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Abstract

Rationale: Inflammatory mechanisms have been suggested to play a role in the development of heart failure (HF), but a role
for chemokines is largely unknown. Based on their role in inflammation and matrix remodeling in other tissues, we
hypothesized that CXCL13 and CXCR5 could be involved in cardiac remodeling during HF.

Objective: We sought to analyze the role of the chemokine CXCL13 and its receptor CXCR5 in cardiac pathophysiology
leading to HF.

Methods and Results: Mice harboring a systemic knockout of the CXCR5 (CXCR52/2) displayed increased mortality
during a follow-up of 80 days after aortic banding (AB). Following three weeks of AB, CXCR52/2 developed significant
left ventricular (LV) dilatation compared to wild type (WT) mice. Microarray analysis revealed altered expression of several
small leucine-rich proteoglycans (SLRPs) that bind to collagen and modulate fibril assembly. Protein levels of
fibromodulin, decorin and lumican (all SLRPs) were significantly reduced in AB CXCR52/2 compared to AB WT mice.
Electron microscopy revealed loosely packed extracellular matrix with individual collagen fibers and small networks of
proteoglycans in AB CXCR52/2 mice. Addition of CXCL13 to cultured cardiac fibroblasts enhanced the expression of
SLRPs. In patients with HF, we observed increased myocardial levels of CXCR5 and SLRPs, which was reversed following
LV assist device treatment.

Conclusions: Lack of CXCR5 leads to LV dilatation and increased mortality during pressure overload, possibly via lack of an
increase in SLRPs. This study demonstrates a critical role of the chemokine CXCL13 and CXCR5 in survival and maintaining of
cardiac structure upon pressure overload, by regulating proteoglycans essential for correct collagen assembly.

Citation: Waehre A, Halvorsen B, Yndestad A, Husberg C, Sjaastad I, et al. (2011) Lack of Chemokine Signaling through CXCR5 Causes Increased Mortality,
Ventricular Dilatation and Deranged Matrix during Cardiac Pressure Overload. PLoS ONE 6(4): e18668. doi:10.1371/journal.pone.0018668

Editor: Kathleen A. Kelly, University of California Los Angeles, United States of America

Received September 22, 2010; Accepted March 15, 2011; Published April 18, 2011

Copyright: � 2011 Waehre et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Norwegian Research Council, Anders Jahre’s Fund for the Promotion of Science, Joh. H. Andresen’s Medical Fund. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: anne.waehre@medisin.uio.no

. These authors contributed equally to this work.

Introduction

Heart failure (HF) is a disorder associated with low-grade

immune activation and inflammation, as evidenced by elevated

circulating and myocardial levels of inflammatory cytokines,

including tumor necrosis factor (TNF)a, interleukin (IL)-1b and

IL-18, and chemokines such as monocyte chemoattractant protein

(MCP)-1 and fractalkine [1–5]. A range of experimental studies

have also suggested a pathogenic role for several of these

inflammatory mediators in the development and progression of

HF [4,6–8]. However, the role of inflammation in HF remains

incompletely understood. Identification of the most important
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mediators of the inflammatory pathways involved in the

pathogenesis of HF and their mechanism of action are issues that

need to be further clarified.

While most chemokines have been linked to inflammatory

processes in peripheral tissue, the homeostatic chemokines (i.e.,

CCL19, CCL21, and CXCL13) and their corresponding recep-

tors (i.e., CCR7 for [CCL19 and CCL21] and CXCR5 for

[CXCL13]) have been associated with development and mainte-

nance of secondary lymphoid organs [9–12], as well as the entry

of lymphocytes and dendritic cells to secondary lymphoid tissue

[13–15]. Recently, however, reports have pointed to a broader

role for these homeostatic chemokines, including modulation of

inflammatory and anti-inflammatory responses in lymphoid and

non-lymphoid tissue. Thus, while CXCL13 was known to dictate

homing and motility of B cells in lymphoid tissue, more recent

studies suggest that CXCL13 is involved in the formation of

ectopic lymphoid tissue in chronic inflammation [16,17]. This

chemokine has also been linked to T cell [9,18,19] and monocyte

activation [20] and apoptosis [21]. In line with its newly dis-

covered role in the immune system, CXCL13 has been suggested

to be involved in the pathogenesis of rheumatoid arthritis [22],

Sjögren syndrome [23–25], inflammatory bowel disease [26], and

multiple sclerosis [27]. CXCR5 is a G protein-coupled seven

transmembrane receptor and belongs to the CXC chemokine

receptor family [28]. Recently, CXCR5 has been found to be

involved in remodeling of extracellular matrix (ECM) in various

types of cancer, including colon [29] and prostate cancer [30].

However, the potential role for CXCL13 and CXCR5 in the

pathogenesis of myocardial remodeling has not been studied.

Based on their potential role in inflammation and matrix

remodeling, we hypothesized that CXCL13 and its receptor

CXCR5 are involved in cardiac remodeling and development of

HF. We examined this hypothesis by studying the cardiac

morphology, function and molecular alterations in CXCR5

deficient (CXCR52/2) mice exposed to left ventricular (LV)

pressure overload induced by aortic banding (AB).

Results

Expression of CXCR5 and CXCL13 in murine hearts
We first examined if the CXCL13/CXCR5 dyad was regulated

during AB in mice. Both CXCL13 and CXCR5 were expressed

within the murine heart, and as shown in Fig. 1A and B, we found

significantly enhanced myocardial expression of CXCR5, but not

of CXCL13, in mice that underwent AB as compared with sham

operated mice. Within the myocardium, we found mRNA

expression of CXCL13 and CXCR5 in cardiomyocytes, fibro-

blasts and endothelial cells with the highest expression of both

CXCR5 and CXCL13 in myocardial fibroblasts (Fig. 2A, B).

Survival during LV pressure overload
As depicted in Kaplan-Meier survival curves (Fig. 3), CXCR52/2

mice exhibited significantly higher mortality rates than WT mice

during an 80-day follow-up after AB induction. The differences in

mortality emerged after 40 days of AB.

Severe LV dilatation in CXCR52/2 mice following
pressure overload

To investigate a potential role for CXCR5 in cardiac

remodeling and development of HF, we evaluated cardiac

morphology and function in WT and CXCR52/2 mice. Two-

dimensional and M-mode echocardiography performed in non-

operated WT (n = 6) and CXCR52/2 (n = 6) mice showed no

significant differences in LV function or dimensions (Table S1).

Twenty-one days after AB, echocardiographic assessment showed

comparable increases in flow velocities across the banded region of

the aorta in the WT and CXCR52/2 groups. However, LV

fractional shortening was reduced by 65% in CXCR52/2 mice,

but only by 13% in WT (Table S1). The mean LV diastolic

dimension was significantly larger and the LV posterior wall

thickness was significantly lower in CXCR52/2 mice compared to

WT mice at the same time point (Fig. 4A, B).

CXCR52/2 mice show increased expression of
hypertrophy maker genes in response to pressure
overload

Despite similar increases in heart weight to tibial length (HW/

TL) ratio in both genotypes after AB, CXCR52/2 mice exhibited

a more marked increase in expression of ANP (3.3-fold increase),

BNP (2.3-fold increase) and b-MHC (2.5-fold increase) than

WT (Fig. S1A–C). The marked increase in ANP and BNP in

CXCR52/2 mice following AB might suggest increased myocar-

dial wall stress in these mice.

CXCR52/2 mice exhibit major alterations in ECM in
response to pressure overload

Since alterations in extracellular matrix (ECM) might be

responsible for LV dilatation, we examined the quality and

composition of the ECM following AB. CXCR52/2 mice

exhibited increased myocardial collagen content following AB as

compared with WT mice, as illustrated by both Masson trichrome

staining (Fig. 5A) and hydroxyproline measurement by HPLC

(Fig. 5B). This increase in collagen content in CXCR52/2 mice

Figure 1. Myocardial gene expression of CXCL13 and CXCR5 in mice. Myocardial gene expression of (A) CXCL13 and (B) CXCR5 in wild type
(WT) Sham (n = 7) and WT aorta banded (AB) (n = 14) group. The results are mean 6 SEM. **p,0.01 vs. Sham group.
doi:10.1371/journal.pone.0018668.g001
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was accompanied by a significant increase in total matrix

metalloproteinase (MMP) activity (Fig. 5C) and gelatinolytic

activity (Fig. 5D, E). This combination of increased collagen

content and increased MMP activity suggest enhanced matrix

remodeling in CXCR5 deficient mice following AB.

Microarray analysis identified altered expression of genes
encoding non-collagen ECM proteins

In addition to collagen, the quantity and quality of other ECM

constituents also importantly influence cardiac function [31]. We

therefore performed microarray analysis (Affymetrix) of the

myocardium from WT and CXCR52/2 mice 3 weeks after AB.

The seeded Bayesian network method [32] was used to explore

interactions between differentially expressed genes. This analysis

identified a cluster of genes encoding ECM proteins. Interestingly,

this cluster contained fibromodulin which belongs to a family of

small leucine-rich repeat proteoglycans (SLRPs), which are known

to influence ECM assembly [33]. Microarray data are accessible

through GEO Series accession number GSE22295 (http://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22295).

Protein levels of SLRPs following AB in CXCR52/2 and WT
mice

To further examine the regulation of SLRPs following AB, we

measured protein levels of fibromodulin and other members in the

SLRP family, including decorin, lumican and biglycan. With the

exception of biglycan, all of these SLRPs were differently regulated

in CXCR5 2/2 mice compared to WT mice following AB (Fig. 6).

While decorin and lumican markedly increased during AB in WT

mice, this was not observed in CXCR52/2 mice (Fig. 6A, B).

Moreover, while fibromodulin decreased following AB in WT and

CXCR5 2/2 mice, the decrease was significantly more pro-

nounced in the CXCR52/2 mice (Fig. 6C).

Electron microscopic analysis revealed loosely packed
ECM in CXCR52/2 mice following AB

SLRPs are capable of binding to different types of collagen

[34,35], thereby regulating fibril assembly and organization,

degradation, and quantitative and functional aspects of the

collagen network [33]. To further elucidate the effect of decreased

levels of SLRPs during pressure overload, LV tissue sections were

examined by electron microscopic analysis in WT and CXCR5-

deficient mice. As shown in Fig. 6D and E, a considerable increase

in the extracellular space was observed in LVs from CXCR52/2

as compared to WT mice. In addition, banded WT mice exhibited

densely packed collagen fibers of variable thickness and orientation

as well as proteoglycan particles associated with fine filaments

(Fig. 6F). In contrast, the ECM in CXCR52/2 mice exhibited

large areas with a coarse network of individual collagen fibrils, and

finer networks of proteoglycans with associated filaments (Fig. 6G),

suggesting deranged ECM.

No difference in apoptosis and leukocyte infiltration
between CXCR52/2 and WT mice after pressure overload

CXCL13 has been suggested to exhibit anti-apoptotic proper-

ties [36,37]. However, analysis of cardiac apoptosis by in situ

TUNEL staining revealed that, after either sham-operation or AB,

the number of apoptotic cells was similar in WT and CXCR5-

deficient mice (Fig. S2). Moreover, although CXCL13 is known to

influence lymphocyte trafficking [38,39], we found no significant

Figure 2. Gene expression of CXCL13 and CXCR5 in myocardial cells in mice. Gene expression of (A) CXCL13 and (B) CXCR5 in
cardiomyocytes, fibroblasts and endothelial cells from wild type mice (n = 3). mRNA levels were assesssed by quantitaive real time PCR. AU = Arbitrary
unit. The results are mean 6 SEM. * p,0.05, **p,0.01, ***p,0.001 vs. cardiomyocytes. {{p ,0.01 vs. fibroblasts.
doi:10.1371/journal.pone.0018668.g002

Figure 3. Kaplan-Meier survival curves of wild type (WT)
(n = 20) and CXCR52/2 mice (n = 20) after aortic banding (AB).
Echocardiographic assessment showed comparable increases in flow
velocities across the banded region of the aorta in WT and CXCR52/2

twenty-one days after primary surgery. Differences in survival between
WT and CXCR52/2 mice were tested with the log-rank test. *p,0.05 vs.
WT.
doi:10.1371/journal.pone.0018668.g003
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difference in infiltration of CD3+ or CD45+ cells between

CXCR52/2 and WT mice after either sham operation or AB

(Fig. S3A and B).

CXCL13 stimulates expression of SLRPs
The changes in ECM in CXCR52/2 mice following AB,

consisting of enhanced MMP activity and decreased expression of

several SLRPs, could potentially reflect direct effects of CXCL13

on myocardial fibroblasts. In fact, both CXCL13 and CXCR5

were strongly expressed within myocardial fibroblasts, and

CXCR5 showed enhanced myocardial expression during AB in

WT mice (Fig. 1). In addition, fibroblasts are important producers

of ECM proteins, including SLRPs. Stimulation of cardiac

neonatal rat fibroblasts with CXCL13 did indeed enhance the

expression of fibromodulin, biglycan and lumican, and in

particular of decorin, and at the same time down-regulated total

MMP activity (Fig. 7A, B).

CXCL13-CXCR5 mediate their effects on matrix
modulation via ERK1/2 signaling

We next examined alterations in the ERK1/2 pathway in

CXCR52/2 following AB, as this pathway is of importance in

cardiac remodeling and since CXCL13 signaling through CXCR5

is known to activate the MAPK pathway via ERK 1/2 [40,41]. As

shown in Fig. 7C and D, LV from CXCR52/2 mice showed

decreased levels of phosphorylated ERK1/2 as compared with

WT mice. In cardiac fibroblasts, blocking the ERK1/2 pathway

by UO126, a highly selective inhibitor of MEK 1 and 2,

significantly attenuated up-regulation of fibromodulin following

CXCL13 treatment (Fig. 7E).

Expression of CXCR5 and SLRPs in patients with HF
Assessments of CXCR5 mRNA levels in myocardial tissue from

9 HF patients (all with advanced HF, NYHA class IV) and 5

controls (non-failing hearts) showed that HF patients had markedly

enhanced gene expression of CXCR5 (84% increase, p,0.005).

As shown in Fig. 7, the 9 HF patients also had significantly

enhanced gene expression of biglycan, lumican and fibromodulin.

When the HF patients were treated with continuous-flow LV assist

device (LVAD) for 861.7 months, improvement in hemodynamic

parameters (LV end diastolic volume decreased from 294.9 mL to

237.8 mL, LV diastolic diameter from 7.6 cm to 6.8 cm, and LV

end systolic volume from 244.8 mL to 183.4 mL, reflected in an

increase in LVEF from 18.2 to 29.6%, p,0.05 for all) was

accompanied by a marked decrease in mRNA levels of CXCR5 as

well as biglycan and fibromodulin, although the decrease in

fibromodulin did not reach statistical significance (Fig. 8).

Discussion

Despite observations of enhanced levels of chemokines and their

corresponding receptors in human HF [5,42,43], the role of

chemokines in maintaining cardiac structure and function has

never been established. The present work clearly demonstrates that

the chemokine CXCL13 and its receptor, CXCR5, are critically

involved in cardiac remodeling. The key results of this study were

increased mortality and severe LV dilatation in CXCR5-deficient

mice in response to pressure overload, potentially resulting from

impaired quality of ECM. These ECM alterations derived, at least

partly from decreased SLRP levels and enhanced MMP activity

within the myocardium. Our in vitro findings showed that CXCL13

can promote SLRP expression and attenuate MMP activity in

myocardial fibroblasts. Therefore, the opposite pattern seen in

CXCR5-deficient mice could reflect the inability of their

myocardial fibroblasts to respond to CXCL13. These data indicate

that the CXCL13/CXCR5 interaction is involved in myocardial

remodeling following pressure overload, possibly by regulating

proteoglycans crucial for the quality of myocardial ECM. Our

findings of a strong expression of CXCL13 and CXCR5 in

fibroblasts within murine hearts and enhanced myocardial

expression of CXCR5 during AB further support such a notion.

The possible role of chemokines in the pathogenesis of HF has,

at least in part, been attributed to the ability of these molecules to

promote leukocyte infiltration in failing myocardium. However, in

the present study we did not detect altered infiltration of CD3+

and CD45+ cells in CXCR52/2 mice compared to the WT mice

following AB. Previously, various chemokines (e.g., CXCL16,

MCP-1 and CX3CL1) have been shown to promote direct effects

on myocardial fibroblasts and cardiomyocytes in vitro [5,43–45].

Also, the lack of CXCR4 has been associated with severe

myocardial developmental defects (i.e., ventricular septum defects)

[46]. In contrast to CXCR4, CXCR5 deficient mice are viable

and display normal morphology and function of the adult heart.

However, our present data showing a markedly dilating

myocardial phenotype in CXCR52/2 mice exposed to pressure

Figure 4. Left ventricular (LV) dilatation in CXCR52/2 mice 3 weeks following aortic banding (AB). LV inner diameter (A) and thickness of
the posterior wall (B) were measured in the wild type (WT) Sham (n = 6), CXCR52/2 Sham (n = 6), WT AB (n = 6), and CXCR52/2 AB (n = 6) groups. The
results are mean 6 SEM. *p,0.05 and ***p,0.001 vs. Sham groups; {{p,0.01 and {{{p,0.001 vs. WT AB group.
doi:10.1371/journal.pone.0018668.g004
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overload, without any significant changes in myocardial leukocyte

infiltration, may suggest a direct involvement of CXCL13/

CXCR5 activation in myocardial remodeling. The ability of

CXCL13 to attenuate MMP activity and increase SLRP

expression in myocardial fibroblasts as well as the up-regulation

of CXCR5 during AB in WT mice further supports such a notion.

Figure 5. Extracellular matrix remodeling in wild type (WT) and CXCR52/2 mice following aortic banding (AB). Collagen content in
myocardium examined with (A) Masson trichrome staining in representative sections from AB WT and CXCR52/2 mice and (B) by hydroxyproline
measurement in WT Sham (n = 13), CXCR52/2 Sham (n = 12), WT AB (n = 13) and CXCR52/2 AB (n = 14) groups. (C) Total MMP activity in percentage of
the WT Sham group (n = 11) measured in the CXCR52/2 Sham (n = 13), WT AB (n = 9), and CXCR52/2 AB groups (n = 9). (D) Gelatinolytic activity of
MMP-2 relative to the WT Sham group (n = 5) measured in the CXCR52/2 Sham (n = 5), WT AB (n = 5), and CXCR52/2 AB groups (n = 5) and of (E) MMP-
9 relative to the WT Sham group (n = 6) measured in the CXCR52/2 Sham (n = 6), WT AB (n = 8), and CXCR52/2 AB groups (n = 9). The results are mean
6 SEM. *p,0.05, **p,0.01 and ***p,0.001 vs. Sham groups; {p,0.05 and {{p,0.01 vs. WT AB groups.
doi:10.1371/journal.pone.0018668.g005
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Collagen synthesis, fibrillogenesis, and matrix degradation must

be finely tuned, as an imbalance in these processes might result in

cardiac dilatation, cardiac hypertrophy and fibrosis. Although we

observed increased total collagen content in CXCR52/2 mice,

these mice were also characterized by massively disturbed

structural frameworks after AB compared to WT. Our molecular

analysis suggested that this distorted ECM structure derives from a

failure in the regulation of SLRPs in pressure overloaded CXCR5-

deficient mice. SLRPs are known to bind to collagens, and in so

doing, regulate the self-assembly process of pro-collagen into fibrils

[33–35]. This assembly is necessary for covalent cross-linking

which is required for reinforcement of the collagen fibrils. SLRPs

have been shown to be up-regulated in the infarcted area in rats

and mice following myocardial infarction (MI) [47,48]. Studies in

SLRP deficient mice have shown abnormal fibril organization and

loose fibril packing in the MI scar [49,50]. In the current study we

show an attenuated up-regulation (i.e., decorin and lumican) and a

more pronounced decrease (i.e., fibromodulin) in SLRP expression

following AB in CXCR5 deficient mice as compared with WT

mice. Interestingly, enhanced MMP activity has been found to

impair SLRP function [44], and we suggest that the combination

of decreased SLRP expression and increased MMP activity could

be of major importance for the premature LV dilatation and HF

in CXCR52/2 mice following AB.

Our in vitro data suggest that CXCL13 via activation of CXCR5

on myocardial fibroblasts induces the expression of SLRPs

through the ERK1/2 pathway. This mechanism appears to be

absent in fibroblasts from CXCR52/2 mice. ERK is one of the

key protein kinases that regulate growth and proliferation of

cardiac fibroblasts [40]. In line with a crucial role of CXCL13/

CXCR5-mediated ERK1/2 activation for cardiac remodeling in

response to pressure overload, ERK1/2 phosphorylation was

substantially lower in CXCR52/2 mice compared to WT after

AB. These findings further support previous reports of a central

role of the ERK pathway for myocardial remodeling [51,52]. In

this regard, the present study adds a novel component to this

pathway by linking CXCR5-mediated effects to SLRPs and

subsequent ECM remodeling.

Our studies in patients with advanced HF suggest that our

findings in experimental HF may have relevance to clinical HF.

We showed enhanced myocardial expression of CXCR5 and

certain SLRPs (i.e., biglycan, lumican and fibromodulin) in the

failing myocardium, and notably, biglycan and lumican were

down-regulated following the clinical and hemodynamic improve-

ment during treatment with LV assist device. Based on our

experimental data, it is tempting to speculate that CXCR5

activation promotes protective responses in ECM in failing

myocardium involving enhanced expression of SLRPs. As

Figure 6. Protein levels of small leucine-rich repeat proteoglycans (SLRPs) and transmission electron microscopic analysis in wild
type (WT) and CXCR52/2 mice following aortic banding (AB). Protein levels of (A) decorin and (B) lumican in (WT) Sham (n = 7), CXCR52/2

Sham (n = 5), WT AB (n = 6), and CXCR52/2 AB (n = 5), and (C) fibromodulin in WT Sham (n = 13), CXCR52/2 Sham (n = 12), WT AB (n = 12), and
CXCR52/2 AB (n = 11) groups as assessed by western blotting. The upper panels show representative blots from two mice in each group.
1 Glycosylated forms of decorin and lumican, respectively. The results are mean 6 SEM. *p,0.05, **p,0.001 and ***p,0.001 vs. Sham groups;
{p,0.05 and {{p,0.01 vs. WT AB group. The lower panels show representative transmission electron micrographs of the LV free wall at 6440 and
623000 magnification in WT (D and F) and CXCR52/2 (E and G) AB mice.
doi:10.1371/journal.pone.0018668.g006
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myocardial function improves, this response is attenuated. At

present, however, the stimuli for enhanced myocardial CXCR5

expression in HF and the interpretation of our human data will

require further investigation.

In conclusion, we have found that CXCR5 plays an important

role in cardiac remodeling during pressure-overload. Loss of

CXCR5 in this situation adversely affects matrix remodeling and

causes LV dilatation, possibly through altered regulation of

proteoglycans crucial for the quality of myocardial ECM (i.e.,

SLRPs) as well as through enhanced MMP activity. These changes

could, at least in part, be attributed to loss of CXCL13 mediated

effects on myocardial fibroblasts in CXCR5 deficient mice. The

Figure 7. Effects of CXCL13 on gene expression of small leucine-rich repeat proteoglycans (SLRPs), total MMP activity and the
intracellular signalling pathway ERK 1/2 in neonatale rat fibroblasts (FB). The effect of CXCL13 (200 ng/ml) stimulation on gene expression
of (A) decorin, biglycan, lumican and fibromodulin (n = 4) in myocardial FB after 20 hours of stimulation in relation to GAPDH and (B) total MMP
activity in cell-free supernatant (n = 7) after 20 hours of stimulation. The ratio of phosphorylated ERK 1/2 (p-ERK 1/2) to total ERK 1/2 assessed by (C)
western blotting in WT Sham (n = 13), CXCR52/2 Sham (n = 12), WT AB (n = 11), and CXCR52/2 AB (n = 10) groups, and by (D) BioPlex in WT Sham
(n = 6), CXCR52/2 Sham (n = 5), WT AB (n = 7), and CXCR52/2 AB (n = 6) groups. (E) The effect of blocking ERK 1/2 activation with UO126 (10 mM) on
the CXCL13-mediated induction of fibromodulin gene expression in myocardial FB (n = 4). The results are mean 6 SEM. *p,0.05 and **p,0.01 vs.
unstimulated FB or CXCR52/2 Sham; {p,0.05 vs. WT AB group, {p,0.05 vs. CXCL13 stimulated FB without inhibitor (UO126).
doi:10.1371/journal.pone.0018668.g007
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identification of molecular and structural changes causing LV

dilatation during pressure overload is of major importance for the

development of new treatment strategies in HF related to

hypertension and aortic stenosis. Future studies should examine

how the CXCL13/CXCR5 dyad could be utilized therapeutically

in clinical HF.

Materials and Methods

Ethics
All animal experiments were approved by the Norwegian

Animal Research Committee (ID 1902) and conform to the Guide

for the Care and Use of Laboratory Animals published by the US

National Institutes of Health (NIH Publication No. 85–23, revised

1996). The part of the study that involved humans was approved

by the local ethics committee (REK Helse Sør-Øst) and conducted

according to the ethical guidelines outlined in the Declaration of

Helsinki for use of human tissue and subjects. Informed written

consent was obtained from all subjects. The authors had full access

to the data and take responsibility for its integrity. All authors have

read and agree to the manuscript as written.

Data analysis
All data are expressed as group means 6 SEM unless indicated

otherwise. For comparisons of 2 groups, the Mann-Whitney U test

was employed. The Wilcoxon test was employed when analysing

the effect of LVAD treatment. Differences between the WT Sham,

WT AB, CXCR52/2 Sham, and CXCR52/2 AB groups were

determined by one-way ANOVA with post-hoc Tukey test.

Differences in survival between wild type and CXCR52/2 mice

in Fig. 3 were compared using Kaplan- Meier survival curves and

tested with the log-rank test. All tests were employed using a 5%

significance level.

Animals and AB protocol
Mice were housed in M2 or M3 cages with Bee Kay bedding

(Scanbur BK, Nittedal, Norway) in 55% humidity on a 12 h light/

dark cycle. Food pellets (RM1, 801151, Scanbur BK) and water

were freely available. All mice utilized in this study were male and

had a weight 20–30 g. WT C57BL/6 mice were obtained from

Taconic (Skensved, Denmark). The generation of CXCR52/2

mice (C57BL/6 background, now accessible at the Jackson

Laboratory, stock number 006659, strain name B6.129S2 (Cg)-

Cxcr5tm1Lipp/J has been described previously [14]. Briefly, gene

targeting was performed in 129S2/SvPas-derived D3 embryonic

stem cells, replacing the coding region of the CXCR5 gene with a

neomycin resistance gene. Mutant mice were backcrossed to

C57BL/6 mice for 8 generations. AB was induced in C57BL/6

and CXCR52/2 mice as previously described [53]. Briefly, after

being anesthetized with 5% isoflurane and ,98% oxygen in a gas

chamber, the animals where endotracheal intubated and the

cannula was connected to a volume cycled rodent ventilator

(Harvard Apparatus) on supplement of a mixture of ,1.75%

isoflurane and ,98% oxygen. A thoracotomy was performed in

the second intercostal space on the left side, and the aortic

constriction was created by placing a ligature securely around the

ascending aorta and a 26-gauge needle and then removing the

needle. Sham operated animals underwent the same procedure

except for aortic constriction. The animals were extubated after

getting a dose of analgesic (buprenorphine, 0.1 mg/kg) subcuta-

Figure 8. Gene expression of CXCR5, biglycan, lumican and fibromodulin in patients with heart failure (HF) (n = 9) and controls
(n = 5) as assesssed by quantitaive real time PCR. In the HF patients, the mRNA levels were measured before and after treatment with
continuous-flow left ventricular assist device (LVAD).
doi:10.1371/journal.pone.0018668.g008
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neously and allowed to recover. Doppler echocardiography was

performed 21 days after primary surgery under general anaesthe-

sia with isoflurane as described above. This time point was selected

since previous studies in our laboratory have shown marked

hypertrophy in WT mice at this stage. AB mice in both groups

with a flow velocity across the aortic banding site greater than

3.5 m/s were included in the study. The same mice anesthetized

with isoflurane were euthanized by dislocation of the neck, and the

hearts and lungs were removed and blotted dry. The right

ventricle and atria were removed. The LV, right ventricular free

wall and lungs were weighed and normalized to tibial length.

Doppler Echocardiography
Mice were examined while sedated in the supine position with

the chest closed, as previously described [54]. Echocardiography

was performed using a i13L 13 MHz linear array transducer (GE

Healthcare Technologies, Oslo, Norway) and data were analyzed

with EchoPac PC software (GE Healthcare Technologies, Oslo,

Norway) as described [55]. The data were recorded and analyzed

by a cardiologist (IS), blinded for the genotype.

Isolation of adult myocardial murine cardiomyocytes,
fibroblasts and endothelial cells

Mouse cardiomyocytes were isolated as previously described

[56]. Endothelial cells were enriched from the non-cardiomyocyte

fraction by labeling the cells with a rat anti-mouse CD31 antibody

(eBioscience, San Diego, CA) and subsequent extraction using an

anti-rat secondary antibody coupled to magnetic beads (Miltenyi

Biotec, Auburn, CA) and further column purifications according

to the protocols provided by the manufacturer (http://www.

miltenyibiotec.com). The cell fraction remaining after extraction of

cardiomyocytes and endothelial cells contains predominantly

fibroblasts.

RNA isolation
Total RNA was isolated from the LV in WT and CXCR52/2

mice (SV total RNA isolation system, Promega, Inc., Madison,

WI), mouse and neonatal rat cardiomyocytes and fibroblasts, and

mouse endothelial cells (RNeasy mini kit, Qiagen, Valencia, CA)

as previously described [5].

Quantitative real-time PCR (qRT-PCR)
Reverse transcription reactions were performed with iScript

Select cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules,

CA). Pre-designed TaqMan assays (Applied Biosystems,

Foster City, CA) were used to determine gene expression

of CXCL13(Mm00444534_m1), CXCR5 (Mm00432086_m1),

ANP (Mm01255748_g1), BNP (Mm00435304_g1), b-MHC

(Mm01319006_g1), biglycan (Rn00567229_m1), fibromodlin

(Rn00589918_m1), lumican (Rn00579127_m1) and decorin

(Rn01503161_m1). The results were detected on an ABI PRISM

7900 Sequence Detection System (Applied Biosystems) as

described previously [5]. In the human studies, quantification of

gene expression was performed using the ABI Prism 7500 (Applied

Biosystems), Power SYBR Green Master Mix (Applied Biosys-

tems), and sequence-specific PCR primers were designed using the

Primer Express software, version 3.0 (Applied Biosystems). List of

the real-time PCR assays used in the human study is shown in

Table S2.

Perfusion fixation and histology
After the hearts were excised and rinsed in cold NaCl solution,

the aorta was cannulated, and the hearts were mounted on a

Langendorff setup, and retrogradely perfused with warm (37uC)

oxygenated Thyrodes solution (5 mM Hepes, pH 7.4, 140 mM

NaCl, 5.4 mM KCl, 0.4 MgH2PO4, 0.5 MgCL2) with 1.8 mM

Ca2+. Hearts were stopped in diastole by aortic perfusion of

Thyrodes solution with high KCl (10.8 mM) for 3 min and fixated

for 10 min by perfusion of 4% phosphate-buffered formalin. After

the cannulas were removed, fixation by immersion continued for

2 h. Each heart was transected at the midventricular level, and

both halves were routinely processed and embedded in paraffin.

Paired 3.5 mm sections were prepared, mounted on glass slides,

and stained with hematoxylin and eosin and Masson tricrome

stain.

Hydroxyproline analysis
Quantitative analysis of tissue levels of hydroxyproline was

performed by HPLC using the AccQ-Fluor reagent kit (Waters

Corporation, Milford, MA) essentially as previously described

[57]. Briefly, cardiac tissue samples (5 mg dry weight) were

hydrolyzed in 6 M HCl for 16 h at 110uC and subsequently dried

under vacuum and redissolved in the AccQ-Fluor borate buffer.

Derivatization was initiated by addition of the AccQ-Fluor reagent

at 55uC and terminated after 10 min. The samples were finally

subjected to HPLC-chromatography using a 2063.9 mm Sentry

Guard column (Nova-Pak C18 bonded silica) connected to a

15063.9 mm AccQ-Tag reversed-phase column (both from

Waters) according to the manufacturer’s instructions. Derivatized

hydroxyproline was detected by fluorescence signal following

excitation at 250 nm and recording of emission at 395 nm.

Elution of hydroxyproline from myocardial tissue samples was

verified and quantified by co-elution with known amounts of

derivatized hydroxyproline standards (Fluka, Buchs SG, Switzer-

land). The relation of myocardial hydroxyproline contents to

myocardial collagen has previously been reported [58].

Measurements of total MMP activity and gelatinolytic
activity

Total MMP activity in the LV was measured by a fluorogenic

peptide substrate (R&D Systems) used to assess broad-range MMP

activity (MMP-1, -2, -7, -8, -9, -12 and -13 can cleave the peptide).

Gelatinolytic activity was assessed by gelatine zymography. Briefly,

the MMP substrate was diluted in TCN buffer (50 mM Tris HCl,

150 mM NaCl, 10 mM CaCl2; pH 7.5) and added to the

supernatants before incubation at 37uC. After 120 min the total

MMP activity was determined on a fluorimeter (FLX 800 Microplate

Fluorescence Reader, Bio-Tek Instruments, Winooski, VT).

Gene expression profiling and microarray data analysis
Total RNA was isolated from the LV in Sham (n = 3) and AB

(n = 4) WT and CXCR5-/- mice as described previously [5].

Preparation of cRNA and the subsequent steps leading to

hybridization of Affymetrix GeneChipH mouse ST 1.0 arrays

(Affymetrix, Santa Clara, CA), washing, and scanning were

performed according to standard protocols (Affymetrix). Micro-

array preprocessing was done using robust multi-array average

[59]. Differentially expressed genes were found using significance

analysis of microarrays [60]. The seeded Bayesian network

method [32] was used to explore interactions between differen-

tially expressed genes. This method finds interactions in the

expression data using literature co-citations, databases of protein-

protein interactions, as well as co-regulations in the expression

data. We constructed two networks; one for the wild type situation,

using the 60 most differentially expressed genes between AB WT

and SHAM WT, and similarly one for the KO situation, using the
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60 most differentially expressed between CXCR52/2 AB and

Sham AB. The set of 60 genes were based on a ranking according

to fold change (AB vs. Sham) using a subset of the genes for which

false discovery rate was less than 0.05. All data is MIAME com-

pliant and the following link has been created to allow review of

the data in Gene Expression Omnibus (record GSE22295): http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=xdivnmkmeyeiifg&

acc=GSE22295

Western blotting
Western blotting was performed as previously described [61]

with minor modifications. Snap frozen left ventricles from WT and

CXCR52/2 mice were homogenized in cell lysis buffer and equal

amounts of protein being separated from each sample by SDS-

PAGE (10%) before transferred to polyvinylidene fluoride (PVDF)

membranes. Non-specific bindings to the membrane was blocked

with 5% BSA for 1 h at room temperature, followed by incubation

with anti-fibromodulin (SC-33772; Santa Cruz Biotechnology,

Inc., Santa Cruz, CA), anti-decorin (AF1060; R&D Systems,

Minneapolis, MN), anti-biglycan (AF2667; R&D) or anti-lumican

(AF2745; R&D) overnight at 4uC. The membranes were washed

in TBS-T and followed by species-specific horseradish peroxidase-

coupled secondary antibodies in 5% BSA added for 1 h. After

washing, the immune complexes were visualized by ECL (GE

Healthcare, Buckinghamshire, UK) and the membranes were

exposed to x-ray film (HyperfilmTM ECL, GE healthcare) and

developed. Immunoblots were stripped and re-probed with anti-

GAPDH (C20357; R&D) for normalization. Filters with LV lysate

were also probed with antibody against P-ERK1/2 (Phospho-p44/

42 MAP kinase (Thr 202/Tyr 204), Cell Signaling Technology,

Danvers, MA) or p44/42 MAP kinase (Cell Signaling Technology)

followed by species-specific horseradish peroxidase-coupled sec-

ondary antibodies (Cell Signaling). The immune complexes were

visualized with the use of Supersignal West Pico (Pierce, Rockford,

IL) and exposed films were detected by using Kodak 440 CF

imaging station (Boston, MA). The software Total Laboratory

v.1*10 (Phoretix, Newcastle, UK) was used for quantification.

Transmission electron microscopy
For transmission electron microscopy, hearts (n = 2) from each

group were perfused with 2.0% glutaraldehyde buffered in 0.2 M

cacodylate at pH 7.4 for 15 min. Small blocks (about 3 mm3 in

size) of the LV and septum were taken. The tissues were fixated in

cacodylate buffer for 2 h and washed in the same buffer 3 times.

The blocks of tissue were then transferred to a 1% OsO4 solution

for 10 min on ice. After washing in cacodylate, dehydration was

carried out rapidly in graded ethanol series, followed by

embedding in Epon. Sections were cut at a thickness of 60–

100 nm and collected on 200 mesh grids, and stained with uranyl

acetat for 7 minutes and lead for 3 minutes. The sections were

examined and photographed in a Tecnai G2 spirit BioTWIN

120 kV, LaB6, Transmission Electron Microscope with 4k Eagle

camera from FEI Company. We obtained micrographs of the LV

septum and the free wall at different magnifications.

TUNEL Staining
TUNEL staining was performed on paraffin-embedded sections

using the In Situ Cell Death Detection kit (Roche Diagnostics) as

described [62]. Briefly, paraffin-embedded (6 mm) sections of

mouse hearts were deparaffinized in xylene, rehydrated, and

treated with 0.5% Triton X-100 in 0.1% Na-citrate for 30 min.

After several washes with PBS, the sections were permeabilized

with proteinase K (20 mg/ml in TE, pH 8.0) for 30 min at 37uC.

Subsequently, the sections were rinsed with PBS, and the area

around the sample was dried. TUNEL reaction mixture (50 ml)

containing terminal deoxynucleotidyl transferase was applied and

tissue sections were incubated in a dark, humidified chamber for

1 h at 37uC. After several washes with PBS the tissue sections were

analyzed with a fluorescence microscope (515–565 nm). A

quantitative analysis (number of apoptotic cells/total number of

cells counted) was performed by counting cells in a randomly

selected area of each tissue sample.

Immunohistochemistry
Paired 3.5 mm sections were immunostained using affinity-

purified rabbit polyclonal CD3 antibody (Abcam, Cambridge,

U.K.), dilution 1:400, and anti-mouse/human CD45R (eBioscience,

San Diego, CA), dilution 1:4500. The immune reaction was

visualized using horseradish peroxidase in a Dako Autostainer plus

(Dako, Glostrup, Denmark). We obtained 32 digital images of evenly

distributed microscopic high power fields (6400) from the left

ventricular free wall and ventricular septum of six heart sections in

each group. The sections were from no less than three hearts in each

group. The 32 images from each heart were studied by two

investigators (AW and HMR), blinded for mouse identity, counting

the total number of CD3 and CD45R positive lymphocytes.

Isolation and stimulation of neonatal myocardial rat
fibroblasts

Primary neonatal fibroblasts were isolated from 1–3 day old

Wistar rats (Taconic, Skensved, Denmark). Briefly, fibroblasts

were separated by Percoll density gradient and transferred to

plating medium and maintained in culture for up to 96 hours. The

fibroblasts were stimulated with human recombinant CXCL13,

200 ng/ml (R&D Systems, Minneapolis, MN), with or without the

ERK1/2 inhibitor (10 mM final concentration UO126 (MEK

inhibitor, Promega, WI)), for 3 and 20 hours before storing cell

pellet (mRNA analyses) and cell-free supernatant (MMP activity)

at 280uC until further analyses. Un-stimulated (control) cells were

also given vehicle. The toxicity in cell cultures was examined

routinely for lactate dehydrogenase leakage using a cytotoxicity

detection kit (Roche Applied Science, Mannheim, Germany).

P-ERK1/2 (Phospho-p44/42 MAP kinase) and ERK1/2
(p44/42 MAP kinase) detection

Phospho-p44/42 MAP kinase and p44/42 MAP kinase levels in

left ventricle lysate were measured by multiplex suspension

array technology using the BioPlex (Bio-Rad, Hercules, CA).

Phospho-p44/42 MAP kinase and p44/42 MAP kinase multi-

plexable beads were purchased from R&D Systems. The quan-

tification was accomplished by using the BioPlex Manager

Software (Bio-Rad).

Tissue sampling from human myocardium
In nine patients with advanced HF (NYHA class IV; 8 male, 1

female; age 2965 years), LV tissue was available at the time of

implantation and at the time of removal (heart transplantation) of

a continuous-flow LV assist device (LVAD; EntrAssist, Ventracor

Ltd, Chatswood, Australia). Average time on LVAD was 861.7

months. Control (non-failing) human LV tissue was obtained from

subjects whose hearts were rejected as cardiac donors for surgical

reasons (n = 5). The cause of death of donors was cerebrovascular

accident, and none had a history of heart disease. Myocardium

from these subjects was kept on ice for 1 to 4 hours before tissue

sampling was conducted. In both failing and non-failing

myocardium, LV tissue samples were snap-frozen in liquid

nitrogen, and stored at 280uC until use. None of patients (failing
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and non-failing myocardium) had significant concomitant disease

such as infection, malignancy, or autoimmune disorder.

Supporting Information

Figure S1 Altered expression of markers of cardiac wall
stress and remodeling. Relative gene expression of (A) atrial

natriuretic peptide (ANP), (B) brain natriuretic peptide (BNP) and

(C) b-myosin heavy chain (MHC) in wild type (WT) Sham (n = 6),

CXCR5-/- Sham (n = 6), WT aorta banded (AB) (n = 6), and

CXCR5-/- AB (n = 6) groups. The results are mean 6 SEM.

*p,0.05 and ***p,0.001 vs. Sham groups; {p,0.05 and

{{{p ,0.001 vs. WT AB group.

(TIF)

Figure S2 Fluorescent micrographs of sections of left
ventricular myocardium from wild type (WT) and
CXCR5-/- mice. The arrows indicate TUNEL-positive myocyte

nucleus.

(TIF)

Figure S3 CD45 and CD3 positive lymphocytes in the
left ventricular myocardium from wild type (WT) and
CXCR5-/- mice. Total number of CD45R (A) and CD3 (B)

postive lymphocytes was not significantly different between

CXCR5-/- and WT mice after sham operation or AB. (n = 6

heart sections in all groups). Cells counted from 32 digital, evenly

distributed images (x400) from each heart.The results are mean 6

SEM.

(TIF)

Table S1 Weights and echocardiographic measure-
ments. Values are means 6 SE. BW, body weight; TL, tibia

length; LVW, left ventricular weight; LW, lung weight; IVSd and

IVSs, interventricular septum thickness in diastole and in systole,

respectively; LVDd and LVDs, left ventricular diameter in diastole

and in systole, respectively; FS, fractional shortening in LVD;

LVPWd and LVPWs, posterior wall thickness in diastole and in

systole, respectively; LAD, left atrial diameter; HR, heart rate;

AVmax, peak aortic stenosis flow velocity; TVs, peak tissue

velocity in systole; TVd, peak tissue velocity in diastole. LVW/TL

and LW/TL are mg/mm. * p,0.05, ** p,0.01, *** p,0.001 vs.

Non-operated and Sham groups. {p,0.05, {{, p ,0.01,

{{{p,0.001 vs. WT AB group. {p,0.05 vs CXCR5-/- Non-

operated group. The results are mean 6 SEM.

(DOC)

Table S2 Characteristics of the real-time PCR assays
used in the human study. The table shows the sequence of

primers used in the real-time PCR assays. (+), forward primers;

(–), reverse primers; Acc.nr, GenBank accession number; GAPDH,

glyceraldehyde 3-phosphate dehydrogenase.

(DOC)
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