figure 4.  Prototype selection in each category. Left: The pipeline of prototype selection. Right: Measurements 
of density and diversity.
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In Eq. (3), the sampling patch with the highest density value, i.e., ρmax , among all sampling patches in a cat-
egory will be assigned the top selecting priority, and it will also be assigned a large diversity index to surpasses 
the diversity threshold  . For other sampling patches, the diversity index  measures the feature distance to the 
most similar patch with a higher density value ρ.

Accordingly, if the ith sampling patch is the prototype candidate, we check the  to ensure it is greater than 
the diversity threshold to retain high diversity among the selected prototypes within a category.

In the inference phase, several patches are extracted from each WSI, and then fed into the CNN model for 
feature extraction. For each sampling patch, the cosine similarity is computed between the extracted feature and 
the deep features of each prototype in each category. Each patch is classified into the category with the high-
est average of cosine similarities among prototypes. Finally, a majority voting from all predictions of samples 
is performed to determine the final label prediction for the case. Figure 5 illustrates an example of case-level 
inference using the proposed WSI-based approach. Notably, we employ an additional category (I) for irrelevant 
classification of gliomas subtype. Sampling patches of the category (I) will be ignored in the voting process.

MRI‑based approach. For the mpMRIs-based approach, we employ a cascade deep learning-based 
method. Brain tumors are firstly segmented using a 3D CNN  model37,38, and then the segmentations are fed into 
another 3D CNN model for glioma subtype classification. The pipeline of the proposed MRI-based approach 
is shown in Fig. 6. Accurate segmentation of brain lesions leads to an outstanding performance on brain tumor 
classification. Since the intensity of MRI varies across all cases, intensity normalization is desirable to reduce 
the bias. In our experiments, a z-score normalization is applied for all MRIs. In doing so, all voxel values are 
subtracted by the mean and divided by the standard deviation of the brain region. In addition, several data aug-
mentations are applied in the training phase of both segmentation and classification, such as rotation, random 

Figure 5.  Example of case-level inference in the proposed WSI-approach.

Figure 6.  Pipeline of the proposed MRI-approach.
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flipping, and affine translation. According to a report of 2008–2011, age is associated with brain tumor  subtype2. 
Therefore, the age of the patient is also taken into consideration for glioma subtype classification.

Label agreement. For the WSI-based approach, the prediction is derived by choosing the glioma subtype 
with the highest votes. In addition, the distributions of votes among all subtypes, regardless of the category 
(I), turn into probabilities indicating the confidence score for each glioma subtype. While for the MRI-based 
approach, the prediction probability for each class can be retrieved directly from the CNN classification net-
work. According to the guideline of CNS glioma classification defined by WHO, histopathology information 
is the primary image source for the glioma subtype classification. Thus, we primarily consider the WSI-based 
result as the final prediction, but also take the mpMRIs-based result as a complementary reference when the 
confidence index of the WSI-based result is less than the pre-defined threshold, Ct. In such a strategy, the final 
consensus of glioma subtype classification is decided by the fusion of WSI and mpMRIs information. We believe 
that integrating WSI and mpMRIs offers a more robust and reliable result than using a single image type.

Datasets and experiments
Ethics approval and guidelines. In this study, the MRI images and pathology images sourced from two 
pubic dataset: multimodal Brain Tumor Segmentation Challenge (BraTS)  202039–45 and Computational Preci-
sion Medicine: Radiology-Pathology Challenge on brain tumor classification (CPM-RadPath)  202031. Approval 
was granted on the grounds of existing datasets. Informed consent was obtained from all of the patients in this 
study. All methods were carried out in accordance with relevant guidelines and regulations. Ethical approval for 
the use of these data was obtained from the ethics committee of University of Pittsburgh.

Dataset. The BraTS 2020 training data contains 369 cases including 76 low-glioma grade (LGG) patients and 
293 high-glioma grade (HGG) patients. For each case, there are multiparametric MRIs (mpMRIs) and the cor-
responding ground truths of brain tumors. The mpMRIs include T1-weighted MRI (T1), T1-weighted MRI with 
contrast enhancement (T1ce), T2-weighted MRI (T2), and T2-weighted MRI with fluid-attenuated inversion 
recovery (T2-FLAIR). Each modality of each case has a size of 240× 240× 155 . The ground truth of a tumor 
segmentation contains multiple tumor subtypes, such as tumor tissues of peritumoral edema (ED), enhancing 
tumor (ET), and necrosis/non-enhancing tumor (NCR/NET).

For the data from CPM-RadPath 2020, the training dataset is comprised of 221 cases with paired radiology 
and digital pathology images. Within the 221 cases, there are 54, 34, and 133 cases for lower grade astrocytoma, 
IDH-mutant (A), oligodendroblioma, 1p/19q codeltion (O), and glioblastoma and diffuse astrocytic glioma with 
molecular features of glioblastoma, IDH-wildtype (G), respectively. In addition, there are 35 and 73 cases for the 
validation and testing sets in the CPM-RadPath 2020 challenge, respectively. It notices that the challenge organ-
izer privately owns the ground truth of the glioma subtype of the validation and testing data. In the validation 
phase, participants submit the prediction results to the challenge for online evaluating the algorithm. However, 
participants are only allowed to submit the algorithm wrapped in a Docker container in the testing phase, and 
the organizer executes the algorithm for final ranking.

Evaluation metrics. Three metrics are utilized for performance evaluation in the challenge of CPM-Rad-
Path 2020 for glioma subtype classification, which are micro-F1, Cohen’s Kappa Coefficient, and balanced accu-
racy. In the tasks of multi-class classification, the micro-F1 is equivalent to the overall accuracy, as Eq. (4).

The Cohen’s Kappa Coefficient ( κ ) is to measure inter-rater and intra-rater reliability for categorical items, 
and the definition is as Eq. (5).

where po is the relative observed agreement among raters, and pe is the hypothetical probability of chance. 
Lastly, the balanced accuracy computes the average of the proportion corrects of each class individually, which 
is formulated in Eq. (6).

where n indicates the number of classes in the task.

Glioma subtype classification. For the WSI-based approach, 300 patches are sampled from each case of 
WSI and are fed into the proposed pipeline for patch-level classification in our experiments. Subsequently, the 
glioma subtype for each case can be determined by choosing the subtype with the highest votes, and the vote 
distributions are normalized into the probabilities as the confidence scores for each glioma subtype.

On the other hand, for the MRI-based approach, a 3D CNN model of  ResUNet37,38 is trained on the dataset 
from the challenge of BraTS 2020 to perform tumor subregion segmentation. The task targets three tumor 
subregions, including peritumoral edema (ED), enhancing tumor (ET), and necrosis or non-enhancing tumor 
(NCR/NET). The segmentation results of three targeted tumor subregions are shown in Fig. 7. Subsequently, 

(4)Micro-F1 =

total TruePositives

total # cases

(

for multi-class
)

.

(5)κ =
po − pe

1− pe
,

(6)Balanced accuracy =

∑i=n
i=1 Recalli

n
,
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the segmentation model is applied on all the MRI cases in the training dataset from CPM-RadPath 2020, and 
the segmentation results are fed into another 3D CNN model of  ResNet31,33 to train the relations between tumor 
morphology and glioma subtypes.

It notes that the CPM-RadPath 2020 has identical datasets as CPM-RadPath 2019. Since the glioma subtype 
of ground truth for each case in the testing set from the challenge of CPM-RadPath 2020 is not publicly avail-
able, in our experiments, the performance on the validation set from the challenge is focused for evaluation and 
comparison.

Result
The performance of the two approaches and the scheme of label agreement is listed in Table 1. The confidence 
threshold in the scheme of label agreement, Ct, is empirically set to be 0.6 in our experiment. The comparison 
shows a promising result that a label fusion-based predictions using the proposed method outperform the ones 
from single approach.

In addition, we also compare our result to the other top-ranked teams in the validation phase, as shown in 
Table 2. The results show that our proposed method achieves a competitive performance among all on the valida-
tion set. Moreover, we participate the CPM-RadPath testing phase. It notices that all participants are required to 
submit the algorithm wrapped with Docker in the testing phase of CPM-RadPath 2020. The challenge organer 

Figure 7.  An example of segmentation results of three subregions of tumor, which are peritumoral edema (ED) 
in green, enhancing tumor (ET) in red, and necrosis or non-enhancing tumor (NCR/NET) in blue.

Table 1.  Performance of two approaches and the scheme of label agreement.

Phase Method Case F1-score Kappa Balance_acc Average

Validation

MRI-based 35 0.771 0.627 0.698 0.699

WSI-based 35 0.886 0.798 0.777 0.821

Fusion 35 0.886 0.801 0.8 0.829

Test Fusion 73 0.712 0.505 0.654 NA

Table 2.  Performance comparison among state-of-the-art approaches in CPM-RadPath 2019/2020. All 
references are coming from the top teams in the CPM-RadPath 2019/2020.

Phase Method F1-score Kappa Balance_acc Average Ranking

Valid

Ma et al.27 0.943 0.903 0.833 NA NA

Pei et al.26 0.829 0.715 0.749 0.764 NA

Chan et al.29 0.72 NA NA NA NA

Xue et al.28 0.849 NA NA NA NA

Our method 0.886 0.801 0.8 0.829 NA

Test
Pei et al.26 0.603 0.39 0.596 NA 2nd (2019)

Our method 0.712 0.505 0.654 0.654 3rd (2020)
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excutes the algorithm, and ranks the performance. Our result ranks the third place in the testing phase. It indi-
cates that the proposed method offers a competitive performance on glioma subtype classification.

Discussion
From the pathological perspective, the morphologies of glioma subtypes are distinct. As it can be observed in 
Fig. 8-Left, astrocytoma revealed hypercellularity with irregular and hyperchromatic nuclei in the fibrillary 
background. The pink and abundant cytoplasmic with eccentric nuclei (gemistocytic differentiation) occasionally 
showed in this group. While glioblastoma, as shown in Fig. 8-Middle, is derived from astrocytoma; hence, many 
morphologic findings are shared. However, few discriminatively histopathologic features can distinguish them, 
such as glomerular endothelial proliferation (pointed by a white arrow) and tumor necrosis (the area marked with 
a star-shaped sign) only show in glioblastoma. Last, the oligodendroglioma appears round shape nuclei with open 
chromatin and artifactual cytoplasmic retraction, leading to the “fried egg” appearance, as shown in Fig. 8-Right.

Figure 9 shows an example that the prediction from the MRI-based approach successfully corrected the final 
diagnostic result using the proposed label agreement scheme. In this case, the prediction from the WSI-based 
approach is overdiagnosed astrocytoma as glioblastoma, which might occur because both of them have shared 
many morphologic features. The weight of decisive features, including necrosis or vascular proliferation, should 
be recruited more for model training to increase the chance of separation. Fortunately, this misinterpretation is 
corrected by the mpMRIs-based approach. MRI is a powerful source to detect necrosis and vascular abnormality 
by evaluating the amount of enhancement, degree of heterogeneity, and liquid components. As it can be observed 
in Fig. 9, there is no enhancement or necrosis identified in MRI. It can be a clue for the computer-aided system 

Figure 8.  Pathological morphologies corresponding to each subtype of glioma. The scale bar at the bottom-
right cornor indicates the actual size of 50 µm at the magnification. Left: astrocytoma (A). Middle: glioblastoma 
(G). Right: oligodendroglioma (O).

Figure 9.  One of the cases that was overdiagnosed by the WSI-based approach but successfully corrected by 
the MRI-based approach after the proposed label agreement scheme. Left: Pathological observation. Right: The 
brain tumor segmentation on MRI.
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to classify the case to the category of astrocytoma, instead of glioblastoma. The voting distribution of the case by 
the WSI-based approach and the probabilities of subtype predictions by the mpMRI-based approach are shown 
in Table 3. The assigned labels of WSI-based and mpMRI-based method are “G” and “A”, respectively. However, 
since the confidence index (0.5069) by the WSI-based method is less than the threshold value (0.6), the final 
label agreement assigns “A” for the correction.

However, misclassification also occurs. In the experiment, there are another two cases misinterpreted, as 
shown in Fig. 10. For the first case, in Fig. 10-(Top), it is mis-classified oligodendrndroglioma as an astrocytoma 
by the WSI-based approach. There are two explanations for the misinterpretation: First, this case belongs to a 
higher grade oligodendroglioma (WHO grade III) and shows a more severe degree of nuclear atypia, mimicking 
astrocytoma. Second, the slide is mainly located in the infiltrating part mixing with tumor and adjacent brain 
pathologic images. Unfortunately, the mpMRIs-based approach does not correct the misclassification by follow-
ing the strategy of label agreement. The prediction of the WSI-based approach is Astrocytoma with confidence 
of 0.93, while the prediction of the mpMRI-based approach is GBM. However, the ground truth label of this 
case is Oligodendroglioma. Figure 10-(Bottom) shows another case of misinterpretation. It is misdetermined 
oligodendroglioma to astrocytoma by the WSI-based approach due to poor fixation and staining procedure. 
In addition, the tumor cells have revealed marked pyknosis and dark nuclei without nuclear details, leading to 

Table 3.  Voting distribution and predicting probabilities by using WSI-based and mpMRI-based methods, 
respectively. The maximum probability is in bold.

Method Astrocytoma GBM Oligodendroglioma Assigned label

WSI-based 0.3844 0.5069 0.1088 G

mpMRI-based 0.9413 0.0145 0.0441 A

Final agreement – – – A

Figure 10.  Two cases of misinterpretation from Oligodendroglioma to Astrocytoma. From left to right: WSI, 
corresponding T1ce and its segmentation. (Top): Case of CPM20_TCIA10_239_1, (Bottom): Case of CPM20_
TCIA1_387_1. The arrow on T1ce points to cavity.
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misinterpretation. Though, some features of oligodendroglioma can be identified, such as artifactual cytoplasmic 
retraction. It may be a dilemma for the model to make decisions with such two contradictory features observed. 
The prediction of the mpMRI-based approach is same as that of the WSI-based approach, but both are misclas-
sified. Unfortunately, the ground truths of brain tumor segmentation are not available for public. We also notice 
that both cases contain a cavity after post-surgery, which may result in the misclassification.

Though the proposed method produces a competitive result, there are some limitations. First, we use both 
WSI and mpMRIs for the classification. To achieve the best result, we assume that an accurate brain tumor 
subregion results in a good classification. In doing so, we use an extra dataset from BraTS 2020, which limits its 
application. Second, the proposed method is sensitive to some empirical parameters, such as the threshold of 
confidence index, the number of extracting patches, etc. Third, the relatively small size of experimental data is a 
drawback, which widely exists in deep learning-based methods. Forth, the proposed method requires a qualified 
professional or expert intervention to screen out the non-representative prototypes.

Conclusion
In this study, we propose a novel hybrid fully convolutional neural network (CNN)-based method for glioma 
subtype classification using both whole slide image (WSI) and multiparametric magnetic resonance images 
(mpMRIs). It is comprised of two methods: a WSI-based method and a mpMRIs-based method. For the WSI-
based method, we categorize the glioma subtype using a 2D CNN on WSIs. For the mpMRI-based method, we 
also develop a 3D CNN-based method by analyzing the mpMRI. The mpMRIs-based method consists of brain 
tumor segmentation and classification. We classify the glioma subtype primarily on WSI-based results with the 
guidance of the mpMRIs-based prediction when the confidence index of the WSI-based result is less than the 
pre-defined threshold. The experimental results show that the final label fusion-based predictions achieve a 
superior result and offer a competitive performance.

Data availability
In this study, Our data are coming from both https:// www. med. upenn. edu/ cbica/ brats 2020/ data. html and https:// 
www. med. upenn. edu/ cbica/ cpm20 20. html. The data can be found: https:// www. med. upenn. edu/ cbica/ brats 2020/ 
data. html (BraTS 2020), and https:// miccai. westu s2. cloud app. azure. com (CPM-RadPath 2020).

Received: 12 January 2022; Accepted: 30 March 2022

References
 1. Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 127(12), 2893–2917 (2010).
 2. Ostrom, Q. T. et al. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United 

States in 2011–2015. Neuro Oncol. 20, 1–86 (2018).
 3. Vigneswaran, K., Neill, S. & Hadjipanayis, C. G. Beyond the World Health Organization grading of infiltrating gliomas: Advances 

in the molecular genetics of glioma classification. Ann. Transl. Med. 3, 7 (2015).
 4. Louis, D. N. et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta 

Neuropathol. 131(6), 803–820 (2016).
 5. Chen, J., McKay, R. M. & Parada, L. F. Malignant glioma: Lessons from genomics, mouse models, and stem cells. Cell 149(1), 36–47 

(2012).
 6. Janowczyk, A. & Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use 

cases. J. Pathol. Inform. 7, 29 (2016).
 7. Kothari, S., Phan, J. H., Young, A. N. & Wang, M. D. Histological image classification using biologically interpretable shape-based 

features. BMC Med. Imaging 13(1), 9 (2013).
 8. Chang, H., Zhou, Y., Spellman, P. & Parvin, B. Stacked predictive sparse coding for classification of distinct regions in tumor 

histopathology. In Proc. IEEE International Conference on Computer Vision, 169–176 (2013).
 9. Wang, X. et al. Machine learning models for multiparametric glioma grading with quantitative result interpretations. Front. Neu-

rosci. 12, 1046 (2019).
 10. Barker, J., Hoogi, A., Depeursinge, A. & Rubin, D. L. Automated classification of brain tumor type in whole-slide digital pathology 

images using local representative tiles. Med. Image Anal. 30, 60–71. https:// doi. org/ 10. 1016/j. media. 2015. 12. 002 (2016).
 11. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436. https:// doi. org/ 10. 1038/ natur e14539 (2015).
 12. Pei, L., Vidyaratne, L., Rahman, M. M. & Iftekharuddin, K. M. Deep learning with context encoding for semantic brain tumor 

segmentation and patient survival prediction. In Medical Imaging 2020: Computer-Aided Diagnosis, Vol. 11314, 113140H (Inter-
national Society for Optics and Photonics, 2020).

 13. Pei, L., Vidyaratne, L., Rahman, M. M. & Iftekharuddin, K. M. Context aware deep learning for brain tumor segmentation, subtype 
classification, and survival prediction using radiology images. Sci. Rep. 10(1), 1–11 (2020).

 14. Ganegedara, T. Natural Language Processing with TensorFlow: Teach Language to Machines Using Python’s Deep Learning Library 
(Packt Publishing Ltd, 2018).

 15. Hou, L. et al. Patch-based convolutional neural network for whole slide tissue image classification. In Proc. IEEE Conference on 
Computer Vision and Pattern Recognition, 2424–2433 (2016).

 16. Ertosun, M. G. & Rubin, D. L. Automated grading of gliomas using deep learning in digital pathology images: A modular approach 
with ensemble of convolutional neural networks. In AMIA Annual Symposium Proceedings, Vol. 2015, 1899 (American Medical 
Informatics Association, 2015).

 17. Pei, L., Jones, K. A., Shboul, Z. A., Chen, J. Y. & Iftekharuddin, K. M. Deep neural network analysis of pathology images with 
integrated molecular data for enhanced glioma classification and grading. Front. Oncol. 11, 2572 (2021).

 18. Zacharaki, E. I. et al. Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. 
Magn. Reson. Med. 62(6), 1609–1618 (2009).

 19. Machhale, K., Nandpuru, H. B., Kapur, V. & Kosta, L. MRI brain cancer classification using hybrid classifier (SVM-KNN). In 2015 
International Conference on Industrial Instrumentation and Control (ICIC), 60–65 (IEEE, 2015).

 20. Usman, K. & Rajpoot, K. Brain tumor classification from multi-modality MRI using wavelets and machine learning. Pattern Anal. 
Appl. 20(3), 871–881 (2017).

https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.med.upenn.edu/cbica/cpm2020.html
https://www.med.upenn.edu/cbica/cpm2020.html
https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.med.upenn.edu/cbica/brats2020/data.html
https://miccai.westus2.cloudapp.azure.com
https://doi.org/10.1016/j.media.2015.12.002
https://doi.org/10.1038/nature14539


11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6111  | https://doi.org/10.1038/s41598-022-09985-1

www.nature.com/scientificreports/

 21. Reza, S. M., Samad, M. D., Shboul, Z. A., Jones, K. A. & Iftekharuddin, K. M. Glioma grading using structural magnetic resonance 
imaging and molecular data. J. Med. Imaging 6(2), 024501 (2019).

 22. AlBadawy, E. A., Saha, A. & Mazurowski, M. A. Deep learning for segmentation of brain tumors: Impact of cross-institutional 
training and testing. Med. Phys. 45(3), 1150–1158 (2018).

 23. Zhuge, Y. et al. Automated glioma grading on conventional MRI images using deep convolutional neural networks. Med. Phys. 
47(7), 3044–3053 (2020).

 24. Sajjad, M. et al. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 30, 
174–182 (2019).

 25. Liu, J. et al. A cascaded deep convolutional neural network for joint segmentation and genotype prediction of brainstem gliomas. 
IEEE Trans. Biomed. Eng. 65(9), 1943–1952 (2018).

 26. Pei, L., Vidyaratne, L., Hsu, W.-W., Rahman, M. M. & Iftekharuddin, K. M. Brain tumor classification using 3D convolutional neural 
network. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (eds Crimi, A. et al.) 335–342 (Springer, 
2020).

 27. Ma, X. & Jia, F. Brain tumor classification with multimodal MR and pathology images. In Brainlesion: Glioma, Multiple Sclerosis, 
Stroke and Traumatic Brain Injuries (eds Crimi, A. et al.) 343–352 (Springer, 2020).

 28. Xue, Y. et al. Brain tumor classification with tumor segmentations and a dual path residual convolutional neural network from 
MRI and pathology images. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (eds Crimi, A. et al.) 
360–367 (Springer, 2020).

 29. Chan, H.-W., Weng, Y.-T. & Huang, T.-Y. Automatic classification of brain tumor types with the MRI scans and histopathology 
images. In Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (eds Crimi, A. et al.) 353–359 (Springer, 
2020).

 30. Pei, L. et al. A hybrid convolutional neural network based-method for brain tumor classification using mMRI and WSI. In Brainle-
sion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (eds Crimi, A. et al.) 487–496 (Springer, 2020).

 31. Kurc, T. et al. Segmentation and classification in digital pathology for glioma research: Challenges and deep learning approaches. 
Front. Neurosci. https:// doi. org/ 10. 3389/ fnins. 2020. 00027 (2020).

 32. Farahani, K. et al. Computational Precision Medicine Radiology-Pathology challenge on Brain Tumor Classification 2020. https:// 
doi. org/ 10. 5281/ zenodo. 37188 94 (2020).

 33. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision 
and Pattern Recognition, 770–778 (2016).

 34. Coons, S. W., Johnson, P. C., Scheithauer, B. W., Yates, A. J. & Pearl, D. K. Improving diagnostic accuracy and interobserver con-
cordance in the classification and grading of primary gliomas. Cancer Interdiscipl. Int. J. Am. Cancer Soc. 79(7), 1381–1393 (1997).

 35. Cooper, L. A. et al. An integrative approach for in silico glioma research. IEEE Trans. Biomed. Eng. 57(10), 2617–2621 (2010).
 36. Han, J., Luo, P. & Wang, X. Deep self-learning from noisy labels. In Proc. IEEE/CVF International Conference on Computer Vision, 

5138–5147 (2019).
 37. Zhao, Y.-X., Zhang, Y.-M. & Liu, C.-L. Bag of tricks for 3D MRI brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, 

Stroke and Traumatic Brain Injuries (eds Crimi, A. et al.) 210–220 (Springer, 2020).
 38. Yu, L., Yang, X., Chen, H., Qin, J. & Heng, P. A. Volumetric ConvNets with mixed residual connections for automated prostate 

segmentation from 3D MR images. In Proc. AAAI Conference on Artificial Intelligence, Vol. 31 (2017).
 39. Menze, B. H. et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 

1993–2024 (2014).
 40. Bakas, S. et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall 

survival prediction in the BRATS challenge. Preprint at http:// arXiv. org/ 811. 02629 (2018).
 41. Bakas, S. et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. 

Sci. Data 4, 170117 (2017).
 42. Bakas, S. et al. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. In The Cancer 

Imaging Archive (2017).
 43. Bakas, S. et al. Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. In The Cancer 

Imaging Archive (2017).
 44. Cordier, N., Delingette, H. & Ayache, N. A patch-based approach for the segmentation of pathologies: Application to glioma 

labelling. IEEE Trans. Med. Imaging 35(4), 1066–1076 (2015).
 45. Pereira, S., Pinto, A., Alves, V. & Silva, C. A. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE 

Trans. Med. Imaging 35(5), 1240–1251 (2016).

Acknowledgements
The experiments in this study work on the datasets from the challenges of https:// www. med. upenn. edu/ cbica/ 
brats 2020/ data. html and https:// www. med. upenn. edu/ cbica/ cpm20 20. html held by the BrainLes worshop of 
the MICCAI.

Author contributions
W.H. and L.P. conducted the experiment, and wrote the main manuscript text. J.G., L.C., J.H., Y.L., R.C., and P.L. 
reviewed and revised the manuscript.

Funding
Open Access funding provided by the National Institutes of Health (NIH).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to L.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.3389/fnins.2020.00027
https://doi.org/10.5281/zenodo.3718894
https://doi.org/10.5281/zenodo.3718894
http://arXiv.org/811.02629
https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.med.upenn.edu/cbica/brats2020/data.html
https://www.med.upenn.edu/cbica/cpm2020.html
www.nature.com/reprints


12

Vol:.(1234567890)

Scientific Reports |         (2022) 12:6111  | https://doi.org/10.1038/s41598-022-09985-1

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	A weakly supervised deep learning-based method for glioma subtype classification using WSI and mpMRIs
	Methodology
	Overall pipeline. 
	WSI-based approach. 
	MRI-based approach. 
	Label agreement. 

	Datasets and experiments
	Ethics approval and guidelines. 
	Dataset. 
	Evaluation metrics. 
	Glioma subtype classification. 

	Result
	Discussion
	Conclusion
	References
	Acknowledgements


