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Abstract

The evolution of antimicrobial resistance can be strongly affected by variations of antimicro-

bial concentration. Here, we study the impact of periodic alternations of absence and pres-

ence of antimicrobial on resistance evolution in a microbial population, using a stochastic

model that includes variations of both population composition and size, and fully incorpo-

rates stochastic population extinctions. We show that fast alternations of presence and

absence of antimicrobial are inefficient to eradicate the microbial population and strongly

favor the establishment of resistance, unless the antimicrobial increases enough the death

rate. We further demonstrate that if the period of alternations is longer than a threshold

value, the microbial population goes extinct upon the first addition of antimicrobial, if it is not

rescued by resistance. We express the probability that the population is eradicated upon the

first addition of antimicrobial, assuming rare mutations. Rescue by resistance can happen

either if resistant mutants preexist, or if they appear after antimicrobial is added to the envi-

ronment. Importantly, the latter case is fully prevented by perfect biostatic antimicrobials

that completely stop division of sensitive microorganisms. By contrast, we show that the

parameter regime where treatment is efficient is larger for biocidal drugs than for biostatic

drugs. This sheds light on the respective merits of different antimicrobial modes of action.

Author summary

Antimicrobials select for resistance, which threatens to make antimicrobials useless.

Understanding the evolution of antimicrobial resistance is therefore of crucial impor-

tance. Under what circumstances are microbial populations eradicated by antimicrobials?

Conversely, when are they rescued by resistance? We address these questions employing a

stochastic model that incorporates variations of both population composition and size.

We consider periodic alternations of absence and presence of antimicrobial, which may

model a treatment. We find a threshold period above which the first phase with antimi-

crobial fully determines the fate of the population. Faster alternations strongly select for

resistance, and are inefficient to eradicate the microbial population, unless the death rate
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induced by the treatment is large enough. For longer alternation periods, we calculate the

probability that the microbial population gets eradicated. We further demonstrate the dif-

ferent merits of biostatic antimicrobials, which prevent sensitive microbes from dividing,

and of biocidal ones, which kill sensitive microbes.

Introduction

Antibiotics and antivirals allow many major infectious diseases to be treated. However, with

the increasing use of antimicrobials, pathogenic microorganisms tend to become resistant to

these drugs, which then become useless. Understanding the evolution of resistance is of para-

mount importance in order to fight the major public health issue raised by antimicrobial resis-

tance [1, 2].

The evolution of antimicrobial resistance often occurs in a variable environment, as antimi-

crobial is added and removed from a medium or given periodically to a patient [3, 4]. This

results into varying patterns of selection, which are known to have a dramatic effect on evolu-

tion in other contexts [5–9]. To address how variations of antimicrobial concentration impact

resistance evolution, we investigate theoretically the de novo acquisition of resistance in a

microbial population in the presence of alternations of phases of presence and absence of anti-

microbial. This situation can represent, for example, a treatment where the concentration

within the patient falls under the Minimum Inhibitory Concentration (MIC) between drug

intakes [10], which is a realistic case [10, 11].

We propose a general stochastic model that incorporates variations of both population

composition and size, i.e. population genetics and population dynamics. Despite having a

common origin in stochastic birth, death and mutation events, and thus being intrinsically

coupled, these phenomena are seldom considered together in theoretical studies [12]. How-

ever, it is particularly crucial to address both of them when studying the evolution of antimi-

crobial resistance, because the aim of an antimicrobial treatment is to eradicate a microbial

population, or at least to substantially decrease its size, while the evolution of resistance corre-

sponds to a change in the genetic makeup of the population. Our general model allows us to

fully incorporate the stochasticity of mutation occurrence and establishment [13–17], as well

as that of population extinction, whose practical importance was recently highlighted [18–20].

In this framework, we ask whether a microbial population subject to alternations of phases

of presence and absence of antimicrobial develops resistance, which corresponds to treatment

failure and to rescue of the microbial population by resistance [21, 22], or goes extinct, which

corresponds to treatment success. In other words, we ask whether the microbial population

resists or perishes.

We study both the impact of biocidal drugs, that kill microorganisms, and of biostatic

drugs, that prevent microorganisms from growing. We show that fast alternations of phases

with and without antimicrobial do not permit eradication of the microbial population before

resistant mutants fix, unless the death rate with antimicrobial is large enough. Conversely,

intermediate alternation speeds are effective for a wider range of antimicrobial modes of

action, but the probability of population extinction and therefore of treatment success, which

we fully quantify, is not one, because resistance can rescue the population, and this effect

depends on the size of the microbial population. We find that the parameter range where anti-

microbial treatment is efficient is larger for biocidal drugs than for biostatic drugs. However,

we also show that biocidal and imperfect biostatic antimicrobials permit an additional mecha-

nism of rescue by resistance compared to biostatic drugs that completely stop growth. This
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sheds light on the respective merits of different antimicrobial modes of action. Finally, we find

a population size-dependent critical drug concentration below which antimicrobials cannot

eradicate microbial populations.

Model and methods

We consider a microbial population with carrying capacity K, corresponding to the maximum

population size that the environment can sustain, given the nutrients available. The division

rate of each microorganism is assumed to be logistic, and reads f(1 − N/K), where N represents

the total population size, while the fitness f is the maximal division rate of the microorganism,

reached when N� K. This model therefore incorporates population size variations, and allows

us to include extinctions induced by the antimicrobial drug.

Mutations that confer antimicrobial resistance are often associated with a fitness cost, i.e. a

slower reproduction [23–25], but this fitness cost can be compensated by subsequent muta-

tions [26–29]. The acquisition of resistance is therefore often irreversible, even if the antimi-

crobial is removed from the environment [24, 26]. Thus motivated, we consider three types of

microorganisms: sensitive (S) microorganisms, whose division or death rate is affected by anti-

microbials, resistant (R) microorganisms, that are not affected by antimicrobials but that bear

a fitness cost, and resistant-compensated (C) microorganisms that are not affected by antimi-

crobials and do not bear a fitness cost. In the absence of antimicrobial, their fitnesses (maximal

division rates) are denoted by fS, fR and fC, respectively, and their death rates by gS, gR and gC.

Values in the presence of antimicrobial are denoted by a prime, e.g. f 0S . Note that we include

small but nonzero baseline death rates, which can model losses or the impact of the immune

system in vivo, and allows for population evolution even at steady-state size. Without loss of

generality, we set fS = 1 throughout. In other words, the maximum reproduction rate of S

microorganisms, attained when population size is much smaller than the carrying capacity,

sets our time unit. We further denote by μ1 and μ2 the mutation probabilities upon each divi-

sion for the mutation from S to R and from R to C, respectively. In several actual cases, the

effective mutation rate towards compensation is higher than the one towards the return to sen-

sitivity, because multiple mutations can compensate for the initial cost of resistance [27, 28,

30]. Thus, we do not take into account back-mutations. Still because of the abundance of possi-

ble compensatory mutations, often μ1� μ2[27, 31]. We provide general analytical results as a

function of μ1 and μ2, and we focus more on the limit μ1� μ2, especially in simulations.

Our model thus incorporates both population dynamics and population genetics [7, 12,

32], and is more realistic than descriptions assuming constant population sizes [33], e.g. in the

framework of the Moran process [13, 34]. Throughout, our time unit corresponds to a genera-

tion of sensitive microorganisms without antimicrobial in the exponential phase (reached

when N� K).

The action of an antimicrobial drug can be quantified by its MIC, which corresponds the

minimum concentration that stops the growth of a microbial population [24]. More precisely,

the MIC corresponds to the concentration such that death rate and division rate are equal

[18]: in a deterministic framework, above the MIC, the population goes extinct, while below it,

it grows until reaching carrying capacity. We investigate the impact of periodic alternations of

phases of absence and presence of antimicrobial, at concentrations both above and below the

MIC. We consider both biostatic antimicrobials, which decrease the division rate of microor-

ganisms (f 0S < fS), and biocidal antimicrobials, which increase the death rate of microorgan-

isms (g 0S > gS) [18].

We start from a microbial population where all individuals are S (sensitive), without anti-

microbial. Specifically, we generally start our simulations with 10 S microorganisms, thus
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including a phase of initial growth, which can model the development of an infection starting

from the bottleneck at transmission [35]. Our results are robust to variations of this initial con-

dition, since we mainly consider timescales longer than that of the initial growth of the popula-

tion to its equilibrium size. Note however that if we started with a very small number of S

microorganisms (i.e. 1 or 2), we would need to take into account rapid stochastic extinctions

(see S1 Appendix, Fig. IIIB).

Antimicrobial both drives the decrease of the population of sensitive microorganisms and

selects for resistance. We ask whether resistance fully evolves de novo, leading to the C micro-

organisms taking over, or whether the microbial population goes extinct before this happens.

The first case corresponds to treatment failure, and the second to treatment success. Hence, we

are interested in the probability p0 of extinction of the microbial population before C microor-

ganisms fix in the population, i.e. take over. We also discuss the average time tfix it takes for the

population to fully evolve resistance, up to full fixation of the C microorganisms, and the mean

time to extinction before the fixation of the C type text.

We present both analytical and numerical results. Our analytical results are obtained using

methods from stochastic processes, including the Moran process at fixed population size [13]

and birth-death processes with time varying rates [36–39]. Our simulations employ a Gillespie

algorithm [40, 41], and incorporate all individual stochastic division, mutation and death

events with their exact rates (see S1 Appendix, section 5 for details).

Results

Conditions for a periodic presence of perfect biostatic antimicrobial to

eradicate the microbial population

Do periodic alternations of phases with and without antimicrobial allow the eradication of a

microbial population, or does resistance develop? We first address this question in the case of

a biostatic antimicrobial sufficiently above the MIC to completely stop the growth of S micro-

organisms (see Fig 1A and 1B). With such a “perfect” biostatic antimicrobial, the fitness of S

microorganisms is f 0S ¼ 0, while without antimicrobial, fS = 1. Here, we assume that the death

rate of S microorganisms is not affected by the antimicrobial, i.e. g 0S ¼ gS, but the case of a bio-

cidal antimicrobial will be considered next. Note that within our logistic growth model, we

consider that S microorganisms that cannot divide still consume resources, e.g. nutrients, in

order to self-maintain. They may also still grow in size even if they cannot divide [3].

A crucial point is how the duration of a phase with antimicrobial, which corresponds here

to the half-period T/2 of alternations, compares to the average time τS needed for a population

of S microorganisms to go extinct in the presence of antimicrobial. Indeed, if T/2� τS, one

single phase with antimicrobial suffices to eradicate a microbial population in the absence of

resistance. An exact first passage time calculation [33, 42] (see S1 Appendix, section 1.2,

Eq. S7) yields tS ¼ ð1=gSÞ �
PN

i¼1
ð1=iÞ � log ðNÞ=gS, where N� 1 represents the number of

microorganisms when antimicrobial is first added, i.e. at T/2. If the phase before antimicrobial

is added is much longer than the initial growth timescale of the population, i.e. if T/2� 1/(fS −
gS) (see S1 Appendix, section 1.3.1), N can be taken equal to the deterministic equilibrium pop-

ulation size N = K(1 − gS/fS), obtained by setting the birth rate fS(1 − N/K) equal to the death

rate gS. Hence, τS� log[K(1 − gS/fS)]/gS. Note that in this regime, the initial population size has

no impact on τS, and that the division and death rates are both given by gS. Our simulation

results in Fig 1C display an abrupt increase in the probability p0 that the microbial population

goes extinct before developing resistance for T = 2τS, in good agreement with our analytical

prediction.
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For fast alternations satisfying T/2� τS, the phases with antimicrobial are not long enough

to eradicate the microbial population, yielding a systematic evolution of resistance, and thus a

vanishing probability p0 of extinction before resistance takes over. This prediction is con-

firmed by our simulation results in Fig 1C, and an example of resistance evolution in this

regime is shown in Fig 1D. In the limit of very fast alternations, we expect an effective averag-

ing of the fitness of S microorganisms, with ~f S ¼ 0:5. Thus, an R mutant whose lineage will

take over the population (i.e. fix) appears after an average time ~ta
R ¼ 1=ð ~Nm1gS~pSRÞ where

~Nm1gS represents the total mutation rate in the population, with ~N ¼ Kð1 � gS=
~f SÞ, and where

~pSR ¼ ð1 �
~f S=fRÞ=½1 � ð

~f S=fRÞ
~N � is the probability that a single R mutant fixes in a population

of S microorganisms with constant size ~N , calculated within the Moran model [13]. Note that

when the effective fitness of S microorganisms is ~f S, acquiring resistance is beneficial (provided

that the fitness cost of resistance is reasonable, namely smaller than 0.5). Subsequently, C

mutants will appear and fix, thus leading to the full evolution of resistance in the population.

The corresponding average total time tfix of resistance evolution [33] obtained in our simula-

tions agrees well with the analytical expression of ~ta
R for T/2� τS (see S1 Appendix, Fig. IVC).

Conversely, if T/2� τS, the microbial population is eradicated by the first phase with antimi-
crobial, provided that no resistant mutant preexists when antimicrobial is added to the environ-
ment. Indeed, resistance cannot appear in the presence of a perfect biostatic antimicrobial

since S microorganisms then cannot divide. Thus, in the absence of existing R mutants, extinc-

tion occurs shortly after time T/2 (see S1 Appendix, Fig. IVB), and the situation is equivalent

to adding antimicrobial at T/2 and leaving it thereafter, as exemplified by Fig 1E. Hence, while

they are longer than those usually encountered in periodic treatments, the longest periods con-

sidered here are relevant to describe extended continuous treatments. Note that although

unlikely, fixation of resistance in the absence of antimicrobial will end up happening by spon-

taneous fitness valley crossing if the first phase without antimicrobial is long enough. Specifi-

cally, this will occur if T/2� τV, where τV� (fS − fR)/(μ1 μ2 gS) is the average valley crossing

time by tunneling, which is the relevant process unless populations are very small [17, 33, 43,

Fig 1. Periodic presence of a perfect biostatic antimicrobial. A: Microbial fitness versus genotype with and without antimicrobial. Genotypes are the following: S:

sensitive; R: resistant; C: resistant-compensated. δ represents the fitness cost of resistance. B: Periodic presence of antimicrobial (gray: presence, white: absence), and

impact on the fitness of S microorganisms. C: Probability p0 that the microbial population goes extinct before resistance gets established versus alternation period T, for

various carrying capacities K. Markers: simulation results, with probabilities estimated over 102 − 103 realizations. Horizontal solid lines: analytical predictions from Eq 1.

Dashed lines: T/2 = τS. D and E: Numbers of S, R and C microorganisms versus time in example simulation runs for K = 1000, with T = 20 and T = 1000 respectively. In

D, resistance takes over, while in E, extinction occurs shortly after antimicrobial is first added. Phases without (resp. with) antimicrobial are shaded in white (resp. gray).

Parameter values: fS = 1 without antimicrobial, f 0S ¼ 0 with antimicrobial, fR = 0.9, fC = 1, gS = gR = gC = 0.1, μ1 = 10−5 and μ2 = 10−3. All simulations start with 10 S

microorganisms.

https://doi.org/10.1371/journal.pcbi.1007798.g001
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44]. Accordingly, our simulation results in S1 Appendix, Fig. IV, which includes longer alter-

nation periods than Fig 1, feature three distinct regimes, and vanishing extinction probabilities

are obtained for T/2� τV, as well as for T/2� τS.

Let us now focus on the regime where antimicrobial treatment can induce extinction of the

microbial population, namely τS� T/2� τV, and calculate the extinction probability p0. A

necessary condition for the population to be rescued by resistance [21] and avoid extinction is

that at least one R mutant be present when antimicrobial is added. In the rare mutation regime

Kμ1� 1, this occurs with probability pR ¼ t
d
R=tapp

R ¼ Nm1gSt
d
R, where tapp

R ¼ 1=ðNm1gSÞ is the

average time of appearance of a resistant mutant, while td
R is the average lifetime of a resistant

lineage (destined for extinction without antimicrobial), both calculated in a population of S

individuals with fixed size N = K(1 − gS/fS) [13, 33]. Importantly, the presence of R mutants

does not guarantee the rescue of the microbial population, because small subpopulations of R

microorganisms may undergo a rapid stochastic extinction. The probability pe
RðiÞ of such an

extinction event depends on the number of R microorganisms present when antimicrobial is

added, which is i with a probability denoted by pc
RðiÞ, provided that at least one R mutant is

present. The probability p0 that the microbial population is not rescued by resistance and goes

extinct can then be expressed as:

p0 ¼ 1 � pR

XN� 1

i¼1

pc
RðiÞð1 � pe

RðiÞÞ : ð1Þ

The probability pc
RðiÞ can be calculated within the Moran model since the population size is

stable around N = K(1 − gS/fS) before antimicrobial is added. Specifically, it can be expressed as

the ratio of the average time td
R;i the lineage spends in the state where i mutants exist to the total

lifetime td
R of the lineage without antimicrobial: pc

RðiÞ ¼ t
d
R;i=t

d
R (see S1 Appendix, section 3.1).

Next, in order to calculate the probability pe
RðiÞ that the lineage of R mutants then quickly goes

extinct, we approximate the reproduction rate of the R microorganisms by fR(1 − (S(t)+ R(t))/
K)�fR(1 − S(t)/K), where S(t) and R(t) are the numbers of S and R individuals at time t.
Indeed, early extinctions of R mutants tend to happen shortly after the addition of antimicrobi-

als, when S(t)�R(t). Thus motivated, we further take the deterministic approximation

SðtÞ ¼ Kð1 � gS=fSÞe� gS
t
, while retaining a stochastic description for the R mutants [36, 37]. We

then employ the probability generating function �iðz; tÞ ¼
P1

j¼0
zjPðj; tji; 0Þ, where i is the ini-

tial number of R microorganisms, which satisfies pe
RðiÞ ¼ lim t!1Pð0; tji; 0Þ ¼ lim t!1�ið0; tÞ.

Solving the partial differential equation governing the evolution of ϕi(z, t) (see S1 Appendix,

section 3.2) yields [38, 39]

pe
RðiÞ ¼ lim

t!1

gR

R t
0

erðuÞdu
1þ gR

R t
0

erðuÞdu

" #i

; ð2Þ

with

rðtÞ ¼
Z t

0

gR � fR 1 �
SðuÞ

K

� �� �

du : ð3Þ

Eq 1 then allows us to predict the probability that the microbial population goes extinct

thanks to the first addition of antimicrobial. Fig 1C demonstrates a very good agreement

between this analytical prediction and our simulation results in the rare mutation regime Kμ1

� 1, and Fig. VIII in S1 Appendix further demonstrates good agreement for each separate

term of Eq 1 in this regime. For larger populations, the probability that the microbial
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population is rescued by resistance increases, and the extinction probability tends to zero for fre-

quent mutations Kμ1� 1 because R mutants are then always present in the population, in num-

bers that essentially ensure their survival (see Fig 1C). Note that in our simulations presented in

Fig 1, we chose μ1 = 10−5 for tractability. With realistic bacterial mutation probabilities, namely

μ1 * 10−10[45], the rare mutation regime remains relevant for much larger populations.

Biocidal antimicrobials and imperfect biostatic ones allow an extra

mechanism of rescue by resistance

How does the mode of action of the antimicrobial impact our results? So far, we considered a

perfect biostatic antimicrobial that stops the growth of sensitive microorganisms but does not

affect their death rate. Let us now turn to the general case of an antimicrobial that can affect

both the division rate and the death rate of sensitive microorganisms, and let us assume that

we are above the MIC, i.e. g 0S > f 0S . In this section, we present general calculations, but focus

most of our discussion on purely biocidal antimicrobials, which increase the death rate of sen-

sitive microorganisms without affecting their growth rate, and compare them to purely bio-

static antimicrobials. Again, a crucial point is how the duration T/2 of a phase with

antimicrobial compares to the average time τS needed for a population of S microorganisms to

go extinct in the presence of antimicrobial (see Eq. S6). Indeed, our simulation results in Fig

2A and 2D display an abrupt change in the probability that the microbial population goes

extinct before developing resistance for T = 2τS.

For small periods T/2� τS, one phase with antimicrobial is not long enough to eradicate

the microbial population. However, the alternations may induce an overall decrease in the pop-
ulation over multiple periods, then leading to extinction. This is the case when the deterministic

growth timescale 1/(fS − gS) is larger than the decay timescale 1=ðg 0S � f 0SÞ. Equivalently, in the

limit of very fast alternations, there is no nonzero stationary population size when

~f S ¼ ðfS þ f 0SÞ=2 < ~g S ¼ ðgS þ g 0SÞ=2, yielding the same condition. For a biostatic drug such

that g 0S ¼ gS, this situation cannot happen if gS < fS/2, which is realistic since baseline death

rates are usually small. Conversely, for a biocidal drug such that f 0S ¼ fS, a systematic evolution

of resistance will occur if g 0S < 2fS � gS, while population decay over several periods and extinc-

tion will occur if g 0S > 2fS � gS. These predictions are confirmed by the simulation results in

Fig 2A and 2D, respectively, and the two different cases are exemplified in Fig 2B and 2E. Both

of these regimes can arise, depending on the concentration of biocidal antimicrobial. Fig 2A–

2C corresponds to concentrations just above the MIC, while Fig 2D–2F correspond to larger

concentrations of bactericidal drugs, which can induce death rates equal to several times the

birth rate [46, 47]. Note that in Fig 2A, the extinction probability is not zero for small periods

with K = 102: this is because stochastic extinctions can occur before resistance takes over for

such a small equilibrium population size.

For slower alternations satisfying T/2� τS, the microbial population is eradicated by the
first phase with antimicrobial, unless resistance rescues it. Extinction then occurs shortly after

time T/2 (see S1 Appendix, Fig. VB and examples in Fig 2C and 2F). Importantly, with a bio-

cidal antimicrobial or with an imperfect biostatic one, the microbial population can be rescued
by resistance in two different ways: either if resistant bacteria are present when antimicrobial is
added, or if they appear afterwards. This second case is exemplified in Fig 3. It can happen

because even at high concentration, such antimicrobials do not prevent S microorganisms

from dividing, contrarily to a perfect biostatic one. Because of this, rescue by resistance can

become more likely than with perfect biostatic antimicrobials. Note that, as in the perfect bio-

static case, the spontaneous fixation of resistant mutants without antimicrobial will occur if T/

2� τV� (fS − fR)/(μ1 μ2 gS) (see S1 Appendix, Fig. V).
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Let us focus on the regime where the treatment can efficiently induce extinction, namely τS

� T/2� τV. The probability p0 that the microbial population is not rescued by resistance and

goes extinct can then be expressed as:

p0 ¼ 1 � pR

XN� 1

i¼1

pc
RðiÞð1 � pe

RðiÞÞ

" #

1 � pa
Rð1 � pe0

R Þ
� �

: ð4Þ

Apart from the last term, which corresponds to resistance appearing after antimicrobial is

first added, Eq 4 is identical to Eq 1. The quantities pR and pc
RðiÞ are the same as in that case,

since they only depend on what happens just before antimicrobial is added. While pe
RðiÞ is con-

ceptually similar to the perfect biostatic case, it depends on f 0S and g 0S, and its general calculation

is presented in Section 3.2 of the S1 Appendix. This leaves us with the new case where resis-

tance appears in the presence of antimicrobial. In the rare mutation regime such that Ndiv μ1

Fig 2. Periodic presence of a biocidal antimicrobial above the MIC. A: Probability p0 that the microbial population goes extinct before

resistance gets established versus alternation period T, for various carrying capacities K. Markers: simulation results, with probabilities

estimated over 102 − 103 realizations. Horizontal solid lines: analytical predictions from Eq 4. Dashed lines: T/2 = τS. B and C: Numbers of

sensitive (S), resistant (R) and compensated (C) microorganisms versus time in example simulation runs for K = 1000, with T = 8 and

T = 1000 respectively. In B, resistance takes over, while in C, extinction occurs shortly after antimicrobial is first added. Phases without

(resp. with) antimicrobial are shaded in white (resp. gray). Parameter values in A, B and C: fS = 1, fR = 0.9, fC = 1, gS = 0.1 without

antimicrobial, g0S ¼ 1:1 with antimicrobial, gR = gC = 0.1, μ1 = 10−5 and μ2 = 10−3. All simulations start with 10 S microorganisms. D, E and

F: same as A, B and C, but with g0S ¼ 2. All other parameters are the same.

https://doi.org/10.1371/journal.pcbi.1007798.g002
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� 1, it happens with probability pa
R ¼ Ndivm1, where

Ndiv ¼

Z tS

0

fS 1 �
SðtÞ
K

� �

SðtÞ dt ð5Þ

is the number of divisions that would occur in a population of S microorganisms between the

addition of antimicrobial (taken as the origin of time here) and extinction. Employing the

deterministic approximation for the number S(t) of S microorganisms (see Eq. S21), the prob-

ability that the lineage of an R mutant that appears at time t0 quickly goes extinct can be

obtained in a similar way as for Eq 2, yielding

pe0
R ðt0Þ ¼ lim

t!1

gR

R t
t0

eZðuÞdu

1þ gR

R t
t0

eZðuÞdu
; ð6Þ

with

ZðtÞ ¼
Z t

t0

gR � fR 1 �
SðuÞ

K

� �� �

du : ð7Þ

We then estimate the probability pe0
R that the lineage of an R mutant that appears after the

addition of antimicrobial quickly goes extinct by averaging pe0
R ðt0Þ over the time t0 of appear-

ance of the mutant, under the assumption that exactly one R mutant appears:

pe0
R ¼

Z 1

0

pe0
R ðt0Þ }

a
Rðt0Þ dt0 ; ð8Þ

with

}a
Rðt0Þ ¼

Sðt0Þ 1 �
Sðt0Þ

K

� �

R1
0

SðtÞ 1 �
SðtÞ
K

� �

dt
: ð9Þ

Fig 3. Resistance emergence in the presence of a biocidal antimicrobial above the MIC. A: Numbers of sensitive (S),

resistant (R) and compensated (C) microorganisms versus time in an example simulation run for K = 104, with

T = 1000. Here resistance takes over. Phases without (resp. with) antimicrobial are shaded in white (resp. gray). B:

Zoom showing the emergence of resistance in this realization: an R mutant appears after antimicrobial is added (gray).

At this time, the S population is decreasing due to the antimicrobial-induced high death rate, but the surviving S

microorganisms are still able to divide. Parameter values and initial conditions are the same as in Fig 2A, 2B and 2C.

https://doi.org/10.1371/journal.pcbi.1007798.g003
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Eq 4 then yields the probability that the microbial population goes extinct thanks to the first

addition of antimicrobial. Fig 2A demonstrates a very good agreement between this analytical

prediction and our simulation results in the rare mutation regime Kμ1� 1, and Figs. VIIIA-B,

IX and X in S1 Appendix further demonstrate good agreement for each term involved in Eq 4

in this regime.

The extinction probability p0 depends on the size of the microbial population through its

carrying capacity K and on the division and death rates with antimicrobial. Fig 4 shows the

decrease of p0 with K, with p0 reaching 0 for Kμ1� 1 since resistant mutants are then always

present when antimicrobial is added. Moreover, Fig 4 shows that p0 depends on the antimicro-
bial mode of action, with large death rates favoring larger p0 in the biocidal case, and with the

perfect biostatic antimicrobial yielding the largest p0. Qualitatively, the observed increase of p0

as g 0S increases with a biocidal drug mainly arises from the faster decay of the population of S

microorganisms, which reduces the probability pa
R that an R mutant appears in the presence of

antimicrobial. Furthermore, one can show that the extinction probability p0 is larger for a per-

fect biostatic antimicrobial than for a perfect biocidal antimicrobial with g 0S !1 (see S1

Appendix, Section 3.4). Indeed, S microorganisms survive longer in the presence of a perfect

biostatic drug, which reduces the division rate of the R mutants due to the logistic growth

term, and thus favors their extinction. Such a competition effect is realistic if S microorganisms

still take up resources (e.g. nutrients) even while they are not dividing. Besides, a treatment

combining biostatic and biocidal effects yields a larger p0 than a pure biocidal one inducing

the same death rate, thereby illustrating the interest of the additional biostatic effect (see Fig 4).

Note that conversely, adding a biocidal to a perfect biostatic slightly decreases p0 due to the

competition effect, as S microorganisms go extinct faster than with the perfect biostatic drug

alone.

Fig 4. Dependence of the extinction probability p0 on population size and antimicrobial mode of action. The

extinction probability p0 is plotted versus carrying capacity K for the perfect biostatic drug (corresponding to Fig 1),

two different concentrations of biocidal drugs yielding two different death rates g 0S (corresponding to Fig 2) and a drug

with both biostatic and biocidal effects. Markers correspond to simulation results, computed over 103 realizations.

Solid lines correspond to our analytical predictions from Eqs 1 and 4, respectively, which hold for K� 1/μ1. Parameter

values and initial conditions are the same as in Figs 1 and 2, respectively, and the period of alternations is T = 103,

which is in the large-period regime.

https://doi.org/10.1371/journal.pcbi.1007798.g004
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Sub-MIC drug concentrations and stochastic extinctions

So far, we considered antimicrobial drugs above the MIC, allowing deterministic extinction in

the absence of resistance for long enough drug exposure times. However, sub-MIC drugs can

also have a major impact on the evolution of resistance, by selecting for resistance without kill-

ing large microbial populations, and moreover by facilitating stochastic extinctions in finite-

sized microbial populations [18–20]. In the sub-MIC regime where f 0S > g 0S, the population has

a nonzero deterministic equilibrium size N 0 ¼ Kð1 � g 0S=f 0SÞ in the presence of antimicrobial.

Nevertheless, stochastic extinctions can remain relatively fast, especially in the weakly-sub-

MIC regime where f 0S is close to g 0S, and if K is not very large. The key point is whether resis-

tance appears before the extinction time τS. The average time of appearance of an R mutant

that fixes in a population of N0 individuals in the presence of sub-MIC antimicrobial is

ta
R ¼ 1=ðN 0m1g 0Sp

0
SRÞ, where p0SR ¼ ½1 � f 0SgR=ðfRg 0SÞ�=½1 � ðf

0
SgR=ðfRg 0SÞÞ

N0
� is the fixation probabil-

ity of an R mutant in a population of S individuals with fixed size N0 (see S1 Appendix, Section

4, and Ref. [48]). Therefore, we expect resistance to take over and the extinction probability p0

to be very small if ta
R⪡tS below the MIC, even for large periods such that τS < T/2.

Fig 5 shows heatmaps of the probability p0 that the microbial population goes extinct before

resistance takes over, in the cases of biostatic and biocidal drugs, plotted versus the period of

alternations T and the non-dimensional variable R ¼ ðg 0S � f 0SÞ=g 0S, which increases with anti-

microbial concentration and is zero at the minimum inhibitory concentration (MIC). In both

cases, two main regions are apparent, one with p0 = 0 and one where p0 is close to one. The

transition between them is well described by the solid line T/2 = τS such that the time spent

with drug is equal to the extinction time τS of a population of sensitive microbes with drug,

except for large periods, where the relevant transition occurs below the MIC (R < 0) and is

given by ta
R ¼ tS (dashed line), consistently with our analytical predictions.

The ratio R enables us to make a quantitative comparison between biostatic and biocidal

drugs. Let us focus first on the transition tS ¼ ta
R. Eq. S6 shows that the average time it takes for

the sensitive microorganisms to spontaneously go extinct in the presence of antimicrobial can

be written as tSðf 0S ; g
0
SÞ ¼ FðRÞ=g 0S, where F is a non-dimensional function. Besides, the aver-

age fixation time of a R mutant in a population of S individuals can also be expressed as

Fig 5. Heatmaps of the extinction probability. Extinction probability p0 versus alternation period T and R ¼ ðg 0S � f 0SÞ=g0S with

biostatic (A) or biocidal (B) antimicrobial. Heatmap: simulation data, each point computed over 103 realizations of simulation

results, and linearly interpolated. Dashed white line: value of R such that ta
R ¼ tS (see main text). Solid white line: T/2 = τS.

Parameter values: K = 103, μ1 = 10−5, μ2 = 10−3, fS = 1, fR = 0.9, fC = 1, gS = gR = gC = 0.1, and (A) g 0S ¼ 0:1 and variable f 0S or (B) f 0S ¼ 1

and variable g 0S. Dotted line in B: R ¼ ðfS � gSÞ=ð2fS � gSÞ. All simulations start with 10 S microorganisms.

https://doi.org/10.1371/journal.pcbi.1007798.g005

PLOS COMPUTATIONAL BIOLOGY Resist or perish

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007798 April 10, 2020 11 / 19

https://doi.org/10.1371/journal.pcbi.1007798.g005
https://doi.org/10.1371/journal.pcbi.1007798


ta
Rðf

0
S ; g

0
SÞ ¼ CðRÞ=g 0S, where C is a non-dimensional function. Thus, the transition tS ¼ ta

R will

be the same for biostatic and biocidal drugs at a given value of R. Conversely, the transition τS

= T/2, i.e. FðRÞ=g 0S ¼ T=2, depends on g 0S, and is thus different for biostatic and biocidal drugs

at the same value of R. Specifically, for a given value of R, smaller periods T will suffice to get

extinction after the first addition of antimicrobial for a biocidal drug than for a biostatic drug,

because g 0S is increased by biocidal drugs, and hence τS is smaller in the biocidal case than in

the biostatic case. This means that the parameter regime where treatment is efficient is larger for
biocidal drugs than for biostatic drugs, as can be seen by comparing Fig 5A and 5B. Significantly

above the MIC, another difference is that biocidal drugs become efficient even for short periods
T/2� τS if their concentration is large enough to have g 0S > 2fS � gS, i.e. R > ðfS � gSÞ=ð2fS �

gSÞ (see above, esp. Fig 2D and 2E). Numerical simulation results agree well with this predic-

tion (dotted line on Fig 5B).

Importantly, the transition between large and small extinction probability when R (and thus
the antimicrobial concentration) is varied strongly depends on population size, specifically on
carrying capacity (Fig 6 and S1 Appendix, Fig. VI), and also depends on antimicrobial mode of

Fig 6. Dependence of the extinction transition on population size and antimicrobial mode of action. Extinction probability p0

versus the ratio R ¼ ðg 0S � f 0SÞ=g 0S with biostatic or biocidal antimicrobial, for different carrying capacities K, either in the small-

period regime, with T = 102.5 (A and B) or in the large-period regime, with T = 105 (C). Markers: simulation results, calculated over

103 realizations. Vertical dashed lines: predicted extinction thresholds, i.e. values of R such that T/2 = τS (A and B) or ta
R ¼ tS (C).

Solid lines (C): Analytical estimates of p0 from Eq 1 (biostatic) or Eq 4 (biocidal). For K = 102 and 103, the analytical predictions in

the biostatic and biocidal case are confounded, while for K = 104 we used two shades of green to show the slight difference (light:

biostatic, dark: biocidal). Parameter values: μ1 = 10−5, μ2 = 10−3, fS = 1, fR = 0.9, fC = 1, gS = gR = gC = 0.1, and g 0S ¼ 0:1 (biostatic) or

f 0S ¼ 1 (biocidal). All simulations start with 10 S microorganisms.

https://doi.org/10.1371/journal.pcbi.1007798.g006
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action (Fig 6). For small periods where the relevant transition occurs for T/2 = τS, concentra-

tions above the MIC (R > 0) can actually be necessary to get extinction because one period

may not suffice to get extinction, and moreover, the extinction threshold value R is not the

same for biostatic and biocidal antimicrobials (see above and Fig 6A and 6B). Conversely, for

large periods where the relevant transition occurs for ta
R ¼ tS, and extinction occurs upon the

first addition of drug, the extinction threshold is always below the MIC (R < 0) and it is the

same for biostatic and biocidal antimicrobials (see above and Fig 6C). In both cases, the larger

the population, the larger the concentration required to get large extinction probabilities. For

large periods (Fig 6C), the transition occurs close to the MIC for large populations, but the

smaller the population, the larger the discrepancy between the MIC and the actual transition, as

predicted by our analytical estimate based on ta
R ¼ tS (see S1 Appendix, Fig. VI). This is because

in small populations, stochastic extinctions of the population are quite fast at weakly sub-MIC

antimicrobial. This is a form of inoculum effect, where the effective MIC depends on the size of

the bacterial population [20]. In the large period regime (Fig 6C), the extinction probability p0

is well-predicted by Eqs. 1 and 4 for the R values such at most one R mutant can appear before

the extinction of the population (as assumed in our calculation of pa
R). In this regime, the extinc-

tion time is close to T/2 (see S1 Appendix, Fig. VII) as extinction is due to the first addition of

antimicrobial, while for smaller R values, extinction occurs after multiple periods.

In Fig 6A and 6B, transitions between small and large values of p0 in simulated data are

observed for smaller threshold values of R than predicted by T/2 = τS (this can also be seen in

Fig 5, where the solid white line is somewhat in the blue zone corresponding to large p0). This

is because we have employed the average extinction time τS, while extinction is a stochastic

process. Thus, even if T/2 < τS, upon each addition of antimicrobial, there is a nonzero proba-

bility that extinction actually occurs within the half-period. Denoting by p the probability that

a given extinction time is smaller than T/2, the population will on average go extinct after 1/p
periods, unless resistance fixes earlier. For instance, a population with carrying capacity

K = 102 submitted to alternations with T = 102.5 is predicted to develop resistance before

extinction if R < 0:055. However, for R ¼ � 0:1, simulations yield a probability p0 = 0.99 of

extinction before resistance takes over (see Fig 6A). In this case, simulations yield p = 0.3,

implying that extinction typically occurs in*3 periods, thus explaining the large value of p0.

More generally, the probability distribution function of the extinction time can depend on var-

ious parameters, which can impact the discrepancy between the predicted and observed transi-

tions. A more precise calculation would involve this distribution. Note that the distribution of

extinction times is known to be exponential for populations with a quasi-stationary state [49,

50], but the present situation is more complex because there is no nonzero deterministic equi-

librium population size below the MIC, and because the population size at the time when anti-

microbial is added is far from the equilibrium value with antimicrobial. Nevertheless, our

prediction based on the average extinction time τS yields the right transition shape (see Fig 5)

and the correct expectations for T/2� τS and T/2� τS.

Discussion

Main results

The evolution of antimicrobial resistance often occurs in variable environments, as antimicro-

bial is added and removed from a medium or given periodically to a patient, e.g. in a treatment

by the oral route [3, 4]. Alternations of phases of absence and presence of antimicrobial induce

a dramatic time variability of selection pressure on microorganisms, and can thus have a

strong impact on resistance evolution. Using a general stochastic model which includes varia-

tions of both composition and size of the microbial population, we have shed light on the
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impact of periodic alternations of presence and absence of antimicrobial on the probability

that resistance evolves de novo and rescues a microbial population from extinction. The major-

ity of previous studies of periodic antimicrobial treatments [10, 51–56] neglect stochastic

effects, while they can have a crucial evolutionary impact [13, 15], especially on population

extinction [18, 20]. In addition, established microbial populations are structured, even within

a single patient [57], and competition is local, which decreases their effective size, thus making

stochasticity relevant. While a few previous studies did take stochasticity into account, some

did not include logistic growth or compensation of the cost of resistance [36], while others

made specific assumptions on treatments or epidemiology [58, 59], focused on numerical

results with few analytical predictions [60], or assumed a constant population size [33]. The

present model has the advantage of being quite general while fully accounting for stochasticity

and finite-population effects.

We showed that fast alternations of presence and absence of antimicrobial are inefficient to

eradicate the microbial population and strongly favor the establishment of resistance, unless the

antimicrobial increases enough the death rate, which can occur for biocidal antimicrobials at

high concentration [46, 47]. The corresponding criterion on the death rate g 0S of sensitive micro-

organisms with biocidal antimicrobial, namely g 0S > 2fS � gS, is generally more stringent than

simply requiring drug concentrations to be above the MIC during the phases with biocidal anti-

microbial, namely g 0S > fS. Indeed, the population can re-grow without antimicrobial: in this

regime, extinction occurs over multiple periods, and involves decaying oscillations. Conversely,

for biostatic antimicrobials, as well as for biocidal ones at smaller concentrations, extinction has

to occur within a single phase with antimicrobial, and thus the half-period T/2 has to be longer

than the average extinction time τS, which we fully expressed analytically. Importantly, shorter

periods suffice for biocidal antimicrobials compared to biostatic ones in order to drive a popula-

tion to extinction upon the first addition of antimicrobial, at the same value of R ¼ ðg 0S � f 0SÞ=g 0S.

Hence, the parameter regime where treatment is efficient is larger for biocidal drugs than for bio-

static drugs. If T/2> τS, the microbial population goes extinct upon the first addition of antimi-

crobial, unless it is rescued by resistance. We obtained an analytical expression for the

probability p0 that the population is eradicated upon the first addition of antimicrobial, assuming

rare mutations. Note that with realistic bacterial mutation probabilities, namely μ1 * 10−10[45],

the rare mutation regime remains relevant even for quite large populations. Moreover, real

microbial populations are generally structured, which reduces their effective population size.

Rescue by resistance can happen either if resistant mutants preexist upon the addition of antimi-

crobial, or if they appear after antimicrobial is added to the environment, during the decay of the

population. Importantly, the latter case is fully prevented by perfect biostatic antimicrobials that

completely stop division of sensitive microorganisms. This sheds light on the respective merits of

different antimicrobial modes of action. Finally, we showed that due to stochastic extinctions,

sub-MIC concentrations of antimicrobials can suffice to yield extinction of the population, and

we fully quantified this effect and its dependence on population size. Throughout, all of our ana-

lytical predictions were tested by numerical simulations, and the latter also allowed us to explore

cases beyond the rare mutation regime, where resistance occurs more frequently.

This work opens many possible theoretical extensions. In particular, it will be very interest-

ing to include effects such as antibiotic tolerance, which tend to precede resistance under inter-

mittent antibiotic exposure [4], as well as to consider the possibility of concentrations above

the mutant prevention concentration, such that resistant microbes are also affected by the

drug [4, 55]. Another exciting extension would be to incorporate spatial structure [61–63] and

environment heterogeneity, in particular drug concentration gradients. Indeed, static gradi-

ents can strongly accelerate resistance evolution [64–67], and one may ask how this effect
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combines with the temporal alternation-driven one investigated here. Besides, it would be

interesting to explicitly model horizontal gene transfer of resistance mutations, to include real-

istic pharmacodynamics and pharmacokinetics [10], and also to compare the impact of peri-

odic alternations to that of random switches of the environment [5–9, 68–70]. Other effects

such as single-cell physiological properties [3], phenotypic delay [71] or density dependence of

drug efficacy [72] can further enrich the response of microbial populations to variable concen-

trations of antimicrobials.

Practical relevance

Our results have consequences for actual experimental and clinical situations. First, several of

our predictions can be tested experimentally in controlled setups such as that presented in

Ref. [3]. This would allow for an experimental test of the transition of extinction probability

between the short-period and the long-period regimes, and of the predicted values of this extinc-

tion probability for large periods in the rare mutation regime. Second, the situation where the

phases of absence and presence of antimicrobial have similar durations, which we considered

here, is unfortunately clinically realistic. Indeed, a goal in treatment design is that the serum con-

centration of antimicrobial exceeds the MIC for at least 40 to 50% of the time [11]. Because bac-

teria divide on a timescale of about an hour in exponential growth phase, and because

antimicrobial is often taken every 8 to 12 hours in treatments by the oral route, the alternation

period lasts for a few generations in treatments: this is the same order of magnitude as the transi-

tion we found between the short-period and long-period regimes, meaning that this transition is

relevant in clinical cases. Note that while this transition timescale depends on the death and

birth rates of sensitive microbes in the presence of antimicrobial (see Eq. S6), and therefore on

antimicrobial concentration, it does not depend on the value of the mutation rate or on the ini-

tial population size (as long as the half-period is longer than the initial population growth time-

scale, see S1 Appendix, section 1.3.1), and it depends only weakly on the carrying capacity, e.g.

logarithmically in the perfect biostatic case (see Eq. S7). Given the relevance of this transition

between the short-period and the long-period regimes, it would be very interesting to conduct

precise measurements of both division rates and death rates [73] in actual infections in order to

determine the relevant regime in each case. This is all the more important that in the short-

period regime, we showed that only large concentrations of biocidal antimicrobials are efficient,

while other antimicrobials systematically lead to the de novo evolution of resistance before eradi-

cation of the microbial population. This constitutes a striking argument in favor of the develop-

ment of extended-release antimicrobial formulations [74]. Conversely, a broader spectrum of

modes of action can be successful for longer periods of alternation of drug absence and presence.

Despite the fact that only biocidal antimicrobials at high concentration are efficient for

short alternation periods of absence and presence of drug, and the fact that the parameter

regime where treatment is efficient is larger for biocidal drugs than for biostatic drugs, bio-

static antimicrobials that fully stop division of sensitive microorganisms have a distinct advan-

tage over drugs with other modes of action. Indeed, they prevent the emergence of resistant

mutants when drug is present, which is all the more important that such resistant mutants are

immediately selected for by the antimicrobial and are thus quite likely to rescue the microbial

population and to lead to the fixation of resistance. This argues in favor of combination thera-

pies involving a biostatic and a biocidal antimicrobial. Note however that the combined drugs

need to be chosen carefully, because some of them have antagonistic interactions [75], depend-

ing on their mode of action.
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Supporting information

S1 Appendix. Methodological details and further results. In S1 Appendix., we present addi-

tional details about our model and methods, as well as further results.
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