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INTRODUCTION 

 

Vascular endothelial growth factor (VEGF) is a specific 

heparin-binding glycoprotein (Ferrara and Henzel, 1989) 

that is also known as vascular permeability factor (VPF) 

(Senger et al., 1993). The VEGF is a homodimer that 

comprises 2 polypeptide chains with a molecular mass of 

approximately 45 kDa (Ferrara and Henzel, 1989; 

Gospodarowicz et al., 1989). The human VEGF gene has 8 

exons that are separated by 7 introns. By alternative splicing, 

7 VEGF transcripts are expressed in human, encoding 

polypeptides of 189, 165, 121, 145, 183, 148, and 206 

amino acids, respectively (Jingjing et al., 1999; Poltorak et 

al., 1997; Tischer et al., 1991; Whittle et al., 1999). The 

domain that is encoded by exons 1-5 and 8 are present in all 

VEGF splice variants. The VEGF206 contains all 8 peptide-

encoding exons. The VEGF189 and VEGF183 lack some of 

the peptides that are encoded by exon 6. The VEGF165 

lacks the peptides encoded by exons 6, VEGF148 lacks the 

peptides encoded by exon 6 and part of exon 7, while 

VEGF145 lacks the peptides encoded by exon 7 and part of 

exon 6, VEGF121 lacks the peptides encoded by both exons 

6 and 7. The VEGF165 is secreted and binds to heparin, 

rendering it the most frequently studied splice variant.  

The VEGF increases vascular permeability; promotes 

angiogenesis; and enhances survival, proliferation, and 

migration in various cell types. For example, the 

differentiation of endothelial cells and cancer cells is 

regulated by VEGF through an intracrine mechanism 

(Carmeliet et al., 1996; Ford and D'Amore, 2012; Gordon et 

al., 2012; Liu et al., 2012; Sitohy et al., 2012). The VEGF 

mediates vascular inflammation by regulating osteopontin 

expression (Li et al., 2012c) and contributes to hair growth 

(Li et al., 2012b). Exogenous VEGF dose-dependently 

stimulates cell proliferation, which is mediated by vascular 

endothelial growth factor receptor 2 (VEGFR-2) through 

phosphorylation of extracellular signal-regulated kinase 

(ERK) in human outer root sheath cells and human hair 

follicle dermal papilla cells (Li et al., 2012a; Magnuson et 

al., 2012). And VEGF expression in secondary hair follicles 

than it did in primary hair follicles (Zhang et al., 2013). The 

VEGF accelerates hair growth in mice and humans, but its 

function has not been determined in goat.  
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To detect goat VEGF-mediated regrowth of hair, we 

cloned Inner Mongolia Cashmere goat VEGF164 gene 

(JX524883.1), which encodes a 190-amino-acid peptide 

with a signal peptide of 26 amino acids and shows a high 

homology to VEGF genes in other vertebrates. We then 

expressed goat VEGF164 (gVEGF164) in E. coli and 

purified the rgVEGF164 recombinant protein to perform 

functional studies of gVEGF164. The rgVEGF164 was 

smeared across a dorsal area of a shaved mouse, and hair 

regrowth was monitored.  

 

MATERIAL AND METHODS  

 

Molecular cloning of goat VEGF164 gene and 

transferred into E. coli  

Total RNA was isolated using RNAzol (RNAiso Plus, 

TaKaRa Co. Ltd., Dalian, China) from goat fetal fibroblasts 

and reverse-transcribed with the AMV 1st Strand cDNA 

Synthesis kit and an oligo(dT)20 primer per the 

manufacturer’s instructions (Takara Co. Ltd., China). An 

input of 1 μg total RNA was used for each reaction.  

The gVEGF164 cDNA was amplified by polymerase 

chain reaction (PCR) with cDNA as template at the 

appropriate annealing temperature for primers (forward: 5'-

ATGAACTTTCTGCTCTCT-3', reverse: 5'- 

TCACCGCCTCGGCTTGTC-3’) that contained BamH I 

(forward) and Hind III (reverse) restriction sites. The 

amplified cDNA fragment was cloned into pMD19-T 

(TaKaRa Co. Ltd., China), and the resulting plasmid, 

pMD19-gVEGF164, was transformed into E. coli DH5α 

and sequenced on an ABI PRISM 377XL DNA Sequencer 

(Applied Biosystems, Inc. Foster City, CA, USA). Then, 

gVEGF164 was subcloned into the pET-his prokaryotic 

expression vector (Novagen, Inc. Madison, WI, USA) from 

pMD19-gVEGF164, generating the pET-gVEGF164 

expression vector. The pET-gVEGF164 was transformed 

into E. coli BL21 (DE3) competent cells and confirmed by 

restriction analysis and sequencing.  

 

Expression of recombinant protein 

E. coli BL21 (DE3) cells were transformed with pET-

gVEGF164. The expression of 6×his-fused recombinant 

protein (6×his-gVEGF164) was induced by 0.5 mM 

isopropyl thio-β-D-galactoside (IPTG) for 5 h at 32°C to an 

OD600 of 0.6. The expressed recombinant protein was 

identified by 15% (w/v) sodium dodecyl sulfate-

polyacrylamide gelelectrophoresis (SDS-PAGE). Premixed 

protein marker (TaKaRa Co. Ltd., China) was used as the 

molecular weight standard. Protein bands were visualized 

with Coomassie Brilliant Blue R-250 (Sigma-Aldrich, St. 

Louis, MO, USA), and protein content was measured by 

Bio-Rad assay (Bio-Rad Laboratories, Hercules, CA, USA). 

The expressed recombinant protein was named rgVEGF164. 

 

Purification of recombinant goat VEGF164 and SDS-

PAGE analysis  

The bacterial culture was harvested by centrifugation at 

12,000 rpm for 2 min at 4°C, and the pellet was washed 

twice with 15 mL phosphate buffer saline (PBS) (137 mM 

NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4). 

The cells were dissolved in 2 mL cold 1× 

equilibration/wash buffer (50 mM sodium phosphate, 300 

mM NaCl) with 0.75 mg/mL lysozyme, ultrasonicated, and 

centrifuged at 12,000 rpm at 4°C.  

Recombinant rgVEGF164 was purified using the 

HisTALONGravity Columns Purification Kit (Clontech, 

Laboratories, Inc., Terra Bella Avenue, Mountain View, CA 

USA) per the manual, which is a His-tag nickel purification 

system. Then, the target protein was purified using the 

Micro Protein PAGE Recovery Kit (SangonBiotech Co., 

Ltd. Shanghai, China). Finally, the protein was dissolved in 

0.1 M phosphate buffer, pH 7.4. The protein lysate 

supernatants were electrophoresed on 15% (w/v) SDS-

polyacrylamide gels, and unstained protein molecular 

weight marker (MBI Fermentas, Pittsburgh, PA, USA) was 

used as the molecular weight standard. 

 

Western blot analysis of recombinant goat VEGF164 

with monoclonal anti-6×his and anti-vascular 

endothelial growth factor antibodies 

Equal amounts (30 μg) of purified protein were 

electrophoresed on 15% (w/v) SDS-polyacrylamide gels. 

Then, the proteins were transferred to polyvinylidene 

fluoride (PVDF) membranes and incubated with 

monoclonal anti-His antibody (Cell Signaling Technology, 

Inc., Danvers, MA, USA) and monoclonal anti-VEGF 

antibody (Thermo Fisher Sientific Anatomical Pathology, 

Fremont, CA, USA) overnight at 4°C and horseradish 

peroxidase -conjugated sheep anti-mouse IgG (GE 

Healthcare UK Limited, Dorset, UK) at room temperature 

for 1 h. Signals were detected by chemiluminescence 

(Amersham). 

 

Induction of hair growth by recombinant goat VEGF164  

Eight-week-old wild-type Kunmingbai mice were used 

to monitor the induction of hair growth by rgVEGF164. 50 

μL of rgVEGF164 (1 mg/mL) was applied to a dorsal and 

lateral area of shaved skin, and control vehicle was applied 

with isopycnic phosphate-buffered saline to the opposing 

adjacent area on the same animal). Mice were painted with 

rgVEGF164 once a day for 1 week, and after that animals 

were fed for 2 weeks without treatment. The mice were 

housed under specific pathogen free (SPF) conditions and 

fed with SPF standards of care.  
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Statistical analysis 

Descriptive statistics were generated for all quantitative 

data, expressed as mean±SD. For each assay, triplicate 

parallel observations were examined.  

 

RESULTS 

 

Cloning of goat VEGF164 and construction of pET-

gVEGF164 expression vector 

PCR of cDNA from goat fetal fibroblasts was 

performed to amplify a 573-bp fragment that encompassed 

the full open reading frame of gVEGF164, encoding 190 

amino acids. The 26 N-terminal amino acids constitute a 

signal peptide sequence. The open reading frame (ORF) 

fragment was amplified and cloned into pMD19-T. The 

resulting plasmid was designated pMD19-gVEGF164.  

The pMD19-gVEGF164 was digested with BamH I and 

Hind III and subcloned into pET-his to obtain the pET-

gVEGF164 expression vector (Figure 1). The pET-

gVEGF164 was identified by restriction enzyme analysis, 

confirmed by sequencing, and transferred into E. coli BL21 

(DE3) cells to express the 6×his-gVEGF164 recombinant 

protein. 

 

Expression, purification, and identification of 

recombinant 6×his-gVEGF164 fusion protein 

Goat VEGF164 was expressed as 6×his-gVEGF164 

recombinant protein (rgVEGF164) after induction in E. coli 

BL21 (DE3) cells that were transformed with pET-

gVEGF164. We determined the optimal culture conditions 

for the rgVEGF164 protein as follows: 0.5 mM IPTG with a 

5-h induction at 0.6 of the OD600 value at 32°C. The 

supernatants of the protein lysates from E. coli BL21 (DE3) 

cells, the bacterial cells transformed with pET-his and 

transformed with pET-gVEGF164 were electrophoresed on 

15% (w/v) SDS-polyacrylamide gels, and rgVEGF164 was 

detected by SDS-PAGE (Figure 2A).  

The rgVEGF164 was purified from the total protein 

lysate of pET-gVEGF164-transformed bacteria and 

electrophoresed. A single band of approximately 26.0 kDa 

appeared by 15% (w/v) SDS-PAGE (Figure 2B). After 

renaturation, the purified protein was identified by western 

blot using monoclonal anti-His (Figure 3A) and anti-VEGF 

antibodies (Figure 3B). Purified recombinant 6×his-

gVEGF164 was then applied to the dorsal and lateral area 

of a shaved mouse.  

 

Recombinant goat VEGF164 increases hair growth in 

mouse 

To determine the bioactivity of rgVEGF164 in 

promoting hair growth, mice were treated with rgVEGF164. 

Mice were shaved, and rgVEGF164 was applied topically 

on the shaved area, as described in Methods. The treatment 

was administered for 7 days in the first week, and after that 

animals were fed for 2 weeks without treatment. As a result, 

rgVEGF164-treated, but not control, animals experienced 

rapid hair regrowth in 3 weeks (Figure 4), indicating that 

rgVEGF164 promotes hair growth.  

 

DISCUSSION 

 

The hair follicle, a type of epidermal appendage, is 

 

Figure 2. Analysis of the expression of rgVEGF164 in E. coli 

BL21 (DE3). (A) Expression of rgVEGF164 analyzed by 15% 

SDS-PAGE. Lane 1, lysates of E. coli BL21 (DE3) cells before 

induction; lane 2, lysates of BL21 cells harboring pET-His before 

induction; lane 3, lysates of BL21 cells harboring pET-gVEGF164 

before induction; lane 4, lysates of BL21 cells after induction; lane 

5, BL21 lysates harboring pET-His after induction; lane 6, lysates 

of BL21 cells harboring pET-gVEGF164 after induction; M, low 

protein molecular weight marker (D530S, Takara Co. Ltd., Dalian, 

China). The arrowhead indicates the target protein. (B) 

Purification and identification of rgVEGF164. Lane 1, purified 

VEGF164; M, unstained protein molecular weight marker 

(SM0431, Thermo Fisher Sientific Anatomical Pathology, 

Fremont, CA, USA). VEGF, vascular endothelial growth factor; 

rgVEGF164, recombinant goat VEFG164; SDS-PAGE, Sodium 

dodecyl sulfate-polyacrylamide gelelectrophoresis,  gVEGF164, 

goat VEGF164. 

 

Figure 1. Schematic of insertion of goat VEGF164 cDNA into 

pET-his. VEGF, vascular endothelial growth factor. 
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composed of dermal papillae cells, epithelial cells of the 

root sheath, and the hair shaft (Sperling, 1991). The hair 

follicle life cycle comprises the telogen, anagen, and 

catagen stages. Hair growth needs perifollicular 

vascularization, during which VEGF is upregulated in the 

outer root sheath (Yano et al., 2001) and highly expressed in 

anagen hair follicles, including the outer and inner root 

sheaths and dermal papillae epidermal matrix, particularly 

in the follicular basement membrane zone in normal human 

skin (Man et al., 2009). The VEGF promotes hair growth, 

increases the number of hair follicles, and elongates the hair 

shaft by improving follicle vascularization in mice (Yano et 

al., 2001; Ozeki and Tabata, 2002).  

The effects of VEGF are mediated primarily through its 

receptors, VEGF receptor-1 (fms-like tyrosine kinase-1), -2 

(kinase domain region), and -3 (soluble Flt). The chief 

receptor of VEGF, VEGFR-2, is believed to mediate most 

processes, such as cell proliferation, migration, and survival 

(Ferrara et al., 2003; Holmes et al., 2007; Olsson et al., 

2006). Basal cells of the sebaceous glands expressed 

abundant VEGF and VEGFR-2 (Man et al., 2009), and 

VEGF active VEGFR-2 in the hair follicle stem cell (Wu et 

al., 2014), and VEGF165 upregulates VEGFR-2 mRNA and 

protein and induces phosphorylation of VEGFR-2 in the 

outer root sheath. Exogenous VEGF stimulates VEGFR-2-

mediated proliferation through phosphorylation of ERK in 

human outer root sheath cells and human hair follicle 

dermal papilla cells (Li et al., 2012a).  

The VEGF-overexpressing transgenic mice experience 

accelerated hair regrowth compared with wild-type 

littermates, and have longer and thicker hair after 11 days 

(Yano, 2001). In contrast, abdominal fur does not regrow 

properly in rats that have been treated with AEE788, a dual 

inhibitor of epidermal growth factor receptor (EGFR) and 

VEGFR, over 4 weeks (Deng et al., 2011). These results 

demonstrate that VEGF mediates hair growth during 

development.  

In this study, we generated functional rgVEGF164 

protein using a prokaryotic expression system, wherein an 

approximately 26-kDa recombinant protein was detected by 

monoclonal anti-VEGF. The VEGF has a molecular weight 

of roughly 45 kDa under nonreducing conditions versus 

about 23 kDa under reducing conditions (Ferrara and 

Henzel, 1989). The VEGF is a homodimer that comprises 2 

polypeptide chains and has a molecular mass of 

approximately 45 kDa; the single stranded form has a 

molecular weight of about 23 kDa under denaturing 

conditions. We believe that the 6×his-gVEGF164 fusion 

protein exists in monomeric form—rgVEGF164 can not 

form a homodimer due to the use of a prokaryotic 

expression system. Renatured rgVEGF164 was smeared 

across a dorsal area of a shaved mouse and had a positive 

effect on hair growth. These results demonstrate that 

rgVEGF164 increases hair growth in mice.  

 

CONCLUSION  

 

We cloned goat VEGF and expressed it in E. coli BL21 

(DE3) cells as a 6×his-tagged fusion protein. rgVEGF was 

purified and identified by western blot using monoclonal 

anti-VEGF. The rgVEGF164 was applied to the dorsal area 

of a shaved mouse, accelerating hair regrowth faster than in 

the control group. Thus, rgVEGF164 effects hair growth in 

mice.  
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