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Abstract: Neurodegenerative diseases are incurable, heterogeneous, and age-dependent disorders
that challenge modern medicine. A deeper understanding of the pathogenesis underlying neu-
rodegenerative diseases is necessary to solve the unmet need for new diagnostic biomarkers and
disease-modifying therapy and reduce these diseases’ burden. Specifically, post-translational mod-
ifications (PTMs) play a significant role in neurodegeneration. Due to its proximity to the brain
parenchyma, cerebrospinal fluid (CSF) has long been used as an indirect way to measure changes
in the brain. Mass spectrometry (MS) analysis in neurodegenerative diseases focusing on PTMs
and in the context of biomarker discovery has improved and opened venues for analyzing more
complex matrices such as brain tissue and blood. Notably, phosphorylated tau protein, truncated
α-synuclein, APP and TDP-43, and many other modifications were extensively characterized by
MS. Great potential is underlying specific pathological PTM-signatures for clinical application. This
review focuses on PTM-modified proteins involved in neurodegenerative diseases and highlights the
most important and recent breakthroughs in MS-based biomarker discovery.

Keywords: biomarkers; blood; brain; cerebrospinal fluid; crosstalk; mass spectrometry; neurodegenerative
diseases; post-translational modifications; proteoforms

1. Introduction

Neurodegenerative diseases are age-dependent disorders characterized by the pro-
gressive degeneration of neural cells, affecting nearly 57 million people worldwide and
10 million new cases every year [1]. These diseases impose substantial medical and pub-
lic health burdens [1]. They are increasingly prevalent and incidental, mainly due to
an increase in life expectancy, and are expected to increase dramatically in the near fu-
ture [1]. The etiological factors of these diseases are poorly understood and result from
genetic and environmental factors [2,3]. Mostly in high-income countries, diagnosis can
combine clinical examination, including neuropsychological testing, brain imaging (e.g.,
18F-fluorodeoxyglucose positron emission tomography (PET), magnetic resonance imaging,
and amyloid or tau PET) [4,5], and cerebrospinal fluid (CSF) biomarkers in the case of
Alzheimer’s disease (AD) [6]. Particularly, neuroimaging associated with CSF biomarkers
was introduced to increase the diagnostic accuracy of AD, especially at the early stage and
in the case of atypical clinical presentation [7]. Currently performed on CSF, most clinical
laboratory tests combine elevated levels of total and phosphorylated tau proteins (e.g.,
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pT181 and pT217) and reduced soluble amyloid-beta peptide (Aβ)42 levels or Aβ42/40
ratios allow distinguishing AD patients from non-AD individuals with a mean accuracy of
85–89% [8,9]. Such biomarkers are currently unavailable for non-AD neurodegenerative
diseases. Besides, no validated blood-, saliva- or urine-based biomarkers and no specific
therapy is currently available for clinical use in neurodegenerative diseases [4,5]. According
to the anatomical tropism of the neurodegenerative processes, i.e., the specifically affected
brain tissue areas, some of these diseases start with cognitive or behavioral impairments
(dementia), while others first begin with movement disorders, sensory-motor deficits, or
epilepsy [10–13]. The broad spectrum of primary neurodegenerative disorders mainly in-
cludes AD, frontotemporal lobar degeneration (FTLD), dementia with Lewy bodies (DLB),
Parkinson’s disease (PD), multiple system atrophy (MSA), progressive supranuclear palsy
(PSP), corticobasal degeneration (CBD), Creutzfeldt–Jakob disease (CJD), amyotrophic
lateral sclerosis (ALS), and Huntington’s disease (HD) [14]. There is a substantial overlap
in the clinical symptoms of these diseases, which complicates an effective and accurate
diagnosis, particularly in the early stages [4,15]. Besides, co-occurring pathologies are
frequent and further blur the clinical phenotype boundaries, representing a challenge for
identifying specific biomarkers [16].

While abnormal protein aggregates typically define neurodegenerative diseases, it is
unclear whether these abnormalities are driving the disease or are themselves consequences
of other underlying processes [17]. Several fundamental processes are associated with
progressive neuronal dysfunction and death, including abnormal protein dynamics, pro-
teotoxic stress, dysfunctions in the ubiquitin-proteasome and autophagosomal/lysosomal
systems, oxidative stress, programmed cell death, and neuroinflammation [18]. Abnormal
protein aggregates can take several histopathological forms in the brain tissue: neurofib-
rillary tangles, Pick’s bodies, tufted astrocytes, Lewy bodies, amyloid plaques, among
others [18]. For instance, AD is a dual proteinopathy characterized by accumulating tau
aggregates in neurofibrillary tangles and extracellular aggregates of Aβ plaques [19,20].
The aggregation of α-synuclein into Lewy bodies and neurites is characteristic of synu-
cleinopathies, including PD and DLB, while glial cytoplasmic inclusions of α-synuclein
in oligodendrocytes can occur in MSA [21,22]. The accumulation of tau 4R isoforms, i.e.,
isoforms that contain four carboxy-terminal repeat domains, in neuronal and glial cells is
the main characteristic of PSP and CBD. The transactive response DNA binding protein-43
(TDP-43) is the main component of intracellular ubiquitin inclusion bodies in pathological
deposits in ALS and FTLD [12,18]. Several challenges, including the complexity of protein
aggregation, misfolding, pathology propagation processes, and the immune response, need
to be explored for successful translational research on neurodegenerative disorders.

The discovery of biomarkers in neurodegenerative diseases remains an important
challenge in modern medicine [17]. An ideal biomarker should reflect pathological changes
in the brain with accurate performance, differentiating forms of neurodegenerative dis-
eases [23]. Currently, neurodegenerative disease research for biomarker discovery is
focused on: (1) early disease biomarkers, present in both brain tissue and biological fluids
(e.g., CSF and blood) [8,9,23–25]; (2) detection of molecular signatures, i.e., the combination
of proteins or proteoforms (more details about proteoforms can be found elsewhere [26]),
that correlate with the neuropathological processes or disease status (e.g., rate of pro-
gression, treatment response) [23,27–29]; and, (3) surrogate biomarkers for developing
disease-modifying therapies [30–34].

Mass spectrometry (MS) is characterized by high detection sensitivity, specificity,
and multiplexing capability for biomarker discovery and validation [35]. MS-based pro-
teomics has considerably extended our knowledge about the occurrence and dynamics
of protein post-translational modifications (PTMs). Profiling the main protein players of
neurodegeneration in the brain using MS can provide new insights into the role of aberrant
PTM patterns in the pathological process and identify signatures with potential diagnos-
tic or therapeutic relevance. This review focuses on recent developments in MS-based
analysis of PTM-modified proteins, emphasizing the most prevalent neurodegenerative
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diseases and providing an integrated perspective on the future directions in the biomarker
discovery field.

2. Mass Spectrometry for Neurobiomarker Discovery
2.1. Proteomics with Mass Spectrometry

Proteomics is a core technology in current post-genomic system biology approaches
to understand molecular mechanisms underlying normal and disease phenotypes. In its
present state, the current revolution in proteomics and systems biology relies on decades
of technological, conceptual, and instrumental developments for fast and sensitive new
analytical tools. A notable methodological advance was the discovery and development of
protein soft desorption ionization, as recognized by the 2002 Nobel Prize in Chemistry [36].
Accordingly, several high-throughput technologies have been developed to investigate
proteomes in depth. The most commonly applied are MS-based and gel-based techniques
(e.g., two-dimensional gel electrophoresis) [37,38].

Using MS instruments, proteins can be studied using a top-down approach by ana-
lyzing intact proteins or a bottom-up approach by measuring proteolytically generated
peptides. The bottom-up approach is the most mature and widely used proteomic approach
for protein identification, PTM discovery, and quantification. The MS-based proteomics
workflow consists of ionization of a molecule in an ionization source, such as electrospray
ionization (ESI) or matrix-assisted laser desorption ionization (MALDI), and separation
of the ionized species according to their mass-to-charge ratio in a mass analyzer (ion trap,
quadrupole, or high-resolution time-of-flight (TOF), and more recently Orbitrap mass
analyzers) [39]. Tandem mass spectrometers have the additional capability of selecting and
fragmenting a precursor ion to obtain structural information (MS/MS) [39]. This basic pro-
cess is the foundation for the three common variants of bottom-up proteomics workflows:
data-dependent acquisition (DDA), data-independent acquisition (DIA), and targeted data
acquisition (tMS2). In DDA, a defined number of precursor ions from the full scan are
selected based on their respective intensity or charge. In DIA, the full MS spectrum is ac-
quired, followed by a series of sequential MS/MS spectra of predefined isolation windows
that subdivide a larger m/z region (e.g., sequential window acquisition of all theoretical
fragment ions (SWATH)) [40]. In tMS2, a list of precursors is selected for fragmentation,
followed by the detection of a few (typically three product ions; selected/multiple reaction
monitoring (SRM/MRM)) or most (parallel reaction monitoring, PRM) major product
ions [41]. Fragmentation approaches within the MS include approaches relying on the colli-
sion of ions with inert gases (e.g., collision-induced dissociation (CID)) and higher energy
transfer methods (e.g., electron capture dissociation (ECD), electron-transfer dissociation
(ETD)) [42,43]. These fragmentation techniques have emerged to generate information-rich
spectra to identify and localize PTMs.

Quantitative MS-based methods to analyze protein abundance and PTMs have evolved
over the last 10–20 years of technological advancements in mass spectrometer design
and the development of various label-based and label-free-based methods to allow for
quantitative analysis to detect changes in protein abundance across multiple biological and
technical replicates. In-depth MS-based approaches, including both label (isotope-coded
affinity tag (ICAT), isobaric tagging for relative and absolute quantitation (iTRAQ), tandem
mass tags (TMT), stable isotopic labeling by amino acids in cell culture (SILAC), stable
isotope-labeled compounds (SILAM)), label-free (peptide spectral counts, extracted ion
intensity), and absolute quantification methods [44,45], are frequently being applied to
neuroscience. One of the deepest human-brain proteomes was generated by a quantitative
proteomic analysis of 80 post-mortem human brain tissues through tandem mass tag
(TMT) isobaric labeling and synchronous precursor selection-based MS3 (SPS-MS3, widely
accepted for improved multiplex quantitation accuracy) on an Orbitrap Fusion Tribrid
mass spectrometer [30]. Tissues being studied were from two brain regions (frontal cortex
and anterior cingulate gyrus) of AD, PD, co-morbid AD/PD, and healthy controls. This
study identified 11,840 protein groups representing 10,230 coding gene products, which
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map to ~65% of the protein-coding genes in the brain when overlapped with available
brain-specific (cerebral cortex) RNA-seq data [30].

Today, proteomics remains a multidimensional, rapidly evolving, and open-ended
endeavor. Proteomic datasets are beginning to challenge the depth and breadth of transcrip-
tomic datasets, thanks to advances in multiplex labeling technologies, offline fractionation,
and high-resolution MS [30,46]. Apart from differential protein expression, MS-based pro-
teomics can be combined with up-front enrichment of organelles or other cell compartments
or immunoprecipitation of one or more proteins of interest [47]. For example, MS-based
workflows can be coupled with laser capture microdissection (LCM), magnetic-activated
cell sorting, or fluorescence-activated cell sorting (FACS) for obtaining subpopulations of
cells (or very small regions of interest in the case of LCM) [48]. These approaches are very
powerful but underused [48]. Similarly, an enrichment step for peptides bearing specific
PTMs allows for system-wide analysis of these modifications, with phosphoproteomics
being a good example [49]. Of course, MS-based proteomics is only made possible by the
availability and development of gene and genome sequence databases and bioinformatic
tools [50].

2.2. Determination of Post-Translational Modifications Using Mass Spectrometry

Post-translational modifications of proteins modulate their molecular function and the
spatial-temporal distribution in cells and tissues [42]. Specifically, protein modifications
comprise essential mechanisms that eukaryotic cells use to diversify their protein functions
and dynamically coordinate their signaling networks. A large class of PTMs is represented
by chemical moieties covalently attached to proteins by various enzymes. These PTMs
include phosphorylation (+79.966 Da), acetylation (+42.010 Da), methylation (+14.016 Da),
ubiquitination (+383.228 Da), sulfation (+79.957 Da), SUMOylation (+600.250 Da and
+599.266 Da), or glycosylation (>203 Da) (a more comprehensive list of PTMs can be found
elsewhere [50–53]). Proteins can also be subject to proteolytic cleavage(s), de. PTMs
reversibly or irreversibly alter the structure and properties of proteins through biochemical
reactions. As many as 300 PTMs of proteins are known to occur physiologically [39,52].

Interestingly, a protein sequence can have many different modifiable amino acids, but
not all will be modified simultaneously or within the same copy of that protein. Competition
can exist within a specific residue between various modifications [54]. Overall, intra- and
inter-protein PTM crosstalks provide the necessary nano-switches and recognition motifs
for the rapid cell implementation of signaling networks. Precisely, the fundamental role of
PTMs as nano-switches of cellular homeostasis controls the flow of information through
a particular protein, helping to shape dynamic biological processes, including genetic
silencing, cellular growth, differentiation, and apoptosis. Therefore, they act both as drivers
and markers for pathogenesis and, thus, aberrant PTM patterns have been associated
with numerous diseases such as cancer [55], diabetes [56], and autoimmunity [57]. So, as
analytical approaches for mapping and quantifying PTMs have undergone impressive
progress and are now routinely analyzed (e.g., CSF phosphorylated tau for AD diagnosis),
much biomedical research on understanding the role of PTMs in cellular communications
has been conducted [42,58]. For example, global changes in histone PTM abundances are
quantifiable with nearly routine proteomics analyses, and it is now possible to determine
combinatorial patterns of modifications [58].

Determination of PTM profiles of proteins is fundamental in elucidating the intricate
processes that govern cellular events under normal and pathological conditions. Still, many
PTMs lack a clear understanding of their regulation or role in biology. Conventionally,
PTM-modified amino acids have been identified by Edman degradation (but PTMs can
be unstable under this technique, e.g., phosphorylation), amino acid analysis, isotopic
labeling, or immunochemistry. Traditional protein-detection methods such as enzyme-
linked immunosorbent assay (ELISA) and western blots are essential in PTMs identification
and/or quantification. Nevertheless, the disadvantages of conventional protein-detection
methods include: (1) antibodies can be non-specific, with possible cross-reactions, and
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expensive, mainly when complex matrices are analyzed; and (2) antibody-based methods
rely on antibody availability and capacity to downscale to the trace level of the modified
peptide. On the other hand, standard mass spectrometers have high speed (scan rate
>10 Hz), high resolution (>60,000 resolving power), capacity to identify and quantify PTMs
(simultaneously and with information about PTM site localization) in complex mixtures of
proteins, and the ability to discover novel PTMs. In addition, the possibility to combine MS
acquisition with online nano-liquid chromatography, which led to highly sensitive analyses
(<fmol), has made MS the technique of choice for PTMs discovery and quantification [59].

Although mass spectrometers have experienced a rapid advance in past decades,
mapping of PTMs in proteomics using MS is a demanding task because most PTMs are:
(i) low abundant; (ii) substoichiometric; (iii) labile during MS and MS/MS analysis; (iv)
variable according to peptide hydrophobicity, which complicates PTM sample handling and
purification before MS; (v) may affect the cleavage efficiency of proteases, such as trypsin,
to generate miscleaved or large peptide products; (vi) may reduce the ionization and
detection efficiency (and therefore the sensitivity); and, (vii) multisite PTMs may generate
very complicated MS and MS/MS data sets that are difficult to interpret. PTM analysis
from complex protein digests in a standard LC-MS/MS analysis requires highly specialized
and sensitive PTM-specific enrichment methods. Peptides must be specifically enriched
to deal with the coexistence of a large number of unmodified peptides, which severely
suppresses the detection of PTM peptides to achieve large-scale analysis. Numerous PTMs
currently lack or have inadequate platforms for selective enrichment, making proteomic
studies rely on fractionation to identify the PTM of interest. Nevertheless, very well
implemented methods exist for the enrichment of the most common PTMs, including
immunoprecipitation, affinity chromatography (e.g., titanium dioxide (TiO2), immobilized
metal affinity chromatography (IMAC), lectins), and chemical derivatization [60]. With the
ongoing advances in instrumentation, methods, and bioinformatics, the number of known
PTMs is likely to increase.

2.3. PTM-Focused Neuroproteomics: Relevance and Challenges

Neuroproteomics has focused on understanding protein-driven molecular mecha-
nisms during a disease by studying proteins that can be used as novel biomarkers to
facilitate diagnosis, monitoring, and prognosis [61]. For instance, it is known that changes
in protein abundance, protein turnover, and protein function (as also in PTMs) can lead
to local changes in neuronal function [61,62]. Since most neurodegenerative disorders
have specific neuroanatomical tropism, neuroproteomics of the affected tissue and its
surroundings during disease development is critical for understanding the complexity of
these diseases.

More than two decades have gone by since the most commonly used ELISA methods,
the INNOTEST assays, for quantification of total tau (T-tau), phosphorylated tau (P-tau),
and Aβ42 in CSF were published [63–65], showing increased levels of T-tau and P-tau
together with decreased Aβ42, a biomarker pattern often called the “Alzheimer’s CSF
profile”. Since then, the neuroproteomics field has been rapidly evolving due to improved
sample preparation protocols, modification-specific enrichment techniques, proper LC-
MS/MS approaches, and PTM-specific data analysis [62]. There has been a significant
move from the use of two-dimensional electrophoresis and traditional immunoassays,
which might lack sensitivity and specificity, to a larger scale and more in-depth MS-based
neuroproteomics studies over the last few years. In MS-based studies, several complex
samples of different sources, including brain compartment tissues (post-mortem), brain
biopsies, or other body fluids (e.g., blood, plasma, CSF) from patients with different
neurological diseases, have been analyzed. Notably, it is interesting to explore other
biological sources beyond brain tissue in the biomarker discovery field, as brain tissue
implies brain biopsy, which, contrary to brain tumors, is not part of the standard procedure
for diagnosing and managing neurodegenerative diseases. However, post-mortem brain
tissue samples can serve as a good starting point for identifying new potential biomarkers.
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Performing untargeted MS proteomics in tissue, followed by confirmation and validation
in a body fluid by targeted MS combined with prior enrichment, is a common approach to
identify low abundant proteoforms released from the brain. The sample preparation process
should account for the heterogeneity of clinical matrices due to the central nervous system’s
complex cellular and subcellular architecture and the clinicopathological mechanisms [43].
Postmortem-induced PTM changes such as phosphatase activation can also occur [66], and
these mechanisms are likely to strongly modify the relative proportions of some PTMs to
others [67]. Therefore, it is important to consider that some PTMs can be lost or degraded
during extraction, fixation (if performed), storage, and analysis. In addition, as discussed
before, the complexity of the brain, plasma, or CSF matrices can be reduced by using
adequate platforms for selective enrichment, mainly if the analysis is focused on PTMs.

Research has demonstrated the possible involvement of aberrant PTMs in disordered
or “alternatively folded” proteins that tend to be more vulnerable to aggregation in neu-
rodegenerative diseases [68,69]. Specific PTMs such as phosphorylation, ubiquitination,
GlcNAcylation, and nitrosylation can cause alterations in different biological processes
such as autophagy and mitophagy, cell-cycle dysregulation, inflammatory response, and
mitochondrial dysfunction, which leads to synaptic dysfunction and cognitive disability
and ultimately causes neuronal cell death [69]. However, the complete understanding of
the role of PTMs in the pathological processes is still impacted by several limitations in
the methodology, which is biased toward the peptides of highest intensity and narrowed
by accurate site identification of labile PTMs, mostly in complex proteins. To overcome
these challenges, analytical methods such as full-length expressed stable isotope-labeled
tau (FLEXItau, a mass spectrometry-based assay for tau PTMs quantification) have been
recently applied for an unbiased and quantitative analysis of tau PTMs [70,71]. The study
identified 95 PTMs on tau isolated from post-mortem brains of AD patients and highlighted
the impact of abnormal PTMs on tau aggregation [70].

In summary, considering the poorly understood molecular mechanisms of most brain
disorders, the use of neuroproteomics combined with PTM analysis and neuropathology
is essential. In that regard, LC-MS/MS approaches offer the opportunity to improve our
understanding of the complexity of the underlying biological and molecular pathways that
lead to protein deposits in the brain in different neurodegenerative diseases.

3. PTM-Proteomic Profiling in Neurodegenerative Diseases by MS
3.1. High-Throughput Profiling of Brain PTMs

The measure of the dynamics of the PTM-modified proteome of the brain with high
throughput and in-depth coverage MS-based approaches was performed mainly for phos-
phorylation, ubiquitination, and glycosylation in AD. PTM-profiling the brain tissue us-
ing high-throughput MS can substantially provide new insights into the role of aber-
rant PTM patterns in human disease and identify signatures with potential diagnostic or
therapeutic relevance.

3.1.1. Phosphorylation

The precise consequences of protein phosphorylation in the biology and pathogenesis
of neurodegenerative diseases, including the mechanisms governing protein misfolding
and aggregation, are still unknown. Several studies conducted a global quantitative analysis
of the human brain proteome and phosphoproteome in neurodegenerative diseases to
elucidate the complexity of these diseases and distinguish them. A phosphoproteome
study used a multiplex TMT MS-based approach to quantify the total proteome and
phosphoproteome of 27 human post-mortem cortical cases across pathology-free controls,
asymptomatic and symptomatic AD patients [31]. They quantified 11,378 unique protein
groups and IMAC-enriched 51,736 phosphopeptides. Phosphopeptides were enriched
in the IMAC proteome (71%) compared with the total proteome (1.7%). As a measure
of quality, they confirmed the presence of increased amyloid-beta and tau levels (the
core pathological hallmarks of AD) [31]. Specifically, two peptides of Aβ42 (APP695
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region 597–638, peptide 6–16 and peptide 17–28) and tau phosphopeptides (pS191, pT217,
pT231, pS262, pS262/T263, and pS289) showed significant increases in asymptomatic AD
and AD groups compared with control samples [31]. This comprehensive data on the
phosphoproteome of the human brain in AD is valuable for biomarker validation studies.

3.1.2. Ubiquitination

Ubiquitination occurring in proteinopathies is directly or indirectly involved in the
impairment of the processing of misfolded material, which is linked with protein aggre-
gation [72,73]. Namely, several neurodegenerative diseases, including AD, FTLD, PD,
HD, and CBD, have distinct ubiquitin-positive pathological protein aggregates [73–75].
Mapping ubiquitin sites by MS relies on identifying the last two remnant glycine residues
(di-Gly, +114.043 Da) of ubiquitin on lysine residues following trypsin digestion [76,77].
Of note, the identification of ubiquitin substrates using MS is challenging due to the low
stoichiometry of ubiquitin-modified peptides in complex protein extracts such as brain
homogenate [78,79]. Label-free MS-based proteomic analysis identified 4291 unique ubiq-
uitination sites mapping to 1682 unique proteins in human post-mortem brain tissue. By
immunoaffinity enrichment of di-Gly isopeptides, over 800 ubiquitination sites were dif-
ferent between AD and control cases [32]. Eighty percent of them are increased in AD,
including seven polyubiquitin linkages, consistent with the observed proteolytic stress and
high burden of ubiquitinated pathological aggregates. Overall, these findings demonstrate
the value of using MS to map ubiquitinated substrates in the human brain of patients with
neurodegenerative diseases [32].

3.1.3. Glycosylation

Glycosylation alterations may play critical roles in the disease processes of neurode-
generative diseases [80]. So far, little is known about the role of the altered glycome in
the neurodegenerative process. A comprehensive study of the N-glycome in the brain
dorsolateral prefrontal cortex using MALDI-TOF MS enabled the identification of 141 corti-
cal N-glycans that were predominantly sialylated or fucosylated in AD [33]. LC-MS/MS
also demonstrated that monosialylated, fucosylated, and bisecting N-acetylglucosamine
N-glycans (often called brain-type N-glycans, which are located mainly on some specific
CSF proteins [81]) were present in AD brains but not in healthy controls [82]. In both control
and AD brains, eleven N-glycans had significantly different levels in the hippocampus
compared to the cortex [82]. A glycomic study was carried out in CSF samples from eight
patients with AD and eight controls, where the N-glycans were released, permethylated,
and analyzed using an online reverse-phase purification system connected to an LC-LTQ
Orbitrap Velos mass spectrometer [83]. A higher expression of bisecting GlcNAc and
fucosylated glycans was observed in females with AD (but not males) than in controls,
while high mannose structures were underexpressed [83].

Concerning glycoproteomics, a large-scale intact N-glycoproteomic approach com-
bining enrichment by hydrophilic interaction chromatography (HILIC) and boronic acid
with electron transfer and higher-energy collision dissociation (EThcD) was recently con-
ducted for CSF of patients with AD [84]. A total of 2893 intact N-glycopeptides (285 N-
glycoproteins) were identified, and altered glycosylation patterns in AD (e.g., decreased fu-
cosylation) were detected for several N-glycoproteins including alpha-1-antichymotrypsin,
ephrin-A3, and carnosinase CN1 [84].

Overall, advances should thus be made to identify modified glycans and glycoproteins
involved in the neurodegenerative processes, focusing on brain tissue and biofluids (CSF
and serum) to understand their role in this context [80]. These may serve as important
targets and may eventually lead to the molecular elucidation of the role of glycosylation in
disease mechanism and progression.
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3.2. Profiling the Main Players in Neurodegeneration

Profiling the PTM-modified proteins from the neuropathological hallmark aggregates,
including tau, α-synuclein, amyloid-beta, and TDP-43, has been performed in different
biological milieus using MS. A summary of the main findings of PTM localization sites
identified by MS is found in Figure 1. An overview of the relevant PTMs identified by
MS with potential for diagnosis or detection of disease progression in neurodegenerative
diseases is illustrated in Figure 2.
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Figure 2. Relevant PTMs identified by mass spectrometry as being preferentially modified in the
brain tissues, CSF, and blood/serum in neurodegenerative diseases, with potential use as biomarkers.
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ubiquitination [24,31,34,67,70,85–98] (These references are cited in the figure).

3.2.1. Tau Protein

Phosphorylation of the microtubule-associated protein tau is one of the most impor-
tant PTM for axonal stabilization and regulation [99]. Still, abnormally phosphorylated
tau (P-tau, phosphorylated at non-physiological sites) appears to lead to neurofibrillary
tangles (NFTs) that no longer stabilize microtubules [100]. Numerous research, including
large-scale studies [31], have consistently reported that tau levels (total tau and hyperphos-
phorylated tau) are prominently increased in the AD brain tissues [67,101], CSF [102], and
plasma [85]. Total tau is linked to the severity of neurodegeneration, whereas phosphory-
lated tau reflects specific AD pathological changes in the neurofibrillary system [103]. Tau
hyperphosphorylation seems to be required but is insufficient to induce tau aggregation;
other less investigated tau PTMs are certainly involved [104,105]. For example, several
other PTMs, including ubiquitination and methylation, influence tau filament structure by
contributing to the structural diversity of tauopathy strains [86] and may play an important
role in tau localization and protein–protein interactions [106]. Analysis and quantification
of tau PTMs in the brain and biofluids by MS is mainly focused on AD and CBD and is still
missing for the other neurodegenerative diseases.

Brain tissues. Brain soluble tau phosphorylation sites are mainly localized at the
C-terminus, at proline-rich mid-domain, and a cluster on the N-terminal projection do-
main [67]. Tau’s longest isoform (2N4R, 441 aa) has 85 potential phosphorylation sites, and
almost 20 residues were found to undergo phosphorylation in the healthy brain [107]. In
brain tissues from seven patients with advanced sporadic AD, LC-MS identified 542 proteins
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in NFTs and tau in all seven cases [34]. Tau was phosphorylated on 23 different residues,
and the most abundant tau phosphosite was pS396 [34]. Other studies published before the
year 2000 report various tau phosphorylation sites in AD after enrichment with monoclonal
antibodies against tau and MS analysis [107–109]. Recently, Barthélemy et al. [67] increased
the number of known tau phosphorylated sites to 29, identified pS404 as the most abundant
species in the brain, and 12 of these phosphopeptides were common to CSF in AD by an in-
depth targeted MS (PRM) analysis, independently of tau concentration. Phosphorylation of
some particular sites was exacerbated (or specifically detected in AD) compared to controls,
supporting the hypothesis that tau phosphorylation could be a physiological process ampli-
fied by AD pathology [67]. Tau phosphopeptides pS191, pT217, pT231, pS262, pS262/T263,
and pS289 showed a significant increase in AD compared with control samples [31]. Using
an exploratory IP-MS approach, tau phosphorylation on brain soluble fraction was shown
to reflect CSF, with pT181, pT217, and pT231 among the most prominent species identified
in AD [110]. A doubly-phosphorylated tryptic peptide (pT231 + pS235) specific of AD
brain was identified in higher amounts than the monophosphorylated (pT231) counter-
part [110]. Using sarkosyl-insoluble samples, Wesseling et al. [70] performed a quantitative
and qualitative tau protein profiling (FLEXITau and Q-Exactive MS) of 29 AD patients and
28 matched control individuals. The study demonstrated that the abundance of insoluble
tau is higher in AD than in healthy controls, with pathogenic tau aggregates predominately
composed of the 0N, 1N, and 4R isoforms. The most relevant phosphosites specific to AD
were pS199, pS202, and pT205 [70]. The total number of phosphorylated residues identified
by all methods in normal or AD/CBD human brain tissue stands at 56, representing well
over half of all hydroxyl amino acids in tau [70] (Figure 1A).

Tau acetylation (identified on 21 lysines) directly contributes to the accumulation
of phosphorylated tau, affecting tau turnover in CBD and AD [70,86,111] (Figure 1A).
Acetylation at K281, K331, K343, and K353 of tau fibrils from CBD patients’ brains and
at K298, K311, K331, K343, K353, and K369 from AD patients was described thanks to
Orbitrap MS [86]. Within the tau proline-rich domain, K163, K174, and/or, K180 have been
reported as acetylation sites by immunoprecipitation and MALDI-TOF MS, with occupancy
detectable in a normal brain and increasing with Braak stage in AD brain [112].

Tau has the highest number of ubiquitination sites (17 sites) per any protein in AD,
as identified by Orbitrap MS [32,70,101]. Tau is almost exclusively ubiquitinated and
acetylated in the tandem repeats R1-R4 and K369-E380 of sarkosyl-insoluble fractions from
CBD and AD post-mortem tissue [86]. Within these regions, ubiquitination can also occur
at different sites of tau for AD (K254, K259, K267, K311, K317, K321) and CBD (K254,
K343, K369, K375) [86] (Figure 1A). Recently, a structure-based model in which specific
ubiquitination of tau influences the resulting filamentary structure was built by combining
results from LC-MS analysis and cryo-electron microscopy observations using CBD patients’
brains [86].

Tau methylation is a relatively recent discovery with several lysine residues being
methylated in AD patient brains (4 sites: K67, K87, R406, K438) [70,113] and CBD (2 sites:
K132, R349) [86], as shown by Orbitrap MS (Figure 1A). Interestingly, tau methylation
appeared distributed among at least 11 sites, in the form of mono- and dimethyl lysine
residues, primarily focused on the microtubule-binding repeat region, in four cognitively
normal human brains using Orbitrap MS [114].

High mannose-type sugar chains and truncated N-glycans were found on tau in
addition to a small amount of sialylated bi- and tri-antennary sugar chains. Truncated
glycans were found richer in AD paired helical filaments (PHF)-tau than in AD cytoso-
lic phosphorylated tau, which has been suspected of promoting the assembly and/or
the stability of the pathological fibrils in AD [87]. In addition, tau can be glycosylated
by O-GlcNAc (Figure 1A), which is inversely proportional to the amount of phosphory-
lation [115,116] and responsible for slowing down neurodegeneration and preventing
aggregation [117]. Confirmation of these observations requires further investigation of the
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relative abundance of tau PTMs and isoforms in the brain, then in CSF, and ideally plasma,
for biomarker discovery.

CSF. Quantitative high-resolution MS/MS strategies, including PRM, have given
new insights into tau metabolism and truncation [118,119]. Specifically, these highlight
differences in the relative abundance of PTMs between the brain and CSF tau of AD
patients, notably, differences in truncations of the C-terminus [119] and opposite trends
in phosphorylation rate depending on the sites. A recent publication also identified site-
specific phosphorylation changes in CSF along with the AD progression, particularly a
reversal of pT181 at the onset of cognitive decline, which suggests sequestration in the brain
of specific tau species [88]. These recent observations raised the question of the relationship
between CSF and brain tau. In the CSF, detection of soluble pT181, pT217, and truncated
tau forms (e.g., Tau368) have been investigated for differential diagnosis and distinguish
AD from other dementias using an Orbitrap MS [24,88]. The release of pT217 from the
brain to CSF was linked to increased phosphorylation in AD. CSF pT217 was more accurate
in detecting the presence of amyloid plaques (identified by PET) than other sites, such as
pT181 [24,120] and pT205 [88]. Remarkably, increased CSF levels of pT217 are closely related
to amyloid plaques at the asymptomatic stage [121]. Phosphorylation occupancy on pT217
is also lower intracellularly in the brain than extracellularly in CSF [67]. Phosphorylation
on pT205 and pS208 was detected in the CSF but not in the brain from healthy controls [67].
Interestingly, the benefit of combining tau and α-synuclein for differentiation of DLB, AD,
and controls was recently suggested [122].

Blood/Serum. Brain and CSF proteins are transferred to the blood through the blood-
brain barrier, arachnoid granulations, and the glymphatic system [123]. Different studies
have demonstrated that disease-associated protein alterations in the brain can be detected
in the blood. A similar tau C-terminal truncation pattern in plasma compared to CSF was
reported, with 15 tau peptides from residues 6–254 being detected, including 0N, 1N, 2N,
and 3R-specific peptides using Orbitrap MS [85,118,119,124]. An inferred abundance of
0N/1N/2N peptides indicated similar contributions to previous reports in the brain and
CSF (∼5/5/1) [119]. pT217 and pT181 in plasma were highly specific for amyloid plaque
pathology [85]. However, there is strong evidence of a non-brain peripheral contribution of
tau in plasma, with a different phosphorylation profile than CSF [89]. Findings support
blood phosphorylated tau isoforms (pT181, pT217, and pT231) as potentially helpful in
detecting AD pathology, staging the disease, and diagnosis [89].

3.2.2. α-Synuclein

α-synuclein is widely distributed in the CNS and is involved in the packaging, traf-
ficking of vesicles, and regulation of synaptic plasticity [125]. For reasons not fully com-
prehended, α-synuclein is prone to misfolding and forming fibrillar and aggregated forms
within Lewy bodies and Lewy neurites-a typical pathological hallmark of PD and other
synucleinopathies [126]. The molecular factors triggering α-synuclein aggregation and
Lewy bodies formation remain unknown. Changes in α-synuclein phosphorylation could
represent a response to biochemical events associated with PD pathogenesis [127].

Brain tissues. α-synuclein within Lewy bodies is phosphorylated at S87, S129, or Y125
as deduced from MS data in PD [90,128]. Phosphorylated α-synuclein at S129 accounts
for more than 90% of α-synuclein found in Lewy bodies [129]. In contrast, only 4% or less
of total α-synuclein is phosphorylated at this residue in the normal brain [91,128]. This
suggests that the accumulation of S129-phosphorylated α-synuclein is somehow related
to the formation of Lewy bodies and dopaminergic neurodegeneration in PD [90,128].
Ubiquitination (K12, K21, and K23, in phosphorylated α-synuclein forms) is only detected
in Lewy bodies [91]. Together with truncation, these ubiquitinated and phosphorylated
forms are present in the detergent-insoluble fraction of the familial PD brain (synuclein
A53T mutation) [91]. Several other α-synuclein proteoforms, including accumulation of
truncated forms at C-terminal (Ac-α-syn1–119) and N-terminal (α-syn71–140, α-syn68–140,
α-syn66–140, α-syn65–140), mainly in the cingulate cortex, were described in PD [130]. The
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levels of α-synuclein forms in Lewy body-enriched α-synuclein fraction (α-syn1–6, α-
syn13–21, α-syn35–43, α-syn46–58, α-syn61–80, and α-syn81–96) were significantly increased in
the PD cingulate region compared to controls [92]. In addition, brain-derived α-synuclein
is mainly N-terminally acetylated in Lewy body-enriched PD brain tissue fractions, as
characterized by intact protein LC-Orbitrap MS [92] (Figure 1B). Although phosphorylation,
acetylation, ubiquitination, and truncation may play an important role in α-synuclein
biology, our understanding of the precise effects of these modifications in the biology
and pathophysiology of neurodegenerative diseases is still partial. Of note, deposits of
α-synuclein and S129-phosphorylated α-synuclein in the brain could be detected in people
with non-neurodegenerative disorders [22].

CSF/Blood/Serum. Monomeric, oligomeric, and post-translationally modified α-
synuclein can be detected in body fluids such as CSF, plasma, and red blood cells [131–133].
When analyzing α-synuclein as a biomarker, the high concentration in red blood cells
should be considered and requires monitoring of blood contamination in CSF [122]. Mass
spectrometry using MRM mode showed CSF synuclein concentrations 550% superior to
ELISA but similar levels in serum of subjects without neurodegenerative diseases [133].
This difference could indicate the presence of different α-synuclein species in serum and
CSF. CSF synucleins (alpha, beta, and gamma) were detected as being increased by MRM in
AD and CJD, but no alteration was detected for synucleinopathies (PD, PD dementia (PDD),
DLB) [133]. Moreover, α-synuclein peptides α-syn61–80 and α-syn81–96 from the non-Abeta
component (NAC) region have a 38 and 40% lower concentration in CSF than α-syn24–32
from the N-terminal region [133]. In 2020, the same group found an increased β-synuclein
in patients with mild cognitive impairment and CJD, but not for PD [134]. pS129 and
ubiquitination (at multiple sites) have been detected in the CSF and plasma of PD, MSA,
and DLB cases [93]. In red blood cells, Pero-Gascon et al. [135] detected N-acetylated α-syn
as the main proteoform in healthy individuals and some PD patients (stage III and IV).
Yang et al., 2017 found that α-syn81–96, TVEGAGSIAAATGFVK, was highly correlated with
disease severity and allowed the tracking of the PD progression [94].

3.2.3. Amyloid Precursor Protein (APP) and Amyloid-Beta Peptides

The function of amyloid precursor protein (APP) in the body is unknown; however,
evidence suggests its role in synaptic formation and function, neuronal outgrowth, protein
trafficking, signal transduction, and intracellular calcium homeostasis. In pathological
conditions, the proteolytic processing of APP by the β and γ secretase, which cleaves
the protein at specific sites, generates Aβ peptide fragments with variable lengths of
37–43 amino acids. Among them, Aβ42 peptides are more prone to aggregation [136]. In
the brain, Aβ426–16 and Aβ4217–28 (APP695 region 597–638) showed significant increases in
asymptomatic AD and AD groups compared with control samples [31]. The Aβ42/Aβ40
ratio in plasma was measured with LC-MS in AD and mild cognitive impairment patients
to see its correlation to amyloid PET status and was shown to be a good predictor of Aβ

PET positivity [95]. Using combined immunoprecipitation and HR-MS techniques, it was
shown that the relative levels of Aβ16 in AD compared to controls are increased in CSF [96].
It was identified in AD 37 APP/Aβ glycopeptides with sialylated core-1 like O-glycans
attached to Thr(−39, −21, −20, and −13) in a series of APP/AβX–15 glycopeptides, where
X was −63, −57, −52, and −45, concerning Asp1 of the Aβ sequence [97]. An increase in
Y10 O-glycosylated Aβ peptides linked to (Neu5Ac)1–2Hex(Neu5Ac)HexNAc-O-structures
was observed in CSF in six AD patients compared to seven non-AD patients [97]. Short
Aβ isoforms (N-terminal −3, 1, 4, 5; C-terminal 15, 16, 17, 18, 19, 20) were detected with
O-glycosylation at Y10 of Aβ [97,137] (Figure 1C). Despite this, further investigations
are warranted to address the significance of glycosylation in APP proteolysis and its
consequences on amyloid deposition.
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3.2.4. TAR DNA-Binding Protein (TDP-43)

TDP-43 is a highly conserved nuclear factor encoded by the TARDBP gene to regulate
transcription and alternative splicing [138]. During a pathological context such as ALS and
FTLD, TDP-43 translocates to the cytoplasm with deletions at the C-terminal glycine-rich
region (35 and 17–27 kDa) [139,140]. In the human ALS brain, TDP-43 was characterized
by LC-LTQ-MS and demonstrated 17 phosphorylation sites, K79 ubiquitination, and K82
acetylation [138] (Figure 1D). More recently, Feneberg et al. [98] used highly sensitive MS
with PRM to quantify the abnormal enrichment of C-terminal TDP-43 fragments in ALS
brain insoluble fractions. A C/N-terminus ratio >1.5 discriminated ALS from controls
with 100% sensitivity and specificity in this study. Despite TDP-43 being identified in
CSF [98,141], no studies were performed using LC-MS.

4. The Next Step in Neuroproteomics

Although it has enjoyed remarkable recent success stories, proteomics still faces sub-
stantial technical challenges. Proteomics data processing and analysis is a multistep process
that requires a lot of expertise. Multiple stages are necessary for the consistent analysis of
LC-MS and LC-MS/MS data. Adequate sample preparation, reducing complexity, and en-
riching lower abundance components while depleting the most abundant can help solve the
analysis challenges. Sample enrichment using immunoprecipitation of the target protein,
fractionation, or PTM-specific enrichment methods (chemical and biochemical) are now
pretty well established [142]. Various offline fractionation methods have been employed to
enhance the depth of the proteome by improving the detection of low abundance peptides
before LC-MS/MS analysis. Methods including two-dimensional gel electrophoresis [143],
strong cation exchange (SCX), electrostatic repulsion-hydrophilic interaction chromatogra-
phy (ERLIC) [30], and high-pH reversed-phase chromatography [144] are used to increase
peptide identification by separating peptides in an orthogonal dimension. Unfortunately,
sample processing is still the main bottleneck for many extensive proteomics studies be-
cause it is a complex multiple-step process. There is no standard best approach for sample
processing, and optimizing this step is detrimental to the ability to study the proteoform(s)
of interest effectively.

Additionally, state-of-the-art mass spectrometry instrumentation and extensive autom-
atized high-confident data processing and analysis are required. Label-free quantification,
super-SILAC, and chemical labels can be employed for large-scale quantitative discovery.
Modified peptides that may serve as biomarkers can be validated with larger cohorts using
targeted MS methods such as MRM or PRM. Finally, with MS instrumentation improving,
the bottleneck shifts towards confirming PTM sites and validating their function using new
experimental and computational strategies. The exploitation of this technology resulted
in significantly enhanced protein sequence coverage, the discovery of undescribed modi-
fications, and the parallel analysis of different types of modification sites. These studies
also generally characterized only a limited number of PTM types, with the most robust
emphasis on phosphorylation and little focus on less common PTMs such as acetylation or
glycosylation.

Furthermore, most MS-based experiments employed DDA, a data collection mode
that relies on the “detectability” of the peptide species of interest, biasing the analysis
towards peptides of the highest intensity. This particularly handicaps the identification of
PTMs, as the modified species can be present in very low stoichiometries and/or exhibit
lower detectability compared to their unmodified counterpart [145]. In addition, studies
have now tried to understand the impact of PTM crosstalk [54]. Notably, the combination
of PTMs, rather than individual PTMs, define protein function and are involved in the
pathological mechanisms underlying neurodegenerative diseases. However, the current
limitations in large-scale PTM combinatorial analyses render developing adequate clinical
biomarker assays that target peptides with different modifications extremely challenging.
This might be facilitated in the future with the continuous development of next-generation
mass spectrometry workflows, i.e., top-down or native MS [146,147].
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There is optimistic thinking about what the next few decades in the neuroscience
field will bring. With the neurodegenerative cases increasing as the global population
ages, a significant effort will have to be made to improve the complete integration of
robust but sensitive MS-based proteomics approaches into biomarker discovery facilities
(Figure 3) and, ultimately, into clinical settings. First, however, it is crucial to understand
(1) how PTMs regulate the cellular events; (2) how to rank by importance the several
PTMs occurring on a single protein; and (3) what are the switch on-and-off responses and
crosstalks of PTMs to pathological events, considering a particular pathological tissue or
biofluid in a certain disease stage. The aim is to identify unique pathological signatures and
biomarkers that can aid in understanding and monitoring the different processes involved
in disease development and progression. For this, it is vital to limit inconsistencies across
clinical studies by studying well-classified patient material and large patient cohorts and
standardizing methodologies and protocols. Therefore, the field must now focus on large-
scale multicentric MS-based translational studies integrating molecular signatures with
pathological findings to diagnose and stratify neurodegenerative diseases. Integrative
proteomic and genomic/transcriptomic analyses (in neuroproteogenomics settings) hold
great promise for understanding the role of the PTMome in neurodegenerative diseases.
For example, a multi-omics data fusion from 177 studies and more than one million
patients with AD, PD, HD, and ALS has recently shed light on different biological processes
between these pathologies [148]. However, PTMome information was not considered in
this integrative study.
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Figure 3. Biomarker discovery workflow using mass spectrometry for identification and characteriza-
tion of proteoforms in the different biological milieu of patients with neurodegenerative diseases.
Amyloid β: amyloid-beta; APP: amyloid-beta precursor; ALS: amyotrophic lateral sclerosis; CBD:
corticobasal degeneration; CJD: Creutzfeldt–Jakob disease; CSF: cerebrospinal fluid; DLB: dementia
with Lewy bodies; FTLD: frontotemporal lobar degeneration; HD: Huntington’s disease; MS: mass
spectrometry; MSA: multiple system atrophy; PD: Parkinson’s disease; PSP: progressive supranuclear
palsy; SNCA: synuclein alpha; TDP-43: TAR DNA-binding protein 43.
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Interestingly, by including metabolomics approaches, it is possible to understand the
PTM relative changes by monitoring the precursors of protein PTMs (e.g., acetyl-CoA for
acetylation, ATP for phosphorylation, and S-adenosylmethionine for methylation) [149].
Therefore, analysis of PTMs in multi-omics studies will almost certainly reveal novel and
even unexpected molecular signatures. This will allow for a better understanding of the
molecular pathways underlying the development of neurodegenerative diseases, thereby
facilitating the decision-making process and precision medicine settings. Although these
integrative approaches are promising, there is still a long way to go to routinely incorporate
omics data into clinical decisions for personalized interventions.

5. Concluding Remarks

High-throughput proteomics and PTM-omics studies using MS have been used in re-
cent years to investigate neurodegenerative diseases. Great potential is underlying specific
pathological PTM-signatures for clinical applications as biomarkers in neurodegenerative
diseases. This is the case of diverse modified peptides from the major players in neurode-
generation processes such as tau, α-synuclein, APP/amyloid-beta, or TDP-43. Tau protein
remains the most well-studied protein using MS. Several phosphorylated, acetylated, ubiq-
uitinated, methylated, or glycosylated tau peptides are accumulated in the brain of AD
and CBD or associated with a higher AD Braak stage. In addition, phosphorylated and
C-terminal truncated forms of tau can be detected in CSF and serum in AD. For α-synuclein,
studies focus more on phosphorylated, ubiquitinated, and truncated proteoforms that could
be overexpressed specifically in tissues, CSF, and serum from DLB or PD patients. To the
best of our knowledge, TDP-43 truncated forms were only studied in ALS brain tissues,
and amyloid-beta was only analyzed in AD CSF. We believe that major breakthroughs can
occur in detecting and characterizing PTMs less studied in the field using HR/MS. Due to
the lack of data on non-AD neurodegenerative diseases, we also envisage that these will
undoubtedly be the focus of neuroproteomics studies.
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