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Abstract

Chromatin interactions mediated by a protein of interest are of great scientific interest. Recent studies show that protein-
mediated chromatin interactions can have different intensities in different types of cells or in different developmental stages
of a cell. Such differences can be associated with a disease or with the development of a cell. Thus, it is of great importance
to detect protein-mediated chromatin interactions with different intensities in different cells. A recent molecular technique,
Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET), which uses formaldehyde cross-linking and
paired-end sequencing, is able to detect genome-wide chromatin interactions mediated by a protein of interest. Here we
proposed two models (One-Step Model and Two-Step Model) for two sample ChIA-PET count data (one biological replicate
in each sample) to identify differential chromatin interactions mediated by a protein of interest. Both models incorporate
the data dependency and the extent to which a fragment pair is related to a pair of DNA loci of interest to make accurate
identifications. The One-Step Model makes use of the data more efficiently but is more computationally intensive. An
extensive simulation study showed that the models can detect those differentially interacted chromatins and there is a
good agreement between each classification result and the truth. Application of the method to a two-sample ChIA-PET data
set illustrates its utility. The two models are implemented as an R package MDM (available at http://www.stat.osu.edu/

statgen/SOFTWARE/MDM).
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Introduction

Chromatin interactions mediated by a protein of interest are of

great scientific interest [1–4]. Such interactions can have different

intensities in different types of cells or in different developmental

stages of a cell. The differences of the interaction intensities can be

associated with a disease or with the development of a cell. For

example, a study [5] on prostate cancer found that the UBE2C

oncogene interacts with two distal binding sites of Androgen

Receptor (AR, an important protein in prostate cancer) only in

Castration-Resistant Prostate Cancer (CRPC) cells but not in

Androgen-Dependent Prostate Cancer (ADPC) cells. These two

interactions are required for the progression from ADPC to

CRPC. Another study [6] on the maturation of mouse thymocytes

showed that protein Runx1 binds to a silencer of gene CD4, and

thus represses CD4 expression, only in the early stages of mouse

thymocytes. Such repression is crucial in the mouse thymocyte

maturation. Also, a study [7] on the human b-globin genes found

that the interactions between the b-globin locus control region

(LCR) and b-globin genes, which are mediated by CCCTC-

binding insulator protein (CTCF) on human chromosome 11, are

stronger in erythroid cells than in non-erythroid cells. These

differential interactions make the transcription of b-globin genes

active only in erythroid cells. Another study [8] on the proto-

oncogene Kit, which encodes a receptor tyrosine kinase that is

essential for normal hematopoiesis, found that the GATA-2

mediated interaction between a distal enhancer and the gene

promoter in the immature cells disappears upon cell maturation.

Such a change makes the gene expression downregulated upon

cell maturation. Therefore, detecting differential chromatin

interactions mediated by a protein is of significant value in

deciphering the development of complex diseases such as cancer

or the development of a cell.

The study of chromatin interactions mediated by a protein has

been aided by Chromatin Interaction Analysis by Paired-End Tag

Sequencing (ChIA-PET) [9], a recent molecular technique derived

from Chromosome Conformation Capture (3C) [10]. Unlike Hi-C

[11], another derivative of 3C, which detects genome-wide

chromatin interactions, ChIA-PET can be used to investigate

chromatin interactions mediated by a specific protein in a

genome-wide manner. Here is a schematic description of ChIA-

PET: first, the chromatin is cross-linked with formaldehyde and

then sonication is employed to break up the chromatin; second,

specific antibody of choice is used to precipitate the chromatin

fragments bound by the protein of interest (Chromatin Immuno-

precipitation, or ChIP) and the biotinylated oligonucleotide half-

linkers containing flanking MmeI (a restriction enzyme) sites are

used to ligate the tethered DNA fragments; third, the linkers are

ligated and MmeI is introduced to digest the ligated fragments;

finally, the ligation products are purified using streptavidin-coated
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beads and the pair end tags are sequenced through high

throughput paired-end sequencing.

A ChIA-PET experiment generates millions of paired-end

sequencing reads that can be mapped to the reference genome [9].

Pairs of DNA regions, which we refer to as fragment pairs, can

then be determined from the read pairs. Those chromatin

interactions with different intensities can then be inferred from

the different frequencies of the fragment pairs in ChIA-PET

experiments on different cells. However, such inference is not

straightforward. The reason is that fragment pairs determined

from ChIA-PET experiments include both signal and noise, i.e.,

fragment pairs that are present due to interactions, termed true

pairs, and those that are present due to their close proximity

during the ligation step, termed false pairs or random collisions.

Thus, an ideal method should be able to distinguish the true pairs

from the false pairs, and to detect the differences of interaction

intensities.

In this paper we propose a Two-Step Model and a One-Step Model

to detect chromatin interactions with different intensities from two

sample ChIA-PET count data mediated by the same protein. The

Two-Step Model proceeds in two steps: first, true pairs are

distinguished from false pairs in each sample by the model

MC_DIST [12]; second, the pairs that are classified as true pairs

in both samples are further investigated using a mixture modeling

framework and those with different interaction intensities are

determined. The One-Step Model combines the two steps in the

Two-Step Model to make use of the data more efficiently,

although it typically entails greater computational burden. An

extensive simulation study was carried out to evaluate, compare,

and contrast their performance. We applied the more efficient

One-Step model to analyze a two-sample ChIA-PET data set. Our

findings appear to be consistent with those in the literature. An R

package implementing the above two models is available at

http://www.stat.osu.edu/ statgen/SOFTWARE/MDM.

Methods and Analysis

Let W~f(Xi,Yi),i~1,2, � � � ,ng be a set of two-dimensional

random vectors, where n is the total number of fragment pairs,

and Xi (or Yi) represents the count of fragment pair i, i.e., the

number of read pairs mapped to the i-th pair of fragments in a

ChIA-PET experiment performed for sample one (or two). We

require that max(Xi,Yi)§k, where k (if w1) is the cut-off value

used in a non-analytical preprocessing step to weed out random

collisions. For instance, in [9], k was set to be 2, as it was believed

that a fragment pair observed only once in both samples was a

false pair and should be excluded from further analysis. This

threshold can be set by investigators based on their knowledge of

the experiment.

Our objective is to identify the fragment pairs with different

interaction intensities in the two samples. Such fragment pairs

include those with interactions only in one sample but not in the

other sample. Specifically, we want to classify the fragment pairs

into the six categories enumerated in Table 1. The pairs in

categories 0, 2, 3 and 4 are of interest, as categories 0 and 2

contain true pairs with different interaction intensities in the two

samples and categories 3 and 4 contain pairs with interactions, i.e.,

true pairs, only in one of the two samples. The other two

categories are not of interest, as category 1 contains pairs with

same interaction intensities in both samples, and category 5

contains pairs with no interactions, i.e., false pairs, in both

samples.

To achieve the above objective, we first normalize the observed

count data to make the counts comparable across the two samples.

Assuming that, without loss of generality, sample one has a smaller

total count than sample two does, the normalization is done simply

by multiplying all the counts in sample one by a factor c and then

rounding the results to their nearest integers, where c is the ratio of

the total count of sample two to the total count of sample one. We

then apply either a Two-Step Model or a One-Step Model on the

normalized data (still denoted by W for the sake of brevity) to

classify the fragment pairs into the six categories. The two models

are discussed in details in the following two subsections.

Two-step Model
In this model, the first step is to apply MC_DIST on the count

data for each sample separately to determine whether a pair is a

true pair or a false pair in the sample. MC_DIST is a Bayesian

mixture model with two (pair-specific) truncated Poisson compo-

nents, and each component models the count conditional on the

pair being a true or a false pair. The pair-specific mixing

proportion (weight) is assumed to follow a beta distribution whose

parameters are determined by the characteristics of the pair such

as the marginal count and the distance. Briefly, the marginal count of a

particular pair is defined as the total number of pairings that

contain either fragment of the pair; the distance of a particular

pair refers to how close the pair of fragments are to important

landmarks of the genome such as Transcription Factor Binding

Site (TFBS) and Transcription Start Site (TSS). These definitions

will be elaborated below. The reason for modeling the weight in

such a way is to incorporate the data dependency and the extent to

which the locations of the pair relative to known DNA loci to

leverage additional information. At the conclusion of step one, all

pairs are divided into three groups: pairs that are classified as false

in both samples, pairs that are classified as false in one sample but

are classified as true in the other sample, and pairs that are

classified as true in both samples. The pairs in the first two groups

are then classified into category 5, 4 and 3 accordingly. The pairs

in the last group are passed to the second step to be further

classified into categories 0, 1 or 2. Without loss of generality, we

assume that these pairs are labeled 1,2, � � � ,m. Note that both

xi§k and yi§k as a pair with count less than k is screened out

before applying the first step.

The second step of the Two-Step Model is to apply a three-

component mixture model to the pairs with indices 1,2, � � � ,m to

classify those pairs into categories 0, 1 or 2. Specifically, we assume

that

(Xi,Yi)*
X2

j~0

wjif (:Dlji,mji), independently for i~1,2, � � � ,m,

where w0izw1izw2i~1; l’s and m’s represent interaction

intensities and are assumed to be under several constraints for

identifiability, which are discussed later in details. The component

probability mass function f (:,:Dl,m) is a product of two (k{1)-
truncated Poisson distributions:

f (X~x,Y~yDl,m)

~
lxmy

x!y!(el{(1zlz
l2

2!
z � � �z lk{1

(k{1)!
))(em{(1zmz

m2

2!
z � � �z mk{1

(k{1)!
))

,

for x~k,kz1, � � � and y~k,kz1, � � �. The use of the (k{1)-

truncated Poisson distributions is motivated by the fact that Xi and

Yi are counts and that they are both at least k, as discussed above.
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The constraints on l’s and m’s are:

l0iwm0i, l1i~m1i and l2ivm2i,

for 1ƒiƒm. The constraints are imposed as such to make the

mixture component with indices 0, 1 and 2 correspond

respectively to category 0, 1 and 2. Since l1i~m1i, we only

include l1i in the following discussion.

It is easy to see that the counts of two pairs with a common

fragment are correlated with each other within the sample and

therefore the data are dependent within the sample. To take such

data dependency into account, we cast the above model into a

Bayesian framework and incorporate the data dependency into the

prior distributions of w’s. The details of the Bayesian framework

are described as follows. We assume

(l0i,m0i,l1i,l2i,m2i)*C(a,
a

r1
)5I(l0iwm0i)I(l2ivm2i),

independently for i~1,2, � � � ,m, where a is the shape parameter of

the gamma model, and
a

r1
is the rate parameter (thus the mean of

C(a,
a

r1

) is
a

a=r1

~r1). This is a product of five independent gamma

distributions conditional on l0iwm0i and l2ivm2i. For the

hyperparameters a and r1, we assume that they are independent

and

a*U(0,A),

and r1*U(0,B),

where A, B are large constants so that the priors are uninforma-

tive. In the simulation study and the application, we choose

A~B~1,000.

To incorporate the data dependency into the modeling, we

define mcis, or marginal count, for pair i (1ƒiƒm) in sample s

(s~1,2) as the sum of two marginal counts of the two fragments of

the pair in the sample, where the marginal count of a fragment is

defined as the sum of the counts of all pairs containing that

fragment. The marginal counts of the pairs reflect the dependency

among the data within the sample. Note that the marginal count of

a pair is defined and used in the same way as in MC_DIST. Using

the two marginal counts of pair i in the two samples, we model the

w’s for pair i by a Dirichlet distribution as follows:

(w0i,w1i,w2i)*D(wt0i
:d,wt1i

:d,wt2i
:d)

independently for i~1,2, � � � ,m,

where wtji are constants defined as follows:

wt0i~
dmci

dmczdmci

: mci1

mci1zmci2

,

wt1i~
dmc

dmczdmci

,

wt2i~
dmci

dmczdmci

: mci2

mci1zmci2
,

and d is a hyperparameter. Here dmci~Dmci1{mci2D and

dmc~
1

m

Xm

i~1
dmci. The dmci stands for ‘‘difference of marginal

counts of pair i (between the two samples)’’. The motivation for

specifying such a prior distribution is that the larger the dmci is,

the more likely pair i has different interaction intensities between

the two samples. We also assume that d follows a uniform

distribution, i.e., d UU(0,D), where D is a large constant. In the

simulation study and the application, we choose D~100,000.

Note that dmci can be zero for some pairs, in those cases we

replace the quantity by a small value such as 0:5 to avoid the

corresponding parameter of the Dirichlet distribution being zero.

To determine the category of pair i, we define a latent discrete

random variable Zi such that:

P(Zi~j)~wji

and

(Xi,Yi)DZi~j*f (:Dlji,mji) for j~0,1,2,

independently for i~1, � � � ,m. The Zi is an indicator variable in

which Zi~j implies that the pair i is in category j, where j~0,1,2.

We conclude that pair i is in category j whenever

P(Zi~jDW’)~ max
0ƒlƒ2

P(Zi~lDW’), where W’~f(Xi,Yi),i~1, � � �

mg. The posterior probabilities are calculated by a Markov chain

Monte Carlo (MCMC) method. Specifically, in each iteration, Zi

and (w0i,w1i,w2i) are sampled from their own full conditional

Table 1. Category of pairs.

category sample onea sample two interaction intensityc

0 true true decrease

1 true true same

2 true true increase

3 true false decrease

4 false true increase

5 false false NA

aWhether the pair is a true pair or a false pair in sample one.
bWhether the pair is a true pair or a false pair in sample two.
cThe change of the interaction intensity of the pair from sample one to sample two: either increase, decrease or (stay the) same.
doi:10.1371/journal.pone.0097560.t001
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distributions (discrete distribution for Zi and Dirichlet distribution

for (w0i,w1i,w2i)). On the other hand, since the full conditional

distributions of the other parameters are not of a known form, we

utilize the Metropolis-Hastings algorithm using either a log-

normal distribution (for l0i, m0i, l1i, l2i, m2i, r1 or a) or a uniform

distribution (for d ) as the proposal distribution.

The above Two-Step Model is computationally efficient since it

only considers a subset of the observed data in step two, i.e., only

those pairs that are concluded to be true in both samples in step

one. However, the trade-off for such computational efficiency is its

ignorance of potential classification errors in step one. As such, we

propose the following One-Step Model as a remedy, which,

however, is more computationally intensive.

One-step Model
In this model, we assume that (Xi,Yi) follows a six-component

mixture distribution:

(Xi,Yi)*
X5

j~0

wjif (:Dlji,mji) independently for i~1,2, � � � ,n,

where
X5

j~0

wji~1, and l’s and m’s represent the interaction

intensities and are assumed to be under several constraints for

identifiability, as discussed below. The component probability

mass function f (:,:Dl,m) is the conditional joint distribution for two

independent Poisson random variables given that at least one of

them is at least k, i.e.,

f (X~x,Y~yDl,m)

~
lxmy

x!y!(elzm{(1zlz
l2

2!
z � � �z lk{1

(k{1)!
)(1zmz

m2

2!
z � � �z mk{1

(k{1)!
))

,

for (x,y)[N2
\f0, � � � ,k{1g2

, where N~f0,1,2, � � �g.
The constraints on the l’s and m’s are:

minfl0i,m0i,l1i(~m1i),l2i,m2i,l3i,m4igw maxfl4i,m3i,l5i,m5ig,

l0iwm0i and l2ivm2i,

for all i~1,2, � � � ,n. The constraints are imposed as such to make

the mixture components with indices 0 to 5 correspond

respectively to category 0 to 5: the first constraint comes from a

biologically supported assumption [13] that we expect the

interaction intensity to be higher for a true pair, and the other

two constraints comes from the nature of category 0 and category

2. Note that the last two constraints are the same as the constraints

on the l’s and m’s in the mixture model of the second step of the

Two-Step Model.

In addition to the data dependency that we discussed above, the

genomic locations of each pair relative to known DNA loci of

interest are also informative for our classification purpose. To

include the above two data features into the model, we cast the

above model into a Bayesian framework and make use of both

data features to specify the prior distributions of w’s. The details of

the Bayesian framework are described as follows.

We assume that

(l4i,m3i,l5i,m5i)*C(b,
b

r0
)4, and

(l0i,m0i,l1i,l2i,m2i,l3i,m4i Dl4i,m3i,l5i,m5i)*½N(mi,s
2)I(:wmi)�7:

I(l0iwm0i)I(l2ivm2i),

independently for i~1,2, � � � ,n, where mi~ maxfl4i,m3i,l5i,m5ig,

and b and
b

r0
are respectively the shape parameter and the rate

parameter of the gamma distribution (thus the mean of C(b,
b

r0

) is

b

b=r0
~r0). For the hyperparameters b, r0 and s, we assume that

they are independent and,

b*U(0,A),

r0*U(0,B),

and s*U(0,C),

where A,B,C are large constants so that such prior distributions

are uninformative. In the simulation study and the application, we

choose A~B~C~1,000.

To take the data dependency and the genomic locations of the

pairs relative to known DNA loci into account, we make use of two

pieces of additional data, the marginal count and distance, for each

pair and use them to specify the priors of the w’s. The marginal

count of a pair is as defined in the previous subsection to reflect

data dependency. The distance of a pair is defined as follows and it

measures the extent to which the locations of the pair relative to a

pair of known DNA loci of interest. For pair i, the distance disti is

the minimum of the following two values: the sum of the distance

between the midpoint of frag1i and the nearest midpoint of a

Transcription Factor Binding Site (TFBS) of protein P and the

distance between the midpoint of frag2i and the nearest gene

Transcription Start Site (TSS); the sum of the distance between the

midpoint of frag1i and the nearest gene TSS and the distance

between the midpoint of frag2i and the nearest midpoint of TFBS

of protein P. Here frag1i and frag2i are the two fragments of pair i

and P is the protein of interest in the ChIA-PET experiments. In

essence, disti measures the extent to which pair i is related to a

pair of DNA loci of interest for looping, one being TFBS and the

other being TSS. Note that the distance is defined in such way to

encourage anchoring of the pair by TFBS and TSS and is used in

the same way as in MC_DIST.

With mci1, mci2 and disti for pair i, we model

(w0i,w1i,w2i,w3i,w4i,w5i) by a Dirichlet distribution:

(w0i,w1i,w2i,w3i,w4i,w5i)

*D(wt0i
:d,wt1i

:d,wt2i
:d,wt3i

:d,wt4i
:d,wt5i

:d),

independently for i~1,2, � � � ,n, where wtji,0ƒjƒ5 are constants

defined as:
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wt0i~
ci

1zci

: dmci

dmczdmci

: mci1

mci1zmci2
,

wt1i~
ci

1zci

: dmc

dmczdmci

,

wt2i~
ci

1zci

: dmci

dmczdmci

: mci2

mci1zmci2
,

wti3~
1

1zci

: ai

1zaizbi

,

wti4~
1

1zci

: bi

1zaizbi

,

and wti5~
1

1zci

: 1

1zaizbi

,

and d is a hyperparameter. In the above equations,

dmci~Dmci1{mci2D and dmc~
1

n

Xn

i~1
dmci (as in the previous

section); ci~ minfai,big where ai~
rmcdi1

rmcd1

and bi~
rmcdi2

rmcd2

. Here

rmcdi1~
mci1

disti

, rmcd1~
1

n

Xn

i~1
rmcdi1; rmcdi2~

mci2

disti

,

rmcd2~
1

n

Xn

i~1
rmcdi2. The rmcdis stands for the ‘‘ratio of the

marginal count to the distance of pair i in sample s’’. The

motivations for specifying such a prior distribution are as follows.

First, the larger the rmcdis is, the more likely pair i is a true pair in

sample s. This is because that the larger mcis is, the more active

the two fragments of pair i are, thus pair i is more likely to be a

true pair in sample s; and that the smaller disti is, the more likely

the pair is observed because of the interaction between the nearby

TFBS and the nearby gene TSS. Second, the larger the dmci is,

the more likely the interaction intensities of pair i are different in

the two samples. We also assume that d follows a uniform

distribution, i.e., d UU(0,D), where D is a large constant and should

be large enough to balance the difference between mc and dist,

since they are in different units. In the simulation study and the

application, we choose D~100,000. Note that mci1, mci2 and

dmci can be zero for some pairs, in those cases we replace the

quantity by a small value such as 0.5 to avoid the corresponding

parameter of the Dirichlet distribution being zero.

To determine to which category pair i belongs, we define a

latent discrete variable Zi such that

P(Z~j)~wji

and

(Xi,Yi)D(Zi~j)*f (:Dlji,mji), for j~0,1,2,3,4,5,

independently for i~1, � � � ,n. The Zi is an indicator variable in

which Zi~j implies that pair i is in category j. We conclude that

pair i is in category j whenever P(Zi~jDW)~ max
0ƒlƒ5

P(Zi~lDW),

The posterior probabilities are calculated by a Markov chain

Monte Carlo (MCMC) method. Specifically, in each iteration Zi,

(w0i,w1i,w2i) and s2 are sampled from their own full conditional

distributions (discrete distribution for Zi, Dirichlet distribution for

(w0i,w1i,w2i) and inverse gamma distribution for s2). On the other

hand, since the full conditional distributions of the other

parameters are not of a known form, we utilize the Metropolis-

Hastings algorithm using either a log-normal distribution (for l0i,

m0i, l1i, l2i, m2i, l3i, m3i, l4i, m4i, l5i, m5i, r0 or b) or a uniform

distribution (for d ) as the proposal distribution.

Compared with the Two-Step Model, the above One-Step

Model models the count data from two samples jointly and thus

makes use of data more efficiently. It also takes the data

dependency and the relevance of each pair to known DNA loci

into account. Thus it is expected to make more accurate

classifications than the two-Step Model does. The trade-off is its

greater computational intensity.

Simulation Study
Fragment library. We generated a library of

52z52z66~170 DNA fragments cut by HindIII (a restriction

enzyme) in the human reference genome (hg19). Specifically, 52 of

the fragments contain only one AR binding site and no Octamer

transcription factor 1 (OCT1) binding site; 52 of the fragments

contain only one OCT1 binding site and no AR binding site; the

rest of the 66 fragments were randomly selected from the

fragments with no AR or OCT1 binding site, three from each

of the 22 autosomes. To facilitate later discussion, we call the

above three groups of fragments as group A, group group B, and group

C, respectively, and label the fragments as 1–52 (group A), 53–104

(group B) and 105–170 (group C).

The motivations for constructing such a fragment library are

that we wanted to imitate two ChIA-PET experiments aiming to

study genome-wide differential chromatin interactions bound by

AR in two different prostate cancer cells, and that OCT1 is an

important coregulator of AR in such cells [14]. The 52 fragments

with AR binding sites (fragments in group A) were thus designated

as fragments that mark TFBS, and the 52 fragments with OCT1

binding sites (fragments in group B) were designated as fragments

that mark gene TSS’s. The midpoint of each OCT1 binding site

on each group B fragment was designated as a gene ‘‘TSS’’. We

note that although our in-silico design does not match exactly to

the ChIA-PET experiment, the data generated are similar in

characteristics to the processed ChIA-PET data for analysis. For

example, fragment pairs with true interactions have greater chance

of ligations and thus larger counts of paired-end reads.

Pair library. We generated a library of 1600z3312~4912
fragment pairs using the above fragment library. The first

40|40~1600 fragment pairs were obtained by pairing the 40

fragments with the smallest distances (defined as follows) in group

A (with labels 1, � � � ,40, without loss of generality) with each of the

40 fragments with the smallest distances (defined as follows) in

group B (with labels 53, � � � ,92, without loss of generality). Here

the distance of a group A fragment is defined as the genomic

distance between the midpoint of the fragment and the midpoint

of the (unique) AR binding site on it, while the distance of a group B

fragment is defined as the genomic distance between the midpoint

of the fragment and the midpoint of the (unique) OCT1 binding

site, i.e., the gene ‘‘TSS’’, on it. The rest of the

24|66z24|66z12|12~3312 pairs were obtained as follows:

We randomly chose 12 fragments (with labels l1, � � � ,l12) from

fragments 1–40, and, together with fragments 41–52, paired them

with the 66 group C fragments to obtain 24|66 pairs. We also

randomly chose 12 fragments (with labels k1, � � � ,k12) from

fragments 53–92, and, together with fragments 93–104, paired
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them with the 66 group C fragments to get another 24|66 pairs.

Finally, we paired the fragments 41–52 with the fragments 93–104

to get the remaining 12|12 pairs. The pair library construction is

illustrated in Figure 1 and also in Figure 2. To facilitate discussion,

the set containing the first 1600 fragment pairs is hereinafter

referred to as pair set one and the set of the rest 3312 fragment

pairs is hereinafter referred to as pair set two.

Sampling probabilities. We simulated two ChIA-PET

count data sets using the above pair library, The sampling

probabilities for each simulation are described as follows.

In the simulation for data set one, we set the sampling

probabilities as follows. First, we divided the 1600 pairs in pair set

one into two sets of equal size: a true high set and a true low set,

shown as the green lines and red lines, respectively, in Figure 1. To

do this, we randomly selected 20 fragments (with labels 1–20

without loss of generality) from fragments 1–40, and randomly

selected 20 fragments (with labels 53–72 without loss of generality)

from fragments 53–92, and used the pairs formed by fragments 1–

20 and fragments 53–72, together with those formed by fragments

21–40 and fragments 73–92, to form the true high set. Other pairs

in pair set one were used to form the true low set. Then, we set the

sampling probabilities in such a way that the ratio of the sampling

probability of a true high pair, to that of a true low pair, and to

that of each of the rest 3312 pairs (pair set two), is 6 : 3 : 1. Thus

for each pair in the three sets, the sampling probabilities are

0:00057075, 0:000285375 and 0:000095139, respectively. In this

way, the pairs in set one were designated as true pairs and the pairs

in set two were designated as false pairs in the simulation for data

set one.

In the simulation for data set two, we set the sampling

probabilities as follows. First, we randomly chose three fragments

from fragments 1–20, with labels m1, m2 and m3. Second, we set

the sampling probabilities of the 40 pairs formed by fragment m1

and fragments 53, � � � ,92 to be twice of their old sampling

probabilities, i.e., either 2|0:00057075~0:0011415 or

2|0:000285375~0:00057075. We set the sampling probabilities

of the 20 pairs formed by fragment m2 and fragments 53, � � � ,72 to

be half of their old sampling probabilities, i.e.,

0:00057075=2~0:000285375. Further, we set the sampling

probabilities of the 40 pairs formed by fragment m3 and fragments

53, � � � ,92 to be 0:000095139, i.e., the sampling probability for a

false pair in the simulation for data set one. Third, we randomly

chose 10 pairs from the 144 pairs formed by fragments 41, � � � ,52
and fragments 93, � � � ,104, and set their sampling probabilities to

be three times of their old sampling probabilities, i.e.,

3|0:000095139~0:0002854. Finally, we set the sampling prob-

abilities of the remaining 4912{40{20{40{10~4802 pairs in

the pair library to be the same as their old sampling probabilities.

In this way, the 40 pairs formed by fragment m1 and fragments

53, � � � ,92 were designated as pairs in category 2; the 20 pairs

formed by fragment m2 and fragments 53, � � � ,72 were designated

as pairs in category 0; the 40 pairs formed by m3 and fragments

53, � � � ,92 were designated as pairs in category 3; the 10 pairs that

we randomly chose from pair set two were designated as pairs in

category 4; and the remaining 4802 were designated either as pairs

in category 5 or pairs in category 1, depending on whether or not

they are in pair set two. The above sampling probabilities are

illustrated in Figure 2.

Simulation process. In each simulation, We generated

50,000 fragment pairs from the pair library with the corresponding

set of sampling probabilities. For each sampled pair, we randomly

grouped the four ends of the two fragments into two groups and

ligated the two ends of each group with probability 0.8. There

were three types of ligation products: those that were formed by

single fragments with self ligations (self loops), those that were

formed by fragment pairs through a single ligation (open loops)

and those that were formed by fragment pairs with double

ligations (non-self closed loops). For each closed loop (either a self

loop or a non-self closed loop), we randomly started from a point

and cut along the loop (in one direction) according to a Poisson

process until we reached the starting point. For each open loop, we

randomly started from a point and cut along the loop (in both

directions) according to a Poisson process until we reached the two

ends of the loop. In this way we broke the ligation products into

many small pieces. Next from each end of the pieces that

contained ligation points we read 75 base pairs (bp reads) to get a

pair of 75 bp reads. We discarded those read pairs with (at least)

one read containing the ligation point to facilitate the following

mapping step. Then we mapped each read of a pair to the

reference human genome (hg19), and discarded those read pairs

with (at least) one read that cannot be uniquely aligned to the

genome. Next we considered each alignment (of a read) and

identified the fragment in the fragment library from which the

corresponding read is derived, and discarded those aligned pairs

with both corresponding reads were derived the same fragment,

i.e., aligned pairs that were the results of self loops. Finally we

associated each aligned pair with a pairing between two different

fragments in the fragment library to obtain a data set of counts of

the fragment pairs based on their frequencies.

Data analysis. We considered the two simulated data sets as

a joint simulated data set and applied two models (Two-Step

Model and One-Step Model) to the data. For each MCMC

algorithm used for MC_DIST or the three-component mixture

model of the second step of the Two-Step model, We set the total

number of iterations to be 6,000,000 and set the burn-in period to

be 1,200,000 to ensure its convergence. For the MCMC algorithm

used for the One-Step Model, we set the total number of iterations

to be 3,000,000 and set the burn-in period to be 1,500,000 to

ensure its convergence. The convergence of the three MCMC

algorithms were also confirmed by the respective trace plots of

posterior samples. Furthermore, for each MCMC algorithm, we

used Raftery and Lewis diagnostic [15] to ensure that the number

of iterations and the burn-in were large enough. We also used the

Gelman and Rubin’s convergence diagnostic [16] to further check

for convergence of the MCMC algorithms.

Application to ChIA-PET Data
To illustrate our method on real data, we applied the One-Step

Model to a two-sample RNA Polymerase II (Pol II) ChIA-PET

data set [17]: one of the samples is the breast cancer MCF7 cell

line and the other sample is the leukemia K562 cell line. The goal

of this experiment and analysis is to identify similarities and

differences in chromatin interactions mediated by Pol II in these

two cell lines. In particular, special attention is given to identifying

chromatin interactions that are unique to MCF7, that is, those that

exist in MCF7 but not in K562, category 3 according to our

classification scheme in this paper. For this reason, we threshold

our data to obtain 9,739 fragment pairs for which the read count

for MCF7 is at least 2, whereas the read counts of the

corresponding pairs in K562 were used without further thresh-

olding. As such, the read counts for K562 may or may not be at

least 2, and further, one would expect more pairs to be classified

into category 3 (loops unique to MCF7) than into category 4 (loops

unique to K562). For the MCMC algorithm used in the One-Step

Model, we set the total number of iterations to be 2,000,000 and

set the burn-in period to be 200,000 to ensure its convergence.

The convergence of the MCMC algorithms was also confirmed by

the respective trace plots of posterior samples. Furthermore, as in
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the simulation study, we used the Raftery and Lewis diagnostic

[15] to ensure that the number of iterations and the burn-in were

large enough. We also used the Gelman and Rubin’s convergence

diagnostic [16] to further check for convergence of the MCMC

algorithms.

Results

Simulation Study: Two-step Model
The classification results are summarized in Table 2. We used

the Cohen’s kappa [18] to evaluate the classification. Cohen’s

kappa is a statistical measure of inter-rater agreement for

categorical items. It is between 0 and 1, and larger values indicate

better agreement between two raters. It is more robust than simple

percent agreement calculation since it takes into account the

agreement occurring by chance. Here we treat the truth and the

Two-Step Model as two classifiers (raters). Based on the table, the

Cohen’s kappa between the Two-Step Model classification and the

truth is 0.85. It indicates good agreement [19]. The classification

error rate is
332

4477
~0:074. Specifically, the classification error

rates for category 0, 1, 2, 3, 4 and 5, are 0 (0=20), 0.209

(305=1462), 0.256 (10=39), 0.256 (10=39), 0.6 (6=10) and 0

(1=2907), respectively. Note that the classification error rates are
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Figure 1. Illustration of sampling probabilities for simulated data set one. Left figure: Pair set one. All orange points (fragments 1–40) are
connected to all blue points (fragments 53–92), either by green lines or by red lines. Fragments 1–20 and fragment 53–72, also fragments 21–40 and
fragments 73–92, are connected by green lines. Other lines are red. All pairs in this graph were designated as true pairs in the simulation for data set
one and the ratio of the sampling probabilities for a green line to that for a red line is 2:1. Right figure: Pair set two. All orange points (fragments 41–
52 and fragments l12 l12) and all blue points (fragments 93–104 and fragments k12 k12), are connected to all black points (fragment 105–170) by sky-
blue lines. Fragments 41–52 are connected to fragment 93–104 by gold lines. All pairs in this graph were designated as false pairs in the simulation
for data set one and were assigned the same sampling probability. The ratio of the sampling probabilities for a green line, to that for a red line, and to
that for a sky-blue/gold line is 6:3:1.
doi:10.1371/journal.pone.0097560.g001
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quite different for pairs in category 3 (0.256) and pairs in category

4 (0.6). One reason is that half (20) of the pairs of category 3 were

designated as true high pairs and all (10) pairs of category 4 were

designated as true low pairs in sample one. Thus in sample one,

the 20 true high pairs had larger counts and were more easily to be

classified correctly than those pairs of category 4 by MC_DIST.

Also note that we only simulated 39 (out of the total 40) pairs of

category 2 and 39 (out of the total 40) pairs of category 3. The

reason is that the two pairs involving fragment 80 (70 bp long) in

these two categories were always discarded during the simulation

processes as the simulations required to read 75 base pairs from

both ends of a ligation product without reaching the ligation point.

We then investigated the performance of the model used in the

first step, i.e., MC_DIST. The results are summarized in Table 3.

From the table, we see that MC_DIST achieved low type I error

rate (almost zero) and high power (0.93) for both data sets. Here

the Type I error rate is the proportion of false pairs that are

claimed as true pairs by the model, and the power is the

proportion of true pairs that are claimed as true pairs by the

model. For data set one, the true pairs with high sampling

probabilities (pairs in true high set, denoted by the italic numbers)
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Figure 2. Illustration of sampling probabilities for simulated data set two. Left figure: Pair set one. All orange points (fragments 1–40) are
connected to all blue points (fragments 53–92), either by dark green, green, red or gold lines. Fragments 1–20 (except m1,m2 and m3) and fragment
53–72, also fragments m1 , 21–40 and fragments 73–92, are connected by green lines. Fragment m1 and fragments 53–72 are connected by dark
green lines. Fragment m3 and fragments 53–92 are connected by gold lines. All other lines are red. The ratio of the four sampling probabilities for a
dark green line, to that for a green line, to that for a red line, to that for a gold line is 12 : 6 : 3 : 1. Right figure: Pair set two. All orange points
(fragments 41–52 and fragments l1–l12) and all blue points (fragments 93–104 and fragments k1–k12), are connected to all black points (fragments
105–170) by sky blue lines. Fragments 41–52 are connected to fragments 93–104 either by gold or red lines. There are 10 red lines in the graph, with
only 3 of them are shown for the sake of simplicity. The ratio of the sampling probability for a red line to that for a sky-blue/gold line is 3 : 1. The sky-
blue lines and gold lines (in both figures) represent false pairs and were assigned the same sampling probabilities.
doi:10.1371/journal.pone.0097560.g002
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are much more likely to be correctly classified as a true pair than

the pairs with low sampling probabilities (pairs in true low set,

denoted by the bold numbers), as one would expect. The same

tendency was also observed in data set two.

Next, we investigated the performance of the model used in the

second step, i.e., the three-component mixture model. The results

is summarized in the subtable of Table 2 formed by the first three

columns. Among the 1359 (sum of all numbers in the first three

rows of the subtable) pairs that were correctly classified by

MC_DIST as true pairs in both samples, 1206 (sum of the three

diagonal numbers of the subtable) pairs were classified correctly

into their corresponding categories. The percentage of misclassi-

fications is 153=1359~0:113. The misclassifications are almost all

(152 out of 153) in category 1, i.e., true pairs with no change of

interaction intensities. Those 152 pairs were wrongly classified

either into category 0 or category 2. The reason is that the pair-

specific prior distributions of the mixture weights that we used in

the three-component model tend to affect the posterior probabil-

ities of these pairs through the marginal count information.

Simulation Study: One-step Model
The classification results is summarized in Table 4. Again we

used the Cohen’s kappa to evaluate the classification, with the

truth and the One-Step Model treated as two classifiers (raters).

Based on the table, the Cohens kappa between the One-Step

Model classification and the truth is 0.84, which is about the same

as the Cohens kappa between the Two-Step Model classification

and the truth. The classification error rate is 352
4477

~0:079, which is

slightly higher than the Two-Step Model. Specifically, the

classification error rate for category 0, 1, 2, 3, 4 and 5, are 0

(0=20), 0.222 (324=1462), 0.087 (3=39), 0.400 (16=39), 0.6 (6=10)

and 0.001 (3=2907), respectively. Compared with the Two-Step

Model, the classification error rate for category 2 dropped

drastically (from 0.256 to 0.087), although the classification error

rate for category 3 increased (from 0.256 to 0.400). Note that four

pairs in category 4 were misclassified into category 5. This is

because these four pairs were designated as true low pairs in

sample two and thus had moderate counts, and they had small

marginal counts in sample two and their distances are large.

Therefore, it was hard for the One-Step Model to classify them

correctly as true pairs in data set two.

We then investigated the use of One-Step Model as a tool to

distinguish true pairs from false pairs in the simulation study.

Specifically, for each pair we classified it either as a true pair or a

false pair in each sample according to the category to which it was

classified by the One-Step Model. The resulted classifications were

then compared with those of MC_DIST and we found that the

One-Step Model has slightly higher type I error rates and higher

powers than MC_DIST. The results are summarized in Table 5.

Application to ChIA-PET Data
We analyzed the data using the One-Step Model because the

number of fragment pairs (9739) is relatively small and because the

model is considered to be more efficient by taking the uncertainty

in loop detection into consideration. The two data sets were

normalized using the number of raw reads in each experiment.

The proportions of fragment pairs that were classified into

category 0, 1, 2, 3, 4 and 5 (see Table 1 for the descriptions of

these 6 categories) are: 0.009 (86=9739), 0.121 (1180=9739), 0.040

(393=9739), 0.100 (977=9739), 0.001 (5=9739), and 0.729

(7098=9739), respectively. Note that 73% of them are classified

as false pairs in both cell lines, which is not surprising as there are

many that have small counts (Figure 3). For pairs with true

interaction in at least one of the cell lines, there are a number of

examples that show consistent results with what have been

documented in the literature. For example, the chromatin

interaction for a pair on chromosome 2 (fragment 11670480–

11672120 and fragment 11681427–11683543), with a count of 15
in cell line MCF7 and a count of 1 in K562, was classified into

category 3. This interaction is around the gene GREB1, which is

known to be a true interaction in the MCF7 cell line validated by

3C experiment [17], but not in the K562 cell line, that is, the

interaction is unique to MCF7, the type of interactions that is of

particular interest.

To gain a more comprehensive and greater understanding of

the results for all pairs considered, in Figure 3, we plotted the

count of fragment pair for MCF7 (x-axis; log-scale) versus the

count of the same fragment pair for K562 (y-axis; log-scale).

Results for categories 0, 1, and 2 (for which the interactions are

true ones for both cell lines) are intuitively sensible. All the green

triangles (category 2, indicating K562 has higher looping intensity

than MCF7) are above the diagonal line, whereas the black

squares (category 0, in which MCF7 is inferred to have higher

looping intensity than K562) are below the diagonal line, with a

couple exceptions. On the other hand, pairs that are marked as

red circles (category 1, in which MCF7 and K562 have same

looping intensity) are scattered around the diagonal line. Of

course, other than the counts themselves, marginal counts and

distance to TFBS and TSS also contribute to the classification,

whose effects are displayed on Figure 3 as well. For example, the

few pairs for which the read counts for MCF7 are slightly smaller

than the corresponding counts in K562 (differences in counts are

Table 2. Simulation result: Two-Step Model.

Classification Totala

0 1 2 3 4 5

0 20b 0 0 0 0 0 20

1 72 1157 80 57 59 37 1462

Actual

2 1 0 29 0 9 0 39

3 10 0 0 29 0 0 39

4 0 1 0 0 4 5 10

5 0 0 0 0 1 2906 2907

aTotal number of actual pairs in the row category.
bThe number of pairs in the row category that are classified as the pairs in the column category by the Two-Step Model.
doi:10.1371/journal.pone.0097560.t002
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all 1) but are classified into category 0 are primarily due to the

marginal counts in MCF7 being much larger than the corre-

sponding marginal counts in K562. As another example, pairs

with the same counts in both cell lines may be classified into

different categories (symbols overlapping one another in Figure 3),

for which not only different marginal counts, but also different

distances, may play big roles. One particular instance is

noteworthy: there are multiple pairs in which the count for

MCF 7 is 2 whereas the count for K562 is 3, but these pairs are

classified into five different categories - 0, 1, 2, 4, and 5. For pairs

classified into category 3 (unique loops for MCF7), the counts for

MCF7 are indeed much larger than the corresponding counts for

K562, almost all being at most 1 (blue crosses in Figure 3). These

results answered the scientific question that there are indeed

chromatin interactions that are unique to MCF7, and the results

are consistent with those in the literature, such as the GREB1 gene

discussed above. Finally, there are only a few pairs that are

classified into category 4 (loops unique to K562). For three of these

pairs, although the counts for MCF7 are moderate (but relatively

much smaller compared to the counts for K562), the distances (two

of them) can be much larger than a typical distance, contributing

to the loops for MCF7 classified as false. The other two pairs both

have a count of 2 for MCF7 and 3 for K562 (overlapping with

other pairs in Figure 3 as mentioned above) and are classified as

such mainly due to their marginal counts for K562 being much

larger (about 300) than the corresponding counts for K562 (about

60). The number of pairs classified into category 4 being so small is

as expected given our focus on identifying chromatin interactions

that are unique to MF7, and hence the thresholding scheme. Had

we treated the two cell lines in a equal footing without thresholding

the MCF7 counts, we would have seen a more symmetrical plot

where there would be many more pairs classified into category 4

and shown along the y-axis where the MCF7 counts are 0 and 1.

To further illustrate the different patterns of count differences in

these categories, we provide, in Figure 4, a boxplot of the

differences in counts (MCF7 - K562) for pairs classified to each

category. One can be seen clearly that for categories 0 and 3,

almost all the differences are above 0, whereas for categories 1 and

4, the differences are below 0. For the two categories (2 and 5)

where interactions in neither cell lines is a true one or where the

interaction intensities for the two cell lines are inferred to be the

same, the differences scatter around 0.

Discussion

Chromatin interactions mediated by a protein of interest are of

great scientific interest, as chromatin interactions can have

different intensities in different cells and such differences can be

associated with a disease. A recent technique, Chromatin

Interaction Analysis by Paired-End Tag Sequencing (ChIA-

PET), was developed to study chromatin interactions mediated

by a protein of interest in a genome-wide manner. Thus, a

question of interest is how to detect differential chromatin

interactions based on two sample ChIA-PET (count) data.

In this paper, we proposed a Two-Step Model and a One-Step

Model to identify chromatin interactions with different intensities

in two samples. Both models classify the observed fragment pairs

into six categories. The Two-Step Model consists of two models:

Table 3. Simulation result: Step one of the Two-Step Model (MC_DIST).

Actual

2a +b

2c +d Type I error 2 + Power

data set 1 2707 1 0.0004 100e+4 f 679+776 0.933

data set 2 2724 11 0.004 97 1432 0.937

aActual false pair.
bActual true pair.
cModel classified pair as false pair.
dModel classified pair as true pair.
ePairs in true low set.
fPairs in true high set.
doi:10.1371/journal.pone.0097560.t003

Table 4. Simulation result: One-Step Model.

Classification Totala

0 1 2 3 4 5

0 20b 0 0 0 0 0 20

1 127 1138 120 30 26 21 1462

Actual

2 1 0 36 0 2 0 39

3 16 0 0 23 0 0 39

4 0 1 1 0 4 4 10

5 0 2 1 0 0 2904 2907

aTotal number of actual pairs in the row category.
bThe number of pairs in the row category that are classified as the pairs in the column category by the One-Step Model.
doi:10.1371/journal.pone.0097560.t004
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the MC_DIST (used in the first step) and a three-component

mixture model (used in the second step), and the One-Step Model

is a six-component mixture model. All three models are cast into

Bayesian frameworks to take the data dependency and the extent

to which a fragment pair is related to the DNA loci of interest into

account. Since our goal is to identify all differential chromatin

interactions regardless of whether such interactions are cis-

chromosomal or trans-chromosomal [20], no distinction is being

made in this paper. However, our method can be modified to

accommodate such a distinction if desired. All the models have

been included in an R-package MDM which is available at http://

www.stat.osu.edu/ statgen/SOFTWARE/MDM. In the pack-

three-component mixture model and one for the One-Step Model.

We evaluated the proposed methodology using a large scale

simulation study. We further applied the One-Step Model to

analyzing a two-sample ChIA-PET data set to characterize their

similarities and differences in chromatin interactions, focusing on

interactions that are unique to MCF 7. The results of the

simulation study showed that both methods performed well, with

low type I error rates and reasonably good power. The results

from the real data analysis shows that the inferences appear to be

sensible based on known biological knowledge and data charac-

teristics. By making use of the data more efficiently, the One-Step

Table 5. Simulation result: Comparison of One-Step Model and MC_DIST as tools to distinguish true pairs from false pairs.

Actual

2a +b

2c +d Type I error 2 + Power

Sample one 2703 e (2707) f 5 (1) 0.0018 (0.0004) 48 (104) 1511 (1455) 0.969 (0.933)

Sample two 2716 (2724) 19 (11) 0.0069 (0.0040) 53 (97) 1476 (1432) 0.965 (0.937)

aActual false pair.
bActual true pair.
cModel classified pair as false pair.
dModel classified pair as true pair.
eNumbers outside of the parentheses represent the numbers of classifications from the One-Step Model.
fNumbers inside the parentheses represent the numbers of classifications from MC_DIST.
doi:10.1371/journal.pone.0097560.t005

Figure 3. One-Step Model result on the real data. The x-axis is the count in the cell line MCF7 and the y-axis is the count in the cell line K562.
Note that the entire x-axis and the y-axis are drawn according to the log-scale to accommodate the large range of counts. To include those pairs with
count 0 in the cell line K562, we replaced the 0’s by 0.5’s and changed the label from 0.5 to 0 on the y-axis. Each point represents a fragment pair and
its color and shape indicates the category it was classified into by the One-Step Model.
doi:10.1371/journal.pone.0097560.g003
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age, there are three main functions: one for MC_DIST, one for the

http://www.stat.osu.edu/%7Estatgen/SOFTWARE%E2%80%8B/MDM
http://www.stat.osu.edu/%7Estatgen/SOFTWARE%E2%80%8B/MDM


Model is expected to outperform the Two-Step model. However,

it is more computational intensive than the Two-Step Model.

When the number of MCMC iterations is set to be the same, the

computing time of the One-Step Model is about 40% longer than

that of the Two-Step Model in the simulation study. We expect

that for larger cut-off value of the counts (k in the models), the

Two-Step Model is even more computationally efficient than the

One-Step model, since many pairs with small counts (less than k)

are excluded in the first step and only a subset of the observed data

is considered in the second step.

To show the benefits of incorporation of data dependency and

the extent to which a fragment pair is related to the DNA loci of

interest, we modified the three-component mixture model used in

the second step of the Two-Step Model and the One-Step Model

so that the mixture weights are common for all pairs and assumed

that the mixture weights of each modified model follow a

uninformative prior distributions, i.e., the uniform distribution

over the corresponding simplex. Then we ran the modified models

on the simulated data and compared the results with those of the

original models. The modified three-component mixture model

induced an unacceptable misclassification rate for pairs in category

0 (20=20~1) or category 2 (28=30~0:933), although it committed

only one misclassification for the 1309 pairs in category 1. The

modified On-Step Model also performed poorly, It classified

almost all the pairs which are true pairs in both samples as pairs

with no change of interaction intensities (1443=1521~0:95), and

the Cohen’s kappa for the agreement between the actual and the

classification is only 0.54, indicating a moderate agreement [19].

Although the proposed models perform well in both the

simulation study and the application, there is still room for

improvement. For example, we can incorporate the ChIP-Seq

data and RNA-Seq data into the One-Step Model and MC_DIST

to improve the calculation of distance information for pairs. In

these two models, we define the distance for a fragment pair as the

sum of two distances: the distance between the midpoint of one

fragment and its closest gene TSS and the distance between the

midpoint of the other fragment and its closest transcription factor

binding site (TFBS), where the transcription factor is the protein of

interest. To calculate the distances, we use the gene annotation to

locate the gene TSS’s and a list of known TFBS’s (a union of

TFBS’s identified in multiple experiments on multiple cell types) to

locate TFBS’s. However, for some fragment pairs, such gene and

TFBS might be irrelevant to the ChIA-PET study, thus including

such distances into MC_DIST might lead to wrong classifications.

We can improve the performance by considering binding sites of,

and genes that are regulated by, protein of interest. This would

require an integrated analysis of the ChIA-PET, RNA-Seq and

ChIP-Seq data.

Acknowledgments

We thank the editor and reviewers for their helpful comments and

suggestions, which we believe have led to improvement of the paper.

Author Contributions

Wrote the paper: SL LN. Designed the overall study: SL. Developed the

methods: LN SL. Implemented the software: LN. Performed the analysis:

LN. Provided the real data and validated the real data analysis results: GL.

Contributed to, read, and approved the final manuscript: LN GL SL.

Figure 4. Boxplot of the count differences for each category for the real data. The x-axis is the category that the fragment pair was
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