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Abstract: Early detection of lung cancer has a higher likelihood of curative treatment and thus
improves survival rate. Low-dose computed tomography (LDCT) screening has been shown to
be effective for high-risk individuals in several clinical trials, but has high false positive rates.
To evaluate the risk of stage I lung cancer in the general population not limited to smokers, a retro-
spective study of 133 subjects was conducted in a medical center in Taiwan. Regularized regression
was used to build the risk prediction model by using LDCT and health examinations. The proposed
model selected seven variables related to nodule morphology, counts and location, and ten variables
related to blood tests and medical history, achieving an area under the curve (AUC) value of 0.93.
The higher the age, white blood cell count (WBC), blood urea nitrogen (BUN), diabetes, gout, chronic
obstructive pulmonary disease (COPD), other cancers, and the presence of spiculation, ground-glass
opacity (GGO), and part solid nodules, the higher the risk of lung cancer. Subjects with calcification,
solid nodules, nodules in the middle lobes, more nodules, and diseases related to thyroid, liver, and
digestive systems were at a lower risk. The selected variables did not indicate causation.

Keywords: regularized regression; risk prediction; stage I lung cancer

1. Introduction

The early symptoms of lung cancer are not obvious, and are easily confused with
a cold. Patients are usually diagnosed at an advanced stage when lung cancer is found.
According to GLOBOCAN 2020, an online database from the Global Cancer Observatory
(GCO) of the World Health Organization’s International Agency for Research on Cancer
(IARC), the mortality rate of lung cancer ranked first when both sexes were combined [1].
In 2020, lung cancer accounted for 18% of all cancer deaths worldwide [1]. It was the
leading cause of cancer death in men (mortality = 21.5%), second only to breast cancer
in women (mortality = 13.7%). In the same year, lung cancer was the most commonly
diagnosed cancer in men (incidence = 14.3%), and the third in women (incidence = 8.4%) [1].
The prognosis of lung cancer is poor. Based on the Surveillance, Epidemiology, and End
Results (SEER) Program’s Cancer Statistics Review, the 5-year relative survival rate of lung
cancer from 2011 through 2017 is 21.7% [2]. Early detection of lung cancer is a topic worthy
of further research.

Chest X-ray, computed tomography (CT), and low-dose CT (LDCT) are the most
common methods for screening lung cancer. However, these methods may overlook lung
cancer due to lesion size, conspicuity, and location [3]. For example, an observational cohort
study analyzed 40 instances collected between 1993 and 2001 by six thoracic radiologists
at three institutions in the United States [4]. The median diameter of non-small cell lung
cancer undetected on a chest X-ray was 1.9 cm. A side-by-side comparison between the
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chest X-ray and CT scans of missed lung lesions can provide radiologists with causal
information on failure detection to improve the interpretation of the plain X-ray [5]. On the
other hand, CT and LDCT were reported to be more sensitive to small nodules; the LDCT
was able to detect non-calcified lung nodules 10 times more often than the chest X-ray,
as studied in [6]. The National Lung Screening Trial (NLST) Research Team found that
high-risk participants who underwent LDCT had a 20% reduction in lung cancer mortality
compared to those who underwent a chest X-ray in [7]. The Dutch–Belgian NELSON
trial [8], the German Lung Cancer Screening Intervention (LUSI) trial [9], and the UK lung
cancer screening trial (UKLS) [10] also provided evidence of a mortality reduction by LDCT
screening in patients who smoked.

Despite the benefits of LDCT for the early detection of lung cancer pointed out
in [11,12], the issues of false positive, overdiagnosis, cost-effectiveness, and radiation
exposure of LDCT screening are still of concern [13–17]. The overdiagnosis problem from
LDCT may even cause stress and unnecessary treatments to patients [18]. Laboratory
tests are potentially to improve the risk assessment of CT screening [19]. This research
conducted a retrospective study that used LDCT and health examinations to evaluate the
risk of lung cancer.

Early detection and treatment are important to improve the survival rate of lung
cancer. This research aimed to construct a risk model of stage I lung cancer for the general
population, not limited to high-risk groups who smoke. Clinicians can assess the potential
malignancy of lung nodules based on their size, morphology, texture, shape, and distri-
bution by reading LDCT images in practice. However, LDCT images alone may not be
sufficient to identify lung cancer in certain circumstances. Considering that LDCT screening
is sensitive to detect small nodules but has a high false positive rate, this research used
LDCT and health examinations to contribute to the evidence base around overdiagnosis
that LDCT may cause. This retrospective study used smoking, the variables from physical
examination, personal and family history, routine blood testing, and the variables related
to nodule characteristics listed in LDCT reports to develop the risk model.

2. Materials and Methods

This research conducted a retrospective study on the medical records collected from
a medical center in Taiwan under the Institutional Review Board (IRB) regulation (No.
FEMH No: 107065-E). The IRB waived the requirement for informed consent. The research
design and methods combined clinical knowledge and statistical analysis. This research
used the LDCT and health examinations to predict the risk of stage I lung cancer. The
health examinations included physical examinations, smoking record, personal medical
history, family history, and routine blood tests. The analysis process contained four parts:
data collection, variable coding, significance tests, and risk model built (Figure 1). LDCT
can be used for lung cancer screening but not diagnosis. This retrospective study used
surgery results as the gold-standard for the diagnosis of stage I lung cancer.

In data collection, the inclusion criteria were to select subjects who had LDCT screen-
ing, health examinations, and pathological examination of lung cancer between 2007 and
2017 in the investigated medical center. The exclusion criterion was to exclude the minors
under 20 years of age. The data were collected by the first two authors (H.-T.C. and P.-H.W),
as the doctors specializing in thoracic medicine at the medical center. The patients who met
the selection criteria in the electronic medical record system were selected. The data were
de-identified before being passed to the research team for statistical analysis and risk model
built. All of the team members received IRB training. The study comprised 133 subjects,
97 in the cancer group and 36 in the non-cancer group. The numbers of the subjects in the
two groups were unequal, resulting in imbalanced data. The imbalance ratio of the cancer
group to the non-cancer group was 2.69:1. In practice, using LDCT images alone may not
be sufficient to determine whether a lung nodule is malignant or benign, especially when
the nodule size is small. This study focused on the patients who needed surgery results to
confirm tumor malignancy following LDCT detection of lung nodules. Therefore, there
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were more subjects in the cancer group than in the non-cancer group. Analyzing LDCT
images of patients diagnosed with lung cancer can provide clinicians with information on
lung cancer identification, thereby reducing unnecessary surgery.
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We investigated 40 variables from health examinations and LDCT reports as listed
in Tables 1 and 2. The binary variables with No/Yes were coded as 0/1; female/male as
0/1. The history of several diseases was investigated to study their potential relationship
with lung cancer. For example, the variable “COPD” was coded as 1 if any of the following
keywords were found in examination reports: chronic obstructive pulmonary disease
(COPD), chronic bronchitis, and emphysema. As for LDCT examination, this study used
important variables related to nodule counts, size, pattern, and location from the text report
provided by radiologists for analysis.

Table 1. The 26 investigated variables from health examinations, including physical examinations,
medical history, family history of lung cancer, and blood tests. Of these, 18 binary variables were
coded as 0/1 for No/Yes or female/male. The other eight continuous variables were from blood
test results.

Variable Coding Description

Gender 0/1 Female/male

Smoke 0/1 Non-smoking/smoking

PTB 0/1 Tuberculosis (TB), old TB, or tuberculous pleurisy

Lung radiation 0/1 Radiation exposure to lung

Asthma 0/1 Asthma record

COPD 0/1 Chronic obstructive pulmonary disease, chronic bronchitis,
or emphysema

Myoma 0/1 Myoma record

Diabetes 0/1 Diabetes record

Hypertension 0/1 Hypertension record
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Table 1. Cont.

Variable Coding Description

CVA 0/1 Cerebrovascular accident

Gout 0/1 Gout, hyperuricemia

Liver 0/1 Diseases related to liver

Cardiovascular
disease 0/1

Diseases related to heart or blood vessels, such as arrhythmia,
atrial fibrillation (AF), valvular cardiac valve disease,
peripheral arterial occlusive disease (PAOD), and
dyslipidemia, and hyperlipidemia.

Digestive system 0/1
Diseases related to digestive system, such as colorectal polyp,
gastric ulcer (GU), gastroesophageal reflux disease (GERD),
and anus polyp.

Urinary system 0/1
Diseases related to urinary system, such as penile tumors,
benign prostatic hyperplasia (BPH), ureteral stone, renal
stone, and nephrectomy.

Thyroid 0/1 Diseases related to thyroid, such as thyroid tumor,
hypothyroidism, thyroid nodule, thyroidectomy, and goiter.

Other cancer 0/1 Cancer record other than lung cancer

Family lung cancer 0/1 Family history of lung cancer

Age age at visit (years)

BMI Body mass index (BMI) (kg/m2)

BUN Blood urea nitrogen (BUN) (mg/dL)

Creatinine Creatinine (mg/dL)

ALT Alanine aminotransferase (ALT) (IU/L)

HGB Hemoglobin (HGB) (g/dL)

WBC White blood cell count (SBC) (103/µL)

Platelet Platelet (103/µL)

Table 2. The 14 investigated variables from LDCT text reports. Of these, 12 binary variables were
coded as 0/1 for No/Yes to describe the presence of nodule pattern, location, and lung condition.
The other two continuous variables were nodule count and size.

Variable Coding Description

Count Total nodule counts

Diameter The diameter of the maximum nodule (cm)

GGO 0/1 Presence of ground-glass opacity (GGO)

Solid 0/1 Presence of solid nodule

Part Solid 0/1 Presence of partial solid nodule

Upper 0/1 Presence of nodule at middle lobe

Middle 0/1 Presence of nodule at upper lobe

Lower 0/1 Presence of nodule at lower lobe

Spiculated 0/1 Presence of spiculation feature

Fibrotic 0/1 Presence of fibrotic pattern

Mosaic 0/1 Presence of mosaic pattern

Calcified 0/1 Presence of calcification pattern

Pneumothorax 0/1 Presence of pneumothorax

Pleural Effusion 0/1 Presence of pleural effusion
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This study performed statistical tests on the significance and independence of variables.
Before testing the difference of a continuous variable between the cancer and the non-cancer
groups, the Anderson–Darling (AD) test for normality was firstly applied. If data were
normally distributed, the t-test was applied to test the difference in mean. Otherwise, the
non-parametric rank sum test was applied to test the difference in median. As for assessing
the independence of a categorical variable on the variable of groups, the chi-squared test
was applied if the expected frequency of the cell in the contingency table was at least five.
Otherwise, since the approximation method of the chi-squared test was inappropriate, the
Fisher’s exact test was applied to test independence.

The risk model–built phase contained three steps: (1) data balancing, (2) regularized
regression, and (3) cross validation. In order to have a better overall prediction perfor-
mance in the two groups, this study used the synthetic minority over-sampling technique
(SMOTE) [20] to balance the sample size of the two groups before applying classifiers. The
SMOTE method firstly selects an instance in the minority class, and finds its k nearest
neighbors of the same class. Then, a synthetic instance is generated between the selected
instance and one of its k neighbors. To overcome the issues of multicollinearity among
predictor variables and model over-fitting, this research used the regularized regression
analysis to consider both model predictability and interpretability. To avoid obtaining
complex models, regularized regression shrinks the coefficient of insignificant variables
towards zero by assigning penalty to the magnitude of regression coefficients, as well as
the magnitude of error terms. This study compared three classical regularized regression
models, ridge regression [21], least absolute shrinkage and selection operator (Lasso) [22],
and elastic net [23] to build the prediction model of stage I lung cancer.

Lasso regression imposes an L1-penalty on the regression coefficient, which produces
a sparse model by forcing the coefficient of the insignificant variable to zero. The method
tends to select one significant variable from a group but skip the other correlated variables.
On the other hand, ridge regression imposes an L2-penalty, which makes the coefficients
of insignificant variables close to zero. Elastic net can be considered as the combination
of Lasso and ridge regression, which imposes both L1 and L2 penalties on the regression
coefficients. The objective function is

min
β0, β
−
[

1
n

n

∑
i=1

yi

(
β0 + xT

i β
)
− log

(
1 + e(β0+xT

i β)
)]

+ λ[(1− α)‖β‖2
2/2 + α‖β‖1] (1)

where the parameter λ adjusts the intensity of the penalty term; parameter α assigns
different weights to L1 and L2 penalties. Elastic net can simultaneously perform variable
selection and regularization. Correlated variables are selected in groups if significant by
using the method. The elastic net model reduces to Lasso when α = 1, and reduces to ridge
regression when α = 0.

3. Results
3.1. Summary Statistics

In this retrospective study, 133 subjects were selected according to the inclusion and
exclusion criteria from a medical center between 2007 and 2017 in Taiwan. During the time
period investigated, only two patients underwent two LDCT examinations. This study
selected their first examination results for analysis. One-time records were to avoid having
correlated data from multiple visits by the same subject. The count ratio of the cancer group
to the non-cancer groups was 2.7:1. The descriptive statistics and the statistical test results
are summarized in Tables 3 and 4.
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Table 3. The mean (standard deviation) of the continuous variables in the cancer and non-cancer
groups, and the p-values of testing the significance of the variables. Age, nodule count, and diameter
were found to be significant to lung cancer with p-values less than 0.05.

Variable Non-Cancer Cancer p-Value

Count 3.08 (2.50) 1.57 (1.39) 0.000
Diameter 1.48 (1.64) 1.67 (0.83) 0.003
Age a 56.58 (9.86) 61.33 (11.11) 0.026
BMI a 24.29 (3.28) 24.19 (3.24) 0.877
BUN 15.41 (4.85) 18.35 (10.36) 0.094
Creatinine 0.93 (0.79) 1.08 (1.50) 0.484
ALT 22.08 (8.92) 23.61 (18.11) 0.639
HGB a 13.32 (1.27) 13.29 (1.66) 0.926
WBC a 6.29 (1.50) 6.61 (1.90) 0.372
Platelet a 221.58 (47.05) 219.8 (50.95) 0.855

a Normally distributed variables by the AD test with p-value > 0.05.

Table 4. The proportion of the binary variables coded as 1 in the cancer and non-cancer groups, and
the p-values of the tests for independence. Among these binary variables, having diseases related
to the digestive system, nodules in the middle lobe, and spiculated nodules were significant to
lung cancer.

Variable Non-Cancer Cancer p-Value

Gender a

0.554Female 58.33 52.58
Male 41.67 47.42

Smoke a 33.33 31.96 0.880
PTB 0.00 6.19 0.190
Lung radiation 0.00 1.03 1.000
Asthma 2.78 2.06 1.000
COPD 8.33 16.49 0.278
Myoma 0.00 1.03 1.000
Diabetes 8.33 16.49 0.278
Hypertension a 27.78 38.14 0.266
CVA 0.00 3.09 0.563
Gout 0.00 3.09 0.563
Liver 5.56 1.03 0.178
Cardiovascular
disease a 22.22 17.53 0.538

Digestive System 11.11 1.03 0.019
Urinary System 8.33 12.37 0.759
Thyroid 11.11 4.12 0.211
Other Cancer 5.56 14.43 0.233
Family lung cancer 2.78 2.06 1.000
GGO a 27.78 32.99 0.566
Solid 91.67 76.29 0.052
Part Solid 2.78 11.34 0.179
Upper a 80.56 69.07 0.189
Middle a 30.56 9.28 0.002
Lower a 63.89 52.58 0.243
Spiculated 0.00 29.90 0.000
Fibrotic 11.11 15.46 0.781
Mosaic 2.78 1.03 0.470
Calcified 11.11 9.28 0.748
Pneumothorax 0.00 1.03 1.000
Pleural Effusion 2.78 6.19 0.674

a Chi-squared test was applied. Otherwise, Fisher’s exact test was applied.

Among the continuous variables, “Age”, “BMI”, “HGB”, “WBC”, and “Platelet” were
normally distributed by the AD test with p-values greater than 0.05. The t-test was then
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used to compare the difference of the two groups in mean for these five variables. On the
other hand, “Count”, “Diameter”, “BUN“, ”Creatinine”, and “ALT” were not normally
distributed by the AD test with p-values less than 0.05. The rank sum test was used to test
the difference in median. Among these ten continuous variables, only age (p-value = 0.026),
nodule counts (p-value = 0.000+) and diameter (p-value = 0.003) are significant variables to
lung cancer. The average age (61.33 vs. 56.58) and the median diameter of the maximum
nodule (1.67 vs. 1.48) of the cancer group were higher than that of the non-cancer group.
The results support that increasing age is a risk factor for lung cancer, and larger nodules
are more likely to be cancerous. The median nodule count of the cancer group was lower
than that of the non-cancer group (1.57 vs. 3.08). In the result of the routine blood tests, the
mean values of blood urea nitrogen, creatinine, alanine aminotransferase, and white blood
cell count of the cancer groups were slightly higher than those of the non-cancer group.
However, the differences were insignificant.

To test the independence of the variables on groups, the chi-square tests were per-
formed on the variables “Gender”, “Smoke”, “Hypertension”, “Cardiovascular Disease”,
“GGO”, “Upper”, “Middle”, and “Lower”; the Fisher’s exact tests were performed on the
rest of the 22 categorical variables. Among these categorical variables, only “Spiculated”
(p-value = 0.000+), “Middle” (p-value = 0.002), “Digestive System” (p-value = 0.019), and
“Solid” (p-value = 0.052) were dependent on the group with p-values below or around 0.05.
The results demonstrated that the LDCT report is informative to determining lung cancer,
especially the description of nodule counts, size, and morphology. The non-cancer group
had a higher percentage of solid nodules (91.67% vs. 76.29%) or nodules in the middle
lobe (30.56% vs. 9.28%) than in the cancer group. On the contrary, spiculated nodules
occurred only in the cancer group but not the non-cancer group (0% vs. 29.90%). There
were no significant differences between the two groups in the percentages of having a
family history of lung cancer and personal medical history. Notably, the non-cancer group
had a higher percentage of digested-related diseases, such as colorectal polyp, gastric ulcer
(GU), gastroesophageal reflux disease (GERD), and anus polyp, than the cancer group
(11.11% vs. 1.03%).

3.2. Model Evaluation

The analysis used the smotefamily and glmnet packages in the R language to perform
SMOTE and regularized regression. A total of 133 de-identified samples were split at a
ratio of 8:2, 106 training data and 27 test data. The analysis applied the SMOTE method
to balance the data counts between the cancer and non-cancer groups before constructing
the classification models. The cv.glmnet function was used to search for the optimal value
of λ in each fold based on the AUC criterion. The suggested model used 17 variables
where the AUC was maximized at λ = 0.037, that was ln λ = −3.306 (the left vertical-dotted
line in Figure 2). Although using more than 17 variables would increase the fraction of
deviance explained, the model would be over-fitting, which can be observed from the large
difference in coefficient values (Figure 3). Therefore, the proposed risk model selected
17 out of 40 variables.

The average prediction performance by using the three regularized regression models
were similar (Table 5). The best risk prediction model used seven variables from LDCT and
ten variables from health examinations to predict the probability of having stage I lung
cancer. The regression model is

ln odds = 2.685 × Spiculated + 1.122 × Part Solid + 0.476 × GGO − 0.114 × Count
− 0.153 × Solid − 0.324 × Calcified − 0.802 ×Middle + 0.997 × Diabetes
+ 0.383 × Gout + 0.321 × COPD + 0.249 × Other Cancer + 0.100 ×WBC
+ 0.016 × BUN + 0.002 × Age − 0.717 × Thyroid − 1.118 × Liver
− 1.733 × Digestive System

(2)
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Table 5. The prediction performance of the three regularized regression models. The best model that
had the highest AUC value was a Lasso model by using λ = 0.037 and α = 1.

Average of 5-Fold Cross Validation

Lasso Ridge Elastic Net Best Model
(α = 1, λ = 0.037)

Accuracy 0.72 0.73 0.73 0.89
Sensitivity 0.75 0.78 0.75 0.85
Specificity 0.64 0.58 0.67 1.00
Precision 0.84 0.83 0.86 1.00
F1-measure 0.79 0.80 0.80 0.92
G-mean 0.68 0.67 0.70 0.92
AUC 0.78 0.77 0.77 0.93

The AUC reached 0.93. The optimal parameter settings were λ = 0.037 and α = 1,
which was a Lasso model. Adding L1 penalty on the regression coefficients shrank the
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coefficients of the insignificant variables to zero. The best cut-off point was 0.478 where the
maximum value of Youden’s index was 0.9 (Figure 4).
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4. Discussion and Conclusions

Early detection is important to decrease the mortality rate of lung cancer. Although
LDCT is known to be sensitive to small nodules in the high-risk group, its false positive
rate is high. To effectively detect lung cancer in the early stage, this research used LDCT
and health examination data to predict stage I lung cancer. We used and compared the
prediction performance of three regularized regression models, Lasso, ridge regression,
and elastic net. The best model was the Lasso regression using 17 variables, which had an
AUC of 0.93, a sensitivity of 0.85, and an F1-measure of 0.92. Lasso regression can handle
multicollinearity and perform variable selection by shrinking insignificant coefficients to
zero, thereby improving model interpretability.

The result demonstrated that nodule features obtained from LDCT, blood test re-
sults, age and disease history were informative to assessing the risk of lung cancer. In the
proposed risk model, ten variables had positive coefficients (“Spiculated”, “Part Solid”,
“GGO”, “Diabetes”, “Gout”, “COPD”, “Other Cancers”, “WBC”, “BUN”, and “Age”) and
seven variables had negative coefficients (“Count”, “Solid”, “Calcified”, “Middle”, “Thy-
roid”, “Liver”, and “Digestive System”). The model exhibited that the morphology, texture,
appearance, and location of nodules were important to evaluate the risk of lung cancer. The
coefficient of the variable, “Spiculated“, was the largest in the model (2.685), suggesting
that nodules with spiculated borders were highly suspected of malignancy. The finding was
consistent with the results in [24]. In addition, the odds of stage I lung cancer were higher
in the presence of partial solid nodules or GGO, but lower in the presence of solid nodules
or calcification patterns. Similar findings were found in literature [25,26]. Nevertheless,
the benign and malignant patterns of calcification should be carefully differentiated, as
discussed in [27].

As for the selected variables collected from health examinations, age was known to
be the risk factor of lung cancer. In the proposed risk model, a positive coefficient (0.321)
for the variable “COPD” indicated a higher risk of lung cancer in the presence of COPD,
chronic bronchitis, or emphysema. The phenomenon may be due to smoking being one of
the major risk factors for COPD, thereby putting COPD patients at a higher risk of lung
cancer. In the study [28], the relative risk of lung cancer for subjects with a previous history
of COPD, chronic bronchitis, or emphysema was 2.22, compared with 1.22 for nonsmokers
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with these lung diseases. Diabetes (coefficient = 0.997) and gout (coefficient = 0.383) are
suspected risk factors of lung cancer as mentioned in [29–31], although their relationship is
not fully understood. This may be due to the fact that patients with diabetes or gout are
often associated with obesity and smoking, which are common factors of many cancers.
Notably, smoking was not selected in the prediction model. This may be due to the low
smoking prevalence in East Asia, especially in females. In the study [32], about one-third
of lung cancer patients in East Asia have never smoked. The characteristics of lung cancer
in smokers and nonsmokers are different. Frequent epidermal growth factor receptor
(EGFR) mutations were observed in the specimens of Asian patients with non-small-cell
lung cancer and nonsmokers [33,34].

This study investigated suspicious patients who required surgical confirmation after
undergoing LDCT. This was the group of patients whose lung cancers were difficult to
distinguish based on LDCT images alone. The findings of this study provided information
for evaluating the risk of stage I lung cancer. However, the limitations were the small
sample size and potential bias in the selection of subjects. In this study, several diseases
were selected as the predictors of lung cancer. However, the selected variables do not
necessarily have a causation with lung cancer. The association between these diseases and
lung cancer is worthy of further clinical study.
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