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Abstract
Helminths have evolved numerous pathways to prevent their expulsion or elimination from

the host to ensure long-term survival. During infection, they target numerous host cells,

including macrophages, to induce an alternatively activated phenotype, which aids elimina-

tion of infection, tissue repair, and wound healing. Multiple animal-based studies have dem-

onstrated a significant reduction or complete reversal of disease by helminth infection,

treatment with helminth products, or helminth-modulated macrophages in models of allergy,

autoimmunity, and sepsis. Experimental studies of macrophage and helminth therapies are

being translated into clinical benefits for patients undergoing transplantation and those with

multiple sclerosis. Thus, helminths or helminth-modulated macrophages present great pos-

sibilities as therapeutic applications for inflammatory diseases in humans. Macrophage-

based helminth therapies and the underlying mechanisms of their therapeutic or curative

effects represent an under-researched area with the potential to open new avenues of treat-

ment. This review explores the application of helminth-modulated macrophages as a new

therapy for inflammatory diseases.

Introduction
Regulation of macrophage activity and function is essential to balance tissue homeostasis, driv-
ing or resolving inflammation in most disease processes. The inflammatory or anti-inflamma-
tory activities of macrophages are shaped in a tissue- and signal-specific manner, enabling
macrophages to induce various activation patterns and develop specific functional programs
(Fig 1) [1,2].

A recent study in airway hyperreactivity has demonstrated that local macrophages acquire
an alternatively activated phenotype (AAM) with regulatory aspects that prevent the develop-
ment of pathology by inducing antigen-specific CD4+ FoxP3+ T regulatory (Treg) cells [3]. In a
skin allergy model, monocytes that are recruited to the site of inflammation express high levels
of the typical AAMmarkers arginase-1 (arg-1), chitinase-like proteins (CLP), and programmed
death-ligand (PD-L)2 and reduce inflammation [4]. Hence, the anti-inflammatory and immu-
noregulatory functions of macrophages could be harnessed for inflammatory disorders, imply-
ing that studies to understand their maintenance and stability in vivo are essential.
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Helminths typically induce T helper (Th)2 responses but have also developed multiple ways
to regulate the host immune system to ensure their long-term survival in the host. This regula-
tion can affect bystander allergic or autoimmune diseases, and it has become clear that the
presence or absence of helminths in humans has a major influence on the prevalence of such
diseases. According to the hygiene hypothesis, improvements in public health have reduced
incidences of bacterial, viral, and parasitic diseases, which correlate with an increase in chronic
autoimmune inflammatory and allergic disorders. Epidemiological studies demonstrate the
inverse relationship between helminth infections and inflammatory bowel disease (IBD) [5] or
allergies [6,7]. Multiple experimental studies in mice recapitulate this negative correlation and
show disease improvement with concurrent helminth infections, allowing underlying mecha-
nisms to be unravelled.

Several immune cells become activated in helminth infection, with Tregs, regulatory B
(Breg) cells, and AAM representing master regulators of pathology [8]. This review focuses on
helminth-induced immunoregulatory macrophages, which can protect against unrelated
inflammation and parasite-induced tissue damage [8–10].

Abundant evidence demonstrates the potential of immunosuppressive, macrophage-tar-
geted therapies in the treatment of renal disease, diabetes, inflammatory diseases, and trans-
plantation rejection. In a chronic inflammatory renal disease model, macrophages polarized in
vitro with interleukin (IL)-4 and IL-13 ameliorate disease severity and injury after transfer into
mice with the disease [11]. In diabetic mice, transfer of macrophages treated with a combina-
tion of IL-4, IL-10, and transforming growth factor (TGF)-β protects up to 80% from the

Fig 1. Origin and activation spectrum of murine and humanmacrophages.Modified fromMurray et al.
[1] and focused on M1 and M2macrophages only.

doi:10.1371/journal.ppat.1005480.g001
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condition [12]. M2 macrophages reduce proinflammatory Th1 and Th17 responses and disease
severity in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple
sclerosis (MS) [13]. Similarly, M2 macrophages can protect from septic shock in a model of
cecal ligation and puncture [14]. These studies show great promise for the application of mac-
rophages in chronic diseases.

Helminth-Modulated Macrophages
Macrophages are key innate immune cells that encounter helminths upon initial infection. The
macrophage immunoregulatory phenotypes that develop during helminth infection divert
anti-helminth immunity to induce host tolerance, parasite survival, and repair of any tissue
injury caused by larvae or eggs [15,16].

Murine macrophages that develop in helminth infections express arg-1, resistin-like mole-
cule (RELM)-α, CLPs, mannose receptor C type (MRC)-1 [17], and proliferate in situ [18–20].
In murine models of Schistosoma mansoni infection, arg-1–positive macrophages suppress IL-
12 and IL-23 production [21]. In Nippostrongylus brasiliensis infection, gut macrophages
express arg-1, RELM-α, and Ym1 in an IL-4– and IL-13–dependent manner [22], and their
depletion allows parasite persistence. Interestingly, neutrophils can also promote the develop-
ment of M2 macrophages, which subsequently adhere to helminth larvae, increasing their mor-
tality; these macrophages can transfer protection to naïve animals [23]. In human filarial
infections, different monocyte phenotypes exist depending on the individual’s disease status. In
asymptomatic Brugia malayi infection, monocytes express typical M2 markers, which can be
recapitulated by stimulation of human monocytes with filarial antigen or live microfilariae in
vitro [24–26].

Defined helminth products can also act on macrophages to induce specific regulatory phe-
notypes; great efforts have been made to identify helminth products with therapeutic potential
[27]. A clear example of this is the filarial molecule ES-62 from Acanthocheilonema viteae,
which targets macrophages to repress IL-12 in cells exposed to lipopolysaccharide (LPS) and
interferon (IFN)-γ [28,29]. A cysteine protease inhibitor from A. viteae (AvCystatin) is recog-
nised and taken up by macrophages to induce phosphorylation of the mitogen-activated pro-
tein kinase signalling pathways ERK1/2 and p38, resulting in IL-10 production [30]. These
macrophages also express arg-1, PD-L1, and PD-L2, promote IL-10 production in CD4+ T
cells in a cell contact–dependent manner, and protect against allergy and colitis upon adoptive
transfer [9]. In summary, helminths modulate macrophages to develop distinct phenotypes
and functions that reduce or prevent host immunopathology by inducing regulatory cell popu-
lations or diverting proinflammatory effector cells (Fig 2).

This cell population may be taken advantage of to develop new therapeutic agents and treat
unrelated inflammatory diseases (Box 1).

Application of Helminth-Modulated Macrophages in Autoimmune
Diseases
It is important to establish whether, once differentiated, the regulatory phenotype of helminth-
modulated macrophages is stable enough to treat chronic diseases. We aim to instigate a dis-
cussion by reviewing current data on these macrophages in the treatment of inflammatory dis-
eases (Fig 3).

Helminths and macrophages in allergy and asthma
Allergies are driven by dysregulated Th2 responses, predicting that helminth infection might
exacerbate these inflammatory disorders. Nevertheless, the strong regulatory mechanisms
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employed by helminths suppress Th1- and Th2-mediated diseases. We have previously
reviewed helminth infections that mediate protection in allergy-related experimental animal
models [31]; we describe here those that illustrate macrophages as potential therapeutic targets
for these and other diseases.

Lung macrophages are key players in asthma and develop a defined activation status that
modulates adaptive immune responses by local T cells. Despite the fact that lung macrophages
are involved in fibrogenesis in asthma [32], it has been shown that tissue-resident macrophages
can induce FoxP3+ Treg cells [3]. In a murine model of ovalbumin (OVA)-induced airway
hyperreactivity, treatment with AvCystatin reduced eosinophil lung recruitment and

Fig 2. Anti-inflammatory macrophages derived from the intestine, tissue, or blood, stimulated by helminths or their products, and their
mechanism of action.

doi:10.1371/journal.ppat.1005480.g002
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production of OVA-specific immunoglobulin (Ig)E, total IgE, and allergen-specific IL-4,
thereby diminishing disease symptoms. Depleting IL-10 or macrophages reversed these antial-
lergic effects, implicating the therapeutic potential of macrophages in this model [33,34]. In
fact, transfer of AvCystatin-treated macrophages to mice with airway hyperreactivity sup-
pressed clinical disease symptoms [9].

A recent clinical trial focused on helminth therapy in rhinitis [35–37], in which patients
were treated with Trichuris suis ova. While an antiparasitic immune response developed in
these patients, neither a redirection of allergen-specific immune responses nor a therapeutic
effect was achieved. Similarly, experimental hookworm infection did not lead to improved out-
comes in a clinical trial with patients suffering from asthma [38]. However, allergic mice
treated with excretory/secretory (E/S) products from T. suis had reduced allergic airway hyper-
reactivity after challenge [39], which might be a reflection of the route of application or the
amount of helminth-derived immunomodulatory molecules available in this setting. Thus,

Box 1. Characteristics of Selected Inflammatory Diseases and
Widely Used Animal Models

Allergy: Strong Th2 responses in mucosal tissues or skin to environmental and food
antigens involving eosinophils, mast cells, and IgE. Animal model: Allergic airway
inflammation using sensitization and challenge with model allergens (ovalbumin).

Inflammatory Bowel Disease (IBD): Autoimmune disease. Ulcerative colitis is char-
acterized by a dominant CD4+ Th1 response of the colon.

Crohn‘s Disease can occur through the entire length of the gastrointestinal tract and
is typically associated with an excess of Th2 cytokines. Animal model: spontaneous
development of colitis in IL-10–deficient mice or in T and B cell–deficient mice upon
transfer of antigen-experienced T cells. Chemical-induced colitis is based on disruption
of the intestinal barrier and T cell response against autologous proteins.

Diabetes: Type 1 diabetes (T1D) occurs early in life and is immunologically driven,
primarily by a strong CD8+ T cell response that destroys pancreatic β cells. Type 2 Diabe-
tes (T2D) is associated with lifestyle and nutrition factors.

Animal model: Nonobese diabetic (NOD) mice develop symptoms of T1D spontane-
ously at about 12 weeks of age.

Multiple Sclerosis (MS): Complex demyelinating inflammatory disorder of the cen-
tral nervous system involving humoral and cellular (Th1 and Th17) immune responses.
Animal model: Experimental autoimmune encephalomyelitis (EAE) is induced by injec-
tion of myelin-oligodendrocyte glycoprotein and adjuvants and mirrors major aspects of
the complex pathophysiology of MS.

Rheumatoid Arthritis (RA): Autoimmune disease causing inflammation and
destruction of the joints. It is a systemic disease that exhibits extra-articular manifesta-
tions as well. Animal model: Collagen-induced arthritis (CIA). Tissue injection of colla-
gen together with complete Freud‘s adjuvants in susceptible mouse strains.

Sepsis: A serious medical condition characterized by dysregulated systemic inflam-
matory responses towards microbial stimuli followed by immunosuppression. Animal
model: Bolus injection of Toll-like receptor agonists or cecal ligation and puncture,
which mimics the polymicrobial sepsis observed in human disease.
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promising preclinical data need to be translated to show definitive clinical benefits for patients
with allergic disorders.

Helminths and macrophages in inflammatory bowel disease and coeliac
disease
Distortion of the intestinal barrier and immune response to intestinal bacteria can lead to IBD,
including ulcerative colitis and Crohn's disease. Tissue macrophages are present in high num-
bers in the intestine and present a good target for helminth therapy because of their multiple
activation states. In healthy individuals, lamina propria macrophages maintain intestinal
homeostasis by inducing Tregs [40,41], while in active IBD, macrophages contribute to pathol-
ogy by expressing multiple proinflammatory cytokines [42]. M1 macrophages invading the
intestinal tissue drive the disruption of the epithelial barrier through dysregulation of tight
junction proteins and epithelial apoptosis [43]. In contrast, patients with inactive Crohn's dis-
ease have higher levels of M2 macrophages [44], which are also important in inducing protec-
tion against IBD in mice [45]. Thus, helminth-induced M2 macrophages and Tregs may
contribute to protection against IBD. Mice infected with Hymenolepis diminuta [46] and
treated with the adult worm extract [47] or treated with IL-4/IL-13–differentiated M2 macro-
phages [44] have significantly reduced pathology in experimentally induced colitis; this protec-
tive effect is abrogated when IL-10 [46] or macrophages [44] are depleted. Murine infection
with S.mansoni prevents colitis in a macrophage-dependent but IL-4- and IL-13–independent
manner, representing another population of suppressive macrophages [48].

Intriguingly, experimental hookworm infection combined with gluten microchallenge
induces tolerance in patients with coeliac disease, an autoimmune disease resulting from gluten
intolerance [49]. The contribution of macrophages was not evaluated in this setting.

Multiple clinical trials are investigating the use of T. suis ova therapy in IBD and have
shown moderate success (see Fig 3) [50,51]. The safety of this treatment, threatened by the col-
onization and invasion of the host by T. suis, has been much debated and requires treated
patients to be monitored closely [52–55]. An alternative approach would be to administer char-
acterized helminth products such as AvCystatin or transgenic probiotic bacteria expressing
helminth immunomodulators, which lead to diminished disease scores in murine IBD models

Fig 3. Experimental evidence and clinical trials highlighting the potential of helminth andmacrophage
therapy. + = positive outcome,— = no improved outcome, # = under investigation, o = no data available, *
and coeliac disease. IBD: Inflammatory bowel disease, MS: Multiple sclerosis, RA: Rheumatoid arthritis. [A]:
NCT01279577, [B]: NCT01576471, [C]: NCT01434693, [D]: NCT01953354, [E]: NCT01433471, [F]:
NCT01661933, [G]: NCT014113243, [H]: NCT00645749, [I]: NCT01006941, [J]: NCT01470521, [K]:
DHRS0005323.

doi:10.1371/journal.ppat.1005480.g003
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by reducing numbers of inflammatory macrophages [33,56]. Nevertheless, there are currently
no clinical trials addressing the role of helminth-modulated macrophages in protection against
IBD. Future studies should translate the encouraging experimental evidence into clinical bene-
fits for patients.

Helminths and macrophages in diabetes
Both environmental and genetic factors play a role in the development of diabetes, and inci-
dences of this condition have increased dramatically in the past 30 years in developed and
newly industrialized countries [57]. Studies have demonstrated an inverse correlation between
diabetes (type 1 [T1D] and type 2 [T2D]) and helminth infections [58]. Helminth products
have also been demonstrated to reduce incidences of diabetes in animal models [58–61]. Early
studies suggested that macrophages could exacerbate T1D, in which macrophage depletion
ameliorated disease [62]. As T1D is a Th1-driven disease, it is likely that the macrophages
involved are classically activated, which could be redirected by a helminth infection. Nonobese
diabetic (NOD) mice infected withHeligmosomoides polygyrus have augmented numbers of
Tregs and Th2 responses as well as an infiltration of M2 macrophages and increased IL-10
expression in the pancreatic lymph nodes [63]. Injection of schistosome egg antigen into NOD
mice induces arg-1 and RELM-α expression in macrophages and modulates T cell responses
[64]. In another diabetes model, infection with Taenia crassiceps attenuates disease in two dif-
ferent mouse strains and is accompanied by high levels of IL-4 and M2 macrophages [65]. To
date, there are no clinical trials examining the application of helminths or macrophages in
T1D, indicating an open area for future research.

Helminths and macrophages in multiple sclerosis
MS is an inflammatory autoimmune disorder driven by dysregulated Th1 and Th17 responses,
resulting in a demyelinating disease that affects the central nervous system (CNS). Environ-
mental and genetic factors may be involved in disease onset [66]. As MS progresses, acute
inflammatory lesions develop when the integrity of the blood–brain barrier is disturbed, with
CD4+ Th1, Th17 cells, and CD8+ cells becoming activated by mature dendritic cells [67].Vari-
ous studies have demonstrated that helminth-infected patients with MS have fewer relapses
and inflammatory changes than uninfected patients, while removal of helminth infection exac-
erbates MS disease [68–70].

Different helminth species have been studied for their ability to modulate unwanted inflam-
matory responses in MS [71]. Mice with EAE immunised with S.mansoni eggs have lower dis-
ease severity; clinical scores and cellular infiltrates are reduced, and CD11b+ macrophages
isolated from the CNS show decreased IL-12 expression [72]. Schistosomal egg antigen and a
single schistosome glycan were also effective in protecting mice against EAE [73,74]. The
importance of M2 macrophages that produce IL-10 and protect mice from developing EAE has
also been described [75].

While no clinical trials currently exist that use macrophages to treat MS, trials using T. suis
ova (TSO) or hookworm larvae are underway or already present results from a small cohort of
patients (Fig 3). While both studies show that TSO is safe, the therapeutic effect is ambiguous:
one study reports a decrease in the number of CNS lesions observed by magnetic resonance
imaging [76] while a comparable study did not detect clinical improvement [77].

Helminths and macrophages in rheumatoid arthritis
Multiple experimental helminth-based treatment strategies have been tested in rheumatoid
arthritis (RA), a chronic inflammatory disorder [78]. While the exact disease cause is unknown,
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dysregulated immune responses are important, as high levels of tumour necrosis factor (TNF)
and IL-1β have been detected in inflamed synovial membranes. T cells from synovial tissue
express Th1- and Th17-associated cytokines and activate neighbouring macrophages that
release large amounts of TNF and IL-1β. These and other macrophage-derived proinflamma-
tory cytokines drive much of the inflammation and implicate macrophages as key players in
disease [79]. Current treatments include nonsteroidal anti-inflammatory drugs, which can
have potentially detrimental long-term side effects [80]. ES-62 shows great potential to treat
dysregulated inflammatory disorders [81]. ES-62 prevents collagen-induced arthritis when
injected into mice by downregulating IL-17 and MyD88 [82] and restoring levels of IL-10-pro-
ducing B cells and reducing intra-articular plasma cell infiltration [83]. Introduction of ES-62
in a coculture of T cells from patients with RA and macrophage cell lines significantly reduced
macrophage TNF expression compared with ES-62–untreated cells [84]. A synthetic analogue
of ES-62 prevented experimental arthritis and inhibited macrophage-derived IL-1β [85].
Numerous therapies for RA are in preclinical or clinical trials, which aim to neutralise or
inhibit many macrophage-related disease-driving mechanisms [86]. However, as yet, only one
clinical trial assesses helminth infection as a potential therapy for RA (Fig 3).

Helminths and macrophages in systemic inflammation
Recently, it was shown that helminths and their products can decrease the prevalence of sepsis
and improve the outcome of systemic bacterial infection and inflammation [87–91]. Epidemio-
logical data demonstrated a lower prevalence of filarial infection in patients with sepsis than in
healthy individuals, suggesting that preexisting helminth infection prevents sepsis development
[87]. Fundamental evidence demonstrating that helminth-modulated macrophages improve
sepsis came from a murine experimental filarial infection, in which gene expression profiles of
macrophages modulated by Litosomosoides sigmodontis illustrated decreased Toll-like receptor
(TLR) responsiveness. Transfer of macrophages from L. sigmodontis–infected mice into naïve
recipients improved sepsis outcome in a TLR2-dependent but AAM-independent manner
[89]. Macrophages from patients with sepsis expressed reduced sepsis-inducing inflammatory
cytokines after treatment with Trichinella spiralis E/S products [88]. Similarly, a T. spiralis
cathepsin B–like protein ameliorates intestinal ischemia/reperfusion injury, a model for sys-
temic inflammation, by promoting a switch from M1 to M2 macrophages [91]. Furthermore, a
single helminth molecule from Fasciola hepatica (fatty acid–binding protein; FABP or Fh12)
can suppress serum inflammatory cytokines in a septic shock model. This was accompanied by
suppression of proinflammatory cytokines and nitric oxide synthase-2 (NOS2) in macrophages
[90] and demonstrates the potential of macrophages in this disease setting.

Macrophages in Cell Therapy: A Potential Treatment Option
For macrophage-based therapies, one must consider the possibility of phenotype reversion
after transfer. The phenotype and function of a particular macrophage subset develops from
the combined integration of tissue-specific and environmental cues, such as inflammation or
infection, which can lead to epigenetic imprinting [19,92]; however, the stability of the thera-
peutic macrophage phenotype must be determined.

Murine studies have shown that transferred macrophages can block pathology indepen-
dently of the perturbed environment they encounter [9,12,13,45,75,89]. One particular macro-
phage subset can confer protection upon transfer in mice and humans. Murine macrophages
stimulated with IFN-γ have significant anti-inflammatory characteristics, mitigating colitis and
prolonging allograft survival [93,94]. Human macrophages stimulated with IFN-γ in vitro and
administered to patients undergoing renal transplant significantly reduced the required dose of
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immunosuppressant drugs and improved transplanted kidney function [95]. These macro-
phages conferred immunosuppression on T cells, which was partly mediated by the indolea-
mine 2,3-dioxygenase and likely induced nutrient deficiencies in alloreactive T cells [94].
Although the mechanism of action of these macrophages is different to that of helminth-
induced macrophages, it exemplifies how these powerful cells can redirect undesired immune
responses in disease settings.

The macrophage population that bears sufficient therapeutic function in a given environ-
ment must be carefully evaluated. Alongside macrophages, other immune cells are involved in
helminth-derived immunomodulation. The application of one helminth-modulated cell popu-
lation cannot represent the full spectrum of immunomodulation compared with a chronic hel-
minth infection, which can induce changes in microbiota [38,96], mediating a therapeutic
effect [97], but it might be enough to reset the diseased environment to homeostasis.

What Does the Future Hold for Helminth-Based Therapies?
The studies discussed herein demonstrate the potential of helminth infections and, in particu-
lar, helminth-induced macrophages to treat inflammatory disorders; in some cases, clinical tri-
als are already underway. However, the mode of application must be addressed to determine
the safest and most effective route for patients. Is it best to treat the patient with a patent infec-
tion or with isolated stages (e.g., eggs)? Is it best to apply specific helminth-derived products
(e.g., AvCystatin, ES-62, T. spiralis cathepsin B–like protein) or to stimulate in vitro and rein-
fuse a patient’s own macrophages? Live infections provide a rapid path to clinical trials com-
pared with identifying and characterising defined products. Nevertheless, live infections
remain infectious, and can induce pathological consequences in the host, especially in immu-
nocompromised individuals [98]. In contrast, defined products can be produced recombi-
nantly in high quantities at relatively low costs. Defined products allow efficient site-directed
and prolonged application, e.g., through the use of carriers like probiotic bacteria that colonize
and release the molecules in targeted tissues [56]. Generating transgenic auxotrophic strains
that release powerful helminth products will enable the use of such techniques without risking
contamination of the environment. However, helminth products themselves may be immuno-
genic, and thus, a further therapeutic alternative is the synthesis of small-molecule analogues,
as described for ES-62. New targets identified by large-scale technologies (proteomics, metabo-
lomics, genomics) combined with bioinformatics aid the discovery of novel pathways and mol-
ecules that can translate helminth–or helminth product–derived immunomodulating strategies
into efficient therapies [27].

The experimental models that illustrate the prospect of helminth-modulated, macrophage-
based therapies provide hope that safe and effective treatments for humans are a viable option.
The abilities of macrophages to regulate T and B cell function and cytokine production high-
light this innate cell population as a powerful tool in therapy development. However, the stabil-
ity of transferred macrophages must be established. The fact that clinical trials employing the
regulatory effects of helminths or immune-suppressive macrophages are underway is
extremely encouraging and indicates that research in this direction should be pursued.
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