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Abstract
We study Boolean networks which are simple spatial models of the highly conserved
Delta–Notch system. The models assume the inhibition of Delta in each cell by Notch
in the same cell, and the activation of Notch in presence of Delta in surrounding cells.
We consider fully asynchronous dynamics over undirected graphs representing the
neighbour relation between cells. In this framework, one can show that all attractors
are fixed points for the system, independently of the neighbour relation, for instance by
using known properties of simplified versions of the models, where only one species
per cell is defined. The fixed points correspond to the so-called fine-grained “patterns”
that emerge in discrete and continuous modelling of lateral inhibition. We study the
reachability of fixed points, giving a characterisation of the trap spaces and the basins
of attraction for both the full and the simplified models. In addition, we use a charac-
terisation of the trap spaces to investigate the robustness of patterns to perturbations.
The results of this qualitative analysis can complement and guide simulation-based
approaches, and serve as a basis for the investigation of more complex mechanisms.

Keywords Boolean networks · Multi-cellular systems · Cell signalling · Patterns

Mathematics Subject Classification 06E30 · 92B05 · 05C99

1 Introduction

Lateral inhibition is a signalling mechanism that can induce the differentiation of cells
in developing tissues (Sternberg 1993; Collier et al. 1996). Transmembrane receptors
of the Notch family, and the product of the Delta gene acting as ligand, have been
identified as possible actors in this spatial differentiation phenomenon. In its simplest
form, lateral signalling causes cells to experience two different types of fate, a primary
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and a secondary fate, corresponding to low and high levels ofNotch. The stimulation of
Notch by the ligand Delta from adjacent cells induces the cell to assume the secondary
fate; high Notch activity, on its part, causes inhibition of Delta, which promotes the
lateral differentiation to the primary fate. The result of this feedback is the emergence
of spatial patterns of cells of primary and secondary type.

Several mathematical models have been proposed for the investigation of theDelta–
Notch pattern-generating mechanism (e.g., Collier et al. 1996; Webb and Owen 2004;
Gössler 2011). InCollier et al. (1996), the authors choose a spatially-discretisedmodel,
with dynamics described by systems of differential equations. Their analysis highlights
in particular that, when the feedback between cells is strong enough, patterns of alter-
nating high and low levels of Notch emerge, that do not depend on specific forms
for the regulations of species production, and on the parameters. It is therefore nat-
ural to investigate whether the basic principles underlying the Delta–Notch system
can be identified also in a purely qualitative, Boolean framework. Discrete models
can often capture “rules” that govern properties of larger classes of systems (see for
instance Thomas and d’Ari 1990; Thomas and Kaufman 2001; Albert and Othmer
2003). In this work we consider simple Boolean models, where only two variables,
representing Notch and Delta, are defined in each cell. The level of Delta in a cell is
uniquely determined by the level of Notch in the same cell, whereas multiple formu-
lations for the dependence of Notch on the levels of Delta in neighbour cells can be
considered. In this work we focus on the assumption that the presence of one neigh-
bour cell with high level of Delta is sufficient for the activation of Notch. In addition,
we consider a simplified version of these models, where only one variable per cell
is defined, which inhibits variables in neighbouring cells. The models we consider
have already been analysed with computational approaches for some specific network
geometries (Mendes et al. 2013; Varela et al. 2018a). Here we investigate properties
that hold independently of the neighbour structure of the cells.

By considering the reduced, Boolean lateral inhibition models with one variable
per cell, one can use properties of threshold networks (Goles-Chacc et al. 1985) to
show that all attractors for the asynchronous dynamics are fixed points. These stable
configurations or patterns that emerge from the simple spatial interaction structure we
consider exhibit the same alternation of cells with low and high Notch level observed
in the ODE models of Collier et al. (1996). The alternation requires each cell with
low Notch to be surrounded by cells with high Notch, and all cells with high Notch to
have at least one neighbour with high Delta. In other words, the Delta–Notch patterns
are defined by the minimal vertex covers, or maximal independent vertex sets, of the
graph describing the neighbour relations (Veliz-Cuba and Laubenbacher 2012). We
ask which patterns can be reached under fully asynchronous dynamics from homo-
geneous initial conditions, and show that all of them can be obtained (Theorem 4.2).
We then provide a characterisation of the trap spaces of the systems, that is, subspaces
that the dynamics can not leave, for both the two-variable and one-variable dynamics
(Theorems 4.3, 4.4). We give in addition a characterisation of the fixed points that
are reachable from a given initial condition, identifying some differences between the
full and reduced models (Theorems 4.5, 4.6). Determining the trap spaces allows us to
study how patterns respond to perturbations. In particular, we show that, for themodels
we consider, changes can not propagate beyond cells at distance two (Sect. 4.4). The
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spatial interaction structure consisting of internal inhibition and neighbour activation
can be thought of as a core model for lateral inhibition, and it is not straightforward to
determine which of the properties we present here are preserved in larger or more com-
plex models. We discuss a generalisation of the models and additional open questions
in Sects. 5 and 6.

2 Background

In this section we set some notations and give some basic definitions. We write B for
the set {0, 1}. For a ∈ B, we write ā for 1 − a, and given n ∈ N, I ⊆ {1, . . . , n} and
x ∈ B

n , we denote by x̄ I the elementwith x̄ Ii = 1−xi for i ∈ I , and x̄ Ii = xi otherwise.
If I consists of only one element i , then we write x̄ i for x̄ I , and if I = {1, . . . , n},
we write x̄ for x̄ I . In the examples, we will simplify the notation and denote elements
of Bn as sequences of 0s and 1s (e.g, we will write 100011 for (1, 0, 0, 0, 1, 1)). We
will also write 0 and 1 for the elements of Bn with all components equal to 0 or 1
respectively.

A Boolean network on n variables, with n ∈ N, is defined by a function f : Bn →
B
n . The set Bn is also called the state space of the Boolean network. The dynamical

system given by the iteration of f is called synchronous dynamics. In biological
contexts, the asynchronous dynamics or asynchronous state transition graph of a
Boolean network is often the object of interest. The asynchronous dynamics AD f of
f is defined as the graph with vertex set Bn , and edge set {(x, x̄ i )| fi (x) �= xi , i =
1, . . . , n}.

The interaction graph G f of a Boolean network f is the labelled multi-digraph
with vertex set {1, . . . , n} and admitting an edge ( j, i) with sign s ∈ {−1, 1} if
s = ( fi (x̄ j ) − fi (x))(x̄

j
j − x j ) �= 0 for some x ∈ B

n .
Given x ∈ B

n and I ⊆ {1, . . . , n}, we write x[I ] = {y ∈ B
n | yi = xi ∀i /∈ I }. We

call x[I ] a subspace of Bn . In the examples, we denote a subspace x[I ] using x and
replacing the elements xi with i ∈ I with the symbol “�”. For instance, 001��1 will
denote the subspace of B6 with I = {4, 5} and x1 = x2 = 0, x3 = x6 = 1.

A set A ⊆ B
n is called a trap set for a Boolean network f if, for all x ∈ A, if

y is a successor for x in the asynchronous dynamics, then y ∈ A. A trap set that is
also a subspace is called a trap space. For each state x ∈ B

n there exists a unique
minimal (with respect to set inclusion) trap space containing x , which we denote by
κ(x). Minimal trap sets are called attractors for the asynchronous dynamics. If an
attractor consists of a single state, it is called fixed point or steady state, otherwise it
is called a cyclic attractor.

Given an attractor A, the (weak) basin of attraction of A is the set of states x ∈ B
n

such that there exists a path from x to A in the asynchronous dynamics. The strong
basin of attraction of A is the set of states in the basin of attraction of A that do not
belong to the basin of attraction of any other attractor A′ �= A.

The following result, which can be found in Naldi et al. (2009) and Paulevé and
Richard (2012), relates properties ofBooleanmaps to properties ofmapswith a smaller
number of variables. For simplicity it is stated for the elimination of the nth variable,
but generalises to the elimination of any variable.
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Theorem 2.1 Consider a map f : Bn → B
n and define f̃ : Bn−1 → B

n−1 as f̃i (x) =
fi (x, fn(x, 0)) for each x ∈ B

n−1, i = 1, . . . , n − 1. If G f does not admit an edge
from n to itself, then:

(i) x ∈ B
n−1 is a fixed point for f̃ if and only if (x, fn(x, 0)) is a fixed point for f .

(ii) If AD f̃ has a path from x to y, then AD f has a path from (x, fn(x, 0)) to
(y, fn(y, 0)).

It will be useful to relate the trap spaces of the full and reduced systems.

Proposition 2.1 In the setting of Theorem 2.1, denote by πn−1 the projection on the
first n − 1 components.

(i) If A is a trap space for f , then πn−1(A) is a trap space for f̃ .
(ii) If A is a trap space for f̃ , then A × {a} is a trap space for f if and only if

fn(x, 0) = fn(x, 1) = a ∈ B for all x ∈ A.
(iii) If x[I ] is a trap space for f̃ , then A = x[I ] × {0, 1} is a trap space for f if and

only if fi (y, 0) = fi (y, 1) for all y ∈ x[I ] and i ∈ I c.

Proof (i) Take x ∈ πn−1(A) and y successor for x in AD f̃ . Since fn(x, 0) = fn(x, 1),
either (x, fn(x, 0)) is in A or there exists an a ∈ {0, 1} such that (x, a) is in A,
and (x, fn(x, 0)) is a successor for (x, a) in AD f . By Theorem 2.1(ii) there is a
path from (x, fn(x, 0)) to (y, fn(y, 0)) in AD f , and, since A is a trap space, y is
in πn−1(A), and we are done.

(ii) Suppose that fn(x, 0) = fn(x, 1) = a ∈ B for all x ∈ A, and take (x, a) ∈ A×{a},
and (y, b) successor for (x, a) in AD f . Then since fn(x, a) = a, we have b = a,
and fi (x, a) �= xi for some i < n. Hence f̃i (x) = fi (x, fn(x, a)) = fi (x, a) �= xi
and y is a successor for x in AD f̃ , and therefore is in A. The other direction is
trivial.

(iii) Suppose that fi (y, 0) = fi (y, 1) for all y ∈ x[I ] and i ∈ I c, and take (y, v) ∈
x[I ] × {0, 1}, and (z, w) successor for (y, v) in AD f . If z = y, or z = ȳi with
i ∈ I , then clearly the successor is in A. If z = ȳi with i ∈ I c, then f̃i (y) =
fi (y, fn(y, 0)) = fi (y, v) �= yi , hence z = ȳi is in x[I ], which concludes. The
other direction is trivial.

�	

2.1 A Boolean Delta–Notchmodel

In this work we are interested in some Boolean networks that can be interpreted as
arising from the combination of multiple instances of a given Boolean function. This
approach is formalised for instance in Mendes et al. (2013) and Varela et al. (2018a)
and called composition of logical modules. Here we use a different definition that can
be recast in terms of compositions of modules.

We fix L ∈ N and consider an undirected connected graph G with vertex set
C = {1, . . . , L} and without loops. We call the vertices cells and G the cell graph
underlying the system, as it represents a network of L cells with some neighbouring
relation. For each i ∈ C , we write S(i) = { j ∈ C | (i, j) edge in G}. If (i, j) is an
edge in G, we say that i and j are neighbours. In the examples we will consider for
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instance the path graph or linear graph PL , the graph with vertices {1, . . . , L} and
edge set {(i, i +1) | i = 1, . . . , L−1}, representing a linear array of cells, where each
internal cell has two neighbour cells (S(i) = {i − 1, i + 1}), and the first and last cell
admit only one neighbour (S(1) = {2} and S(L) = {L − 1}).

The system in each cell is described by some Boolean variables, whose behaviour
can depend on the variables in the same cell or in neighbouring cells. Mendes et al.
(2013) and Varela et al. (2018a) also distinguish between input components and inter-
nal components, the former being variables that can only depend on variables in
neighbouring cells, and the latter being variables that can only depend on other vari-
ables from the same cell. For the system studied in this work, we consider only two
Boolean variables in each cell, or one Boolean variable in each cell for the reduced
models (see Sect. 2.1.1). We therefore do not introduce a general notation, but rather
focus on special systems with 2L or L variables.

Given a cell graph G, for each cell i we consider a variable Notch and a vari-
able Delta, that we denote ni and di , respectively, with i = 1, . . . , L . The space we
consider is therefore B

2L , and the network we study is a function F : B2L → B
2L .

Sometimes it will be convenient to denote an element x ∈ B
2L as x = (n, d) =

(n1, . . . , nL , d1, . . . , dL), so that xi = ni and xi+L = di for i = 1, . . . , L . Given
J ⊆ C , we will write J + L for the set {i + L |i ∈ J }, and J c for C\J . For
I ⊆ {1, . . . , 2L} we define IN = I ∩ C , ID = {i − L | i ∈ I ∩ (C + L)} and
S(I ) = ⋃

i∈IN∪ID S(i).
In the simplemodelwe consider, in each cell, Notch inhibits the production ofDelta,

with no other interaction taking place. The logical function that encodes the regulation
of Delta in cell i is therefore defined by (n, d) �→ n̄i . Notch instead is activated by
the presence of Delta in neighbouring cells. Here we consider the following two
possibilities: either the presence of Delta in any of the neighbouring cells is sufficient
for the activation of Notch, or the presence of Delta in all of the neighbouring cells is
required. This leads to the definition of two possible Boolean functions for component
i , that we denote F∧ and F∨ respectively:

F∧
i (n, d) =

∧

j∈S(i)

d j , F∨
i (n, d) =

∨

j∈S(i)

d j .

Note however that F∧ and F∨ verify

F∧(n̄, d̄) =
⎛

⎝
∧

j∈S(1)

d̄ j , . . . ,
∧

j∈S(L)

d̄ j , n̄1, . . . , n̄L

⎞

⎠ = F∨(n, d),

i.e., F∧ and F∨ are conjugated under the function x �→ x̄ , and hence admit isomorphic
asynchronous state transition graphs. It is therefore sufficient to limit our analysis to
the function F = F∨. We call F a Boolean Delta–Notch system over the graph G.
Example 2.1 For L = 1, we have F(n1, d1) = (0, n̄1), and the system has only one
attractor, the fixed point 01, i.e., the dynamics converges to the state with low Notch
and high Delta. The trap spaces for the system are ��, 0� and 01, and �� is the basin
of attraction of 01.

123



468 E. Tonello, H. Siebert

n1 n2

d1 d2

10
11

11
11

10
01

11
01

00
11

01
11

00
01

01
01

00
10

01
10

00
00

01
00

10
10

11
10

10
00

11
00

Fig. 1 Interaction graph and asynchronous state transition graph for a Boolean Delta–Notch model with
L = 2 (the levels of Delta are written below the corresponding levels of Notch). The fixed points are in
rectangles. The circled states are source states

Example 2.2 For L = 2, we find F(n1, n2, d1, d2) = (d2, d1, n̄1, n̄2). The asyn-
chronous dynamics, represented in Fig. 1, admits two fixed points, 0110 and 1001, and
two source states, 0101 and 1010. The remaining states are part of the same strongly
connected component. Hence the trap spaces are given by the full state space and the
two fixed points. The sets B4\{1001} and B

4\{0110} are the basins of attraction of
0110 and 1001 respectively. There are no elements in the strong basin of attraction of
0110 and 1001, other than the fixed point itself.

2.1.1 Model reduction

The model we described has 2L variables, none of which is autoregulated. It will
be convenient to work with the reduced network N : BL → B

L obtained from F
by elimination of the variables d1, . . . , dL as delineated in Theorem 2.1. For each
i = 1, . . . , L we have

Ni (n) =
∨

j∈S(i)

n̄ j =
∧

j∈S(i)

n j .

By application of Theorem 2.1(i), the functions F and N have the same number of
fixed points. To a fixed point n∗ corresponds the fixed point (n∗, n∗) for F . In addition,
from Theroem 2.1(ii), given n, n′ ∈ B

L , if there exists a path from from n to n′ in
ADN then there exists a path from (n, n̄) to (n′, n̄′) in ADF .

3 Asymptotic behaviour

The asymptotic behaviour of BooleanDelta–Notch systems can be fully characterised.
By Theorem 2.1(i), the Boolean Delta–Notch system F over a graph G has the same
fixed points as the reduced network N . The network N is a normal OR–NOT network
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for its associated interaction graph, that is, each component of N is a disjunction,
and its associated interaction graph has only negative edges. The problem of finding
fixed points of OR-NOT networks and its relationship to the problem of determining
maximal independent sets or minimal vertex covers of a graph have been extensively
investigated (e.g., Aracena et al. 2004; Veliz-Cuba and Laubenbacher 2012; Aracena
et al. 2014, 2017). As a corollary of (Veliz-Cuba and Laubenbacher 2012, Proposition
3.5), the fixed points of N are in one-to-one correspondence with the minimal (with
respect to inclusion) vertex covers of the graph G. A vertex cover of a graph is a subset
Q of the vertices of the graph such that every edge of the graph has an endpoint in Q
(see for instance West 2001).

Theorem 3.1 The fixed points of the Boolean Delta–Notch system over the graph G
are in one-to-one correspondence with the minimal vertex covers of the graph G.

We refer to the fixed points also as stable spatial patterns, or simply patterns, for
the system. They are characterised by an alternating structure of primary fate and
secondary fate cells, which is determined by the structure of the cell graph G.
Remark 3.1 It follows from Theorem 3.1 that for any i ∈ C there exists a fixed point
x for N that satisfies xi = 0, x j = 1 for all j ∈ S(i), and a fixed point y for the
Boolean Delta–Notch system over G that satisfies yi = ȳi+L = 0, y j = ȳ j+L = 1 for
all j ∈ S(i). In particular, if L ≥ 2, then N and F admit at least two fixed points.

A result on threshold networks can be used to show that F and N do not admit
cyclic attractors. ABoolean network f : Bn → B

n is called a (strict) threshold network
(Goles-Chacc et al. 1985) if there exist a matrix A ∈ R

n×n and a vector b ∈ R
n such

that, for all i ∈ {1, . . . , n}, fi (x) = 1 if and only if (Ax)i > bi and fi (x) = 0 if and
only if (Ax)i < bi .

The network N is a threshold network, with A ∈ {0,−1}L×L and b ∈ R
L defined

as follows:

for all i, j ∈ {1, . . . , n}, Ai j =
{

−1 if j ∈ S(i),

0 otherwise,
bi = −|S(i)| + 1

2
.

The energy function E : {0, 1}n → R associated to A and b is defined as

E(x) = −1

2
xTAx + bTx .

The matrix A is symmetric and its diagonal elements are non-negative. Under these
conditions, the energy is strictly decreasing along asynchronous trajectories: if x̄ i is a
successor for x in AD f , then

E(x̄ i ) − E(x) = −
∑

j �=i

Ai j x j (x̄i − xi ) − 1

2
Aii (x̄

2
i − x2i ) + bi (x̄i − xi )

= −(x̄i − xi )

⎛

⎝
n∑

j=1

Ai j x j − bi

⎞

⎠ − 1

2
Aii (x̄i − xi )

2
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≤ −(x̄i − xi )

⎛

⎝
n∑

j=1

Ai j x j − bi

⎞

⎠ < 0.

As a consequence, the graph ADN does not admit any cyclic path. This is a partic-
ular case of Proposition 1 in Goles-Chacc et al. (1985), which gives the following
corollaries.

Theorem 3.2 For each non-fixed point x ∈ B
L for a reduced Boolean Delta–Notch

system N, there is a path in ADN from x to a fixed point.

Theorem 3.3 For each non-fixed point x ∈ B
2L for a Boolean Delta–Notch system F,

there is a path in ADF from x to a fixed point.

Proof Consider (n, d) ∈ B
2L . Since there exists a path from (n, d) to (n, n̄), the

conclusion follows from Theorems 2.1(ii) and 3.2. �	
As a consequence, the asynchronous state transition graph of a Boolean Delta–

Notch system does not admit cyclic attractors. However, we will see that, unlike
ADN , the graph ADF contains cyclic paths (Proposition 4.6).

Observe that not every fixed point is reachable from every non-fixed point: for
instance, for the Boolean Delta Notch system over the path graph with 3 nodes P3
there is no path from 011100 to the fixed point 101010. In the next section, we study
the basins of attraction for both the one-variable and the two-variable models.

4 Reachability of fixed points

In the following, we consider the problem of determining which patterns can be
obtained from some initial states. The reachability of fixed points for Boolean Delta–
Notch systems over hexagonal grids from given initial conditions has been previously
studied in Mendes et al. (2013). We start the section by showing that all the fixed
points can be reached from homogeneous states, that is, states where the levels are the
same in every cell, and identify other classes of states for which this property holds.

4.1 Homogeneous initial conditions

We first look at the reachability from homogeneous initial conditions for N .

Theorem 4.1 Each fixed point x ∈ B
L is reachable in ADN from 1 and 0.

Proof We show that, for each fixed point x ∈ B
L for N , there is a path from 1 ∈ B

L

to x in ADN . The proof for 0 is similar. Consider a fixed point x for N , and define
I (x) = {i ∈ C | xi = 0}, k = |I (x)|. Set x0 = 1, choose an order i1, . . . , ik for the
indices in I (x), and, for each h = 1, . . . , k, define the state xh = 1̄{i1,...,ih}. Then, for
each h = 0, . . . , k − 1, xhih+1

= 1, xih+1 = 0, and, since x is fixed, for all j ∈ S(ih+1)

we have x j = 1, so that xhj = 1 and Nih+1(x
h) = 0. Hence the asynchronous dynamics

ADN admits an edge from xh to xh+1, for h = 0, . . . , k − 1. In other words, there is
a path in ADN from x0 = 1 to xk = x . �	
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n:
d: → → → →

→ →

→ → →

Fig. 2 On the left, schematics of some transitions in the asynchronous state transition graph of aDelta–Notch
system with L ≥ 2. Homogeneous states are part of the same strongly connected component (Remark 4.1).
On the right, some paths in the asynchronous dynamics associated to the graphP4, from the homogeneous
state (1, 0) to the three fixed points (see Theorem 4.2). White represents high levels

Remark 4.1 From each state (n, d), there is a path to (
∨

j∈S(1) d j , . . . ,
∨

j∈S(L) d j , d)

and a path to (n, n̄) in ADF . Hence

– if a state is reachable from (0, 0), it is reachable from (n, 0) for all n ∈ B
L ;

– if a state is reachable from (1, 0), it is reachable from (1, d) for all d ∈ B
L ;

– for L ≥ 2, if a state is reachable from (1, 1), it is reachable from (n, 1) for all
n ∈ B

L ;
– if a state is reachable from (0, 1), it is reachable from (0, d) for all d ∈ B

L .

The asynchronous dynamics of every Boolean Delta–Notch systemwith L ≥ 2 admits
therefore a cycle that includes all homogeneous states (see Fig. 2, left). In addition,
the following result shows that all fixed points are reachable from homogeneous states
(see Fig. 2, right, for an example).

Theorem 4.2 Each fixed point x ∈ B
2L is reachable in ADF from any state in 0� ∪

�0 ∪ 1� ∪ �1.

Proof By Theorems 4.1 and 2.1(ii), for each fixed point (x, x̄) of F there is a path
from (1, 0) to (x, x̄). Remark 4.1 then allows to conclude. �	

4.2 Trap spaces

In this section, we give a characterisation of the trap spaces of Boolean Delta–Notch
systems and their reduced versions.

Theorem 4.3 The trap spaces for N are of the form x[I ], with x fixed point, and for
all i ∈ S(I ) ∩ I c there exist j ∈ S(i) ∩ I c such that x j = 0.

Proof Consider a subspace x[I ] as in the statement, and take y ∈ x[I ]. We need to
show that all successors of y in the asynchronous state transition graph are in x[I ], or,
in other words, Ni (y) = yi for all i /∈ I .

If i /∈ I and j /∈ I for all j ∈ S(i), then Ni (y) = ∨
j∈S(i) ȳ j = ∨

j∈S(i) x̄ j = xi =
yi . Consider now the case of i /∈ I and I ∩ S(i) �= ∅. Then there exists k ∈ S(i) ∩ I c

such that xk = 0, therefore Ni (y) = ∨
j∈S(i) ȳ j = 1 = Ni (x) = xi = yi .

Vice versa, consider a trap space x[I ]. Since wemust have Ni (x) = xi for all i /∈ I ,
and all attractors of N are fixed points (see Theorem 3.2), we can assume that x is a
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fixed point. Consider i ∈ S(I ) ∩ I c and take j ∈ I ∩ S(i). Then there exists a state
y ∈ x[I ] with y j = 0, and therefore xi = Ni (x) = ∨

k∈S(i) ȳk = 1. Now take a state
z ∈ x[I ]with zk = 1 for all k ∈ S(i)∩ I . Then xi = 1 = ∨

k∈S(i) z̄k = ∨
k∈S(i)∩I c z̄k .

This means that there exists k ∈ S(i) ∩ I c such that xk = 0, which concludes. �	
The trap spaces for N correspond therefore to areas of fixed Notch, with borders

of high Notch sustained by cells with fixed, low levels of Notch.
The following proposition allows to identify the minimal trap space containing a

pattern and some of its adjacent states in BL .

Proposition 4.1 Consider x ∈ B
L fixed point for N and a set of indices H ⊆ C.

Define

H0 = {i ∈ H | xi = 0}, H1 = {i ∈ H | xi = 1},
K = { j ∈ S(H1) ∩ H c | x j = 0},
J = { j ∈ S(K ∪ H0) ∩ H c | xh = 1 ∀h ∈ S( j), h /∈ K ∪ H0},
I = H ∪ K ∪ J .

Then x[I ] is the minimal trap space for N containing x[H ].
Proof Start by observing that

xi = 0 for all i ∈ H0 ∪ K , (1)

xi = 1 for all i ∈ H1 ∪ J . (2)

To show that x[I ] is a trap space, taking h ∈ S(I ) ∩ I c, we show that S(h) ∩ I c is
non-empty and xk = 0 for some k ∈ S(h) ∩ I c (see Theorem 4.3).

1. h ∈ S(H0): we have xh = 1 from Eq. (1). Since h /∈ J , there exists k ∈ S(h) such
that xk = 0, k /∈ K ∪ H0. From Eq. (2) we have k /∈ H1 ∪ J , and we are done.

2. h ∈ S(H1), h /∈ S(H0): since h /∈ K , by definition of K we have xh = 1. Since h
is not in J , there are two cases:

– h is in S(K ) and has a neighbour k /∈ K ∪ H0 with xk = 0, and using Eq. (2) we
are done, or

– h is not in S(K ). In this case h has a neighbour k such that xk = 0, and this
neighbour can not be in H0 or K , and using Eq. (2) we conclude.

3. h ∈ S(K ), h /∈ S(H): we have xh = 1 from Eq. (1). Since h /∈ J , there exists
k /∈ K ∪ H0 with xk = 0, and using Eq. (2) we are done.

4. h ∈ S(J ), h /∈ S(K )∪S(H): there exists k ∈ J such that h ∈ S(k). By definition
of J , since h is a neighbour of J that is not in K or H0, we have xh = 1. Then
x j = 0 for some neighbour j of h. Since h /∈ S(K ) ∪ S(H), we have j /∈ K ∪ H
as required, and we conclude again using Eq. (2).

To prove that x[I ] is minimal, for each i ∈ I\H , we show that there exists a path
in ADN from a state y ∈ x[H ] to a state z with zi �= xi . Take y ∈ x[H ] such that
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yi = 1 − xi for all i ∈ H . By definition of K , there is a path from y to ȳK , hence
the minimal trap space containing x[H ] contains x[H ∪ K ]. Take z ∈ x[H ∪ K ] with
zi = 1 for all i ∈ H ∪ K . Then for each j ∈ J the state z̄ j is a successor for z, which
concludes the proof. �	

We now consider the trap spaces for F . We first show how a trap space for F can
be obtained from a trap space for N .

Proposition 4.2 The subspace x[I ] is a trap space for N if and only if the subspace
(x, x̄)[I ∪ (I + L)] is a trap space for F.

Proof If the subspace (x, x̄)[I∪(I+L)] is a trap space for F , then byProposition 2.1(i)
the projection x[I ] onto the first L variables is a trap space for N .

Vice versa, consider x[I ] trap space for N . Recall that N is obtained from F by
elimination of the variables i + L , with i ∈ C , in the sense of Theorem 2.1. Call F ′
the function obtained from F by eliminating the variables i + L with i ∈ I , so that
N can be obtained from F ′ by eliminating the variables i + L with i ∈ I c. Denote by
πI c the projection on the variables in I c.

For each i ∈ I c, y ∈ x[I ] and z ∈ B
L , we have Fi+L(y, z) = x̄i . Hence by applying

Proposition 2.1(ii) to each variable in I c + L we find that the subspace (x, πI c(x̄))[I ]
is a trap space for F ′.

Take i ∈ I c and (y, z) ∈ B
2L such that (y, πI c(z)) ∈ (x, πI c(x̄))[I ]. IfS(i)∩I = ∅,

we have Fi (y, z) = ∨
j∈S(i) z j = ∨

j∈S(i)∩I c z j , and if S(i) ∩ I �= ∅ we have, using
Theorem 4.3, Fi (y, z) = ∨

j∈S(i) z j ≥ ∨
j∈S(i)∩I c z j = 1. That is, none of the

variables in I c and I c + L depend on variables in I + L . Hence Proposition 2.1(iii)
applies to each variable in I + L and we conclude. �	
Theorem 4.4 Given I = IN ∪ (ID + L) with IN , ID ⊆ C, the subspace x[I ] is a
trap space for F if and only if the subspace x[IN ∪ (IN + L)] is a trap space for F,
IN ⊆ ID and

(i) S(ID\IN ) ∩ ID = ∅ and x j = 0 for all j ∈ ID\IN ;
(ii) for all i ∈ S(ID\IN ) there exists j ∈ S(i) ∩ I cD such that x j = 0.

Proof If x[I ] is a trap space for F , since all attractors of F are fixed points (see
Theorem 3.3), we can assume that x is a fixed point and write x = (n, n̄). Then by
Proposition 2.1(i) the subspace n[IN ] is a trap space for N , and by Proposition 4.2
x[IN ∪(IN +L)] is a trap space for F . In addition, IN ⊆ ID follows from the definition
of F .

To prove (i), consider j ∈ ID\IN , and take an element y ∈ x[I ] with y j+L = 1.
Then there exists a path from y to a state z with zk = 1 and zk+L = 0 for all k ∈ S( j),
and since x[I ] is a trap space, we have z ∈ x[I ]. Since j /∈ IN , we must have
x j = ∨

k∈S( j) zk+L = 0. This is possible only if ID ∩S( j) = ∅ and xk+L = 0 for all
k ∈ S( j).

To show that (i i) holds, take k ∈ ID\IN . By point (i), xk = 0 and therefore xi = 1
for all i ∈ S(k). Since, again by point (i), any i ∈ S(k) is in I cD , there must exist a
neighbour j of i in I cD such that x j+L = 1, which proves (i i).

Consider a subspace x[I ] such that x[IN ∪ (IN + L)] is a trap space for F , IN ⊆ ID
and (i) and (i i) hold, and take y ∈ x[I ]. We need to show that Fi (y) = yi for all i /∈ I .
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Fig. 3 On the left, example of levels of Notch characterising a trap space in a hexagonal grid. Areas of fixed
Notch have a border with high Notch (in white) and an inner border with at least one neighbouring cell
with low Notch (in black) for each cell at the outer border. Cells in grey have an undefined level of Notch.
On the right, Hasse diagram for the subset relation of the trap spaces for the Boolean Delta–Notch system
associated to the graph P3 (the levels of Delta are written below the corresponding levels of Notch)

If i /∈ I and i > L , then Fi (y) = ȳi−L = x̄i−L = xi = yi . Similarly, if i /∈ I , i ≤ L
and j /∈ I for all j ∈ S(i), then Fi (y) = ∨

j∈S(i) ȳ j+L = ∨
j∈S(i) x̄ j+L = xi = yi .

Consider now the case of i /∈ I , i ≤ L and I ∩S(i) �= ∅. If i ∈ S(ID\IN ), then (i)
implies i /∈ ID , and (ii) gives the existence of k ∈ S(i) ∩ I cD such that xk = 0. If
i ∈ S(IN ) and i /∈ S(ID\IN ), then since x[IN ∪ (IN + L)] is a trap space for F , by
Proposition 4.2 and Theorem 4.3 there exists k ∈ S(i), k ∈ I cD such that xk = 0. In
both cases yk+L = xk+L = 1 and Fi (y) = ∨

j∈S(i) y j+L = 1 = Fi (x) = xi = yi . �	
The theorem states that the trap spaces for F are found by lifting the trap spaces

for N , and optionally removing some constraints on Delta in isolated cells with low
Notch, if the neighbouring cells with high Notch are still sustained by other cells with
high Delta. Examples of trap spaces for a hexagonal grid and for a linear graph are
given in Fig. 3.

The smallest trap spaces that are not fixed points are therefore of the form x[{i+L}]
for some steady state x and some i ∈ C such that xi = 0 and, for all j ∈ S(i), there is
an index k ∈ S( j), k �= i such that xk+L = 1. The trap space x[{i+L}] consists of the
fixed point x and the state x̄ i+L . Under the same hypothesis, the subspace x[{i, i+L}]
is also a trap space.

Remark 4.2 For L ≥ 2, the maximal non-trivial trap spaces for N and F are of the
form x[I ] and (x, x̄)[I ∪ (I + L)] respectively, with I = C\({i}∪S(i)), x fixed point
for N and xi = 0.

Consider a trap space for N . The variables that are not fixed in the trap space
identify connected subgraphs of G, and the dynamics corresponding to each connected
component is a separate Boolean Delta–Notch system.

Remark 4.3 Consider a trap space x[I ] for N , and the subgraph GI obtained by
removing all vertices outside I and all the incident edges. Call G1, . . . ,Gk the con-
nected components of this subgraph, with vertices C1, . . . ,Ck respectively. Write
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N 1, . . . , Nk for the reduced Boolean-Delta Notch models associated to G1, . . . ,Gk ,
and π1, . . . , πk for the projections on the variables in C1, . . . ,Ck respectively.

Then if y1, . . . , yk are fixed points for N 1, . . . , Nk respectively, and y ∈ x[I ]
satisfies πh(y) = yh for h = 1, . . . , k, then y is a fixed point for N .

In particular, by Remark 3.1 any trap space x[I ] for N withS(I )∩ I �= ∅ contains at
least two fixed points, and any trap space (x, x̄)[J ] for F with S(J )∩ J �= ∅ contains
at least two fixed points.

We have the following corollary of Proposition 4.1 and Theorem 4.4.

Proposition 4.3 Consider x ∈ B
2L fixed point for F and a set of indices H ⊆ C. Then

x[I ∪ (I + L)] is the minimal trap space for F containing x[H ∪ (H + L)], where I
is defined as in Proposition 4.1.

4.3 Basins of attraction

We now want to characterise the fixed points that are reachable from a given state, for
the reduced and the full models.

It is easy to see that the reduction in the number of variables has consequences on
the reachability properties, and some configurations for Notch that are reachable from
a given state (n, d) in a full two-variable model might not be reachable from the state
n in the corresponding reduced model. For instance, for the graph P4, there is no path
in ADN from 1001 to the fixed point 0110, but there is a path in ADF from 10010110
to the fixed point 01101001.

The following results characterise the states that are reachable in ADN from a given
initial condition. Given I ⊆ C , we use the notation GI for the subgraph of G with set
of vertices I and set of edges consisting of all edges of G with both endpoints in I .

Proposition 4.4 Given x ∈ B
L , consider a subset I ⊆ C such that GI is connected,

xi = 0 for all i ∈ I and xh = 1 for all h ∈ S(I ) ∩ I c. If y ∈ B
L is such that yi = 1

for all i ∈ I , then y is not reachable from x in ADN .

Proof We proceed by induction on the size of I .
If I = {i} for some i ∈ C , then by Theorem 4.3 the subspace x[(I ∪ S(I ))c] is a

trap space for ADN and y can not be reached from x .
Assume that the conclusion holds for all sets of size smaller or equal to k and

suppose that |I | = k + 1. By definition, Ni (x) = 1 for all i ∈ I , and N j (x) = 1 for
all j ∈ S(I ) ∩ I c. Take a path starting from x and z the first state in the path such that
zi = 1 for some i ∈ I . By definition of z, we must have z j = 1 for all j ∈ S(I ) ∩ I c.
Then any subset J of I\{i} defining a connected component of G satisfies |J | ≤ k,
z j = 0 for all j ∈ J and zh = 1 for all h ∈ S(J ) ∩ J c, and we conclude, using the
induction hypothesis, that y can not be reached from z, and therefore from x . �	

To give the full characterisation of the fixed points reachable from a given state we
will use the following lemma. It formalises the idea that, given a state x and some
indices I connected by edges in G and such that xi = 0 for all i ∈ I , it is possible, in
the asynchronous dynamics of N , to keep an arbitrary component i in I fixed to zero
while changing all other levels in I from zero to one.
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Lemma 4.1 Given x ∈ B
L , consider a subset I ⊆ C such that GI is connected and

xi = 0 for all i ∈ I . Then for any i ∈ I and J ⊆ I\{i} there is a path in ADN from x
to x̄ J .

Proof Fix i ∈ I and J ⊆ I\{i}. Since GI is connected, there exists a spanning tree
T for GI with i as root vertex. Denote by m the maximum distance of the vertices
in I from i along the paths in T . For k = 0, . . . ,m, denote by Ik the vertices in
I at distance k from i in T , define Jk = J ∩ (

⋃m
j=m−k+1 I j ) and set yk = x̄ Jk .

We thus have y0 = x , ym = x̄ J and yk = yk−1
J∩Im−k+1

for k = 1, . . . ,m. Then
for each k = 1, . . . ,m we have yk−1

j = 0 for j ∈ Im−k and j ∈ Im−k+1, hence

N j (yk−1) = ∨
h∈S( j) y

k−1
h ≥ ∨

h∈S( j)∩Im−k
yk−1
h = 1 for all j ∈ Im−k+1, and

therefore ADN has a path from yk−1 to yk , which concludes. �	
Theorem 4.5 Given x ∈ B

L , consider the partition of {i ∈ C |xi = 0} into maximal
disjoint sets (Iν)ν such that GIν is connected. A fixed point y ∈ B

L for N is reachable
from x in ADN if and only if for each Iν there exists i ∈ Iν such that yi = 0.

Proof Suppose that, for some I ∈ (Iν)ν , yi = 1 for all i ∈ I . Observe that xh = 1 for
all h ∈ S(I ) ∩ I c. Then the conclusion follows from Proposition 4.4.

For the other direction, suppose that y ∈ B
L is a fixed point such that for each set

Iν there exists i ∈ Iν with yi = 0. Define I 1ν = { j ∈ Iν |y j = 1}. Observe that the sets
I 1ν are disjoint. By Lemma 4.1, for each ν, there exists a path from x to x̄ I

1
ν . Since the

components in Iν do not depend on components in Iμ for μ �= ν, there exists a path
from x to a state z with z j = 1 for each j ∈ C such that y j = 1.

Now take the set I 0 = {i ∈ C | zi = 1, yi = 0}. Since y is fixed, y j = 1, and hence

z j = 1, for all j ∈ S(I 0). Hence there is a path from z to z̄ I
0 = y, which concludes.

�	
We can use the result to characterise the strong basin of attraction of a fixed point.

This is given by the trap spaces containing the fixed point, such that the cells corre-
sponding to non-fixed variables are isolated.

Proposition 4.5 For each fixed point x ∈ B
L , the strong basin of attraction is given

by the union of the trap spaces x[I ] with I �= C and S(I ) ∩ I = ∅.
Proof For L = 1, the result is trivial. For L ≥ 2, first observe that, by Theorem 4.3, if
x[I ] is a trap space with I �= C and S(I ) ∩ I = ∅, then for all i ∈ I and j ∈ S(i) we
have j ∈ I c, x j = 1 and xi = 0, and x[I ] contains only the fixed point x . Hence x[I ]
is contained in the strong basin of attraction of x . It remains to show that any other
state in the basin of attraction of x is also in the basin of attraction of some other fixed
point.

Consider a state z in the basin of attraction of x that does not belong to a trap space of
the form x[I ] with I �= C and S(I )∩ I = ∅. Consider the partition of {i ∈ C |zi = 0}
into maximal disjoint sets (Iν)ν such that GIν is connected, as in Theorem 4.5.

If zi = 1 for all i ∈ C , or zi = 0 for all i ∈ C , we conclude using Remark 3.1 and
Theorem 4.1.
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If |Iν | = 1 for all ν, by Theorem 4.3 the subspace x[I ] with I c = ∪ν Iν ∪ S(∪ν Iν)
is a trap space containing x and z, and I �= C . Hence, by hypothesis, S(I ) ∩ I is
non-empty, and by Remark 4.3, x[I ] contains another fixed point y. In addition, by
Theorem 4.5 xi = 0 for all i ∈ ∪ν Iν , and since y coincides with x outside I , z and y
also verify the hypotheses of Theorem 4.5 and y is reachable from z.

Now suppose that, for some μ, Iμ contains more than one index. By Theorem 4.5,
there exists i ∈ Iμ such that xi = 0. Take j ∈ Iμ with j ∈ S(i). Write x[I ] for the
minimal trap space containing x[{i, j}]. By Proposition 4.1, I might contain cells at
distance 1 or 2 from {i, j}, and cells h at distance 2 satisfy xh = 1. For any ν �= μ,
since Iν ∩ Iμ = ∅ and each Iν is connected, we have that every index h in Iν ∩ I is
at distance 2 from {i, j}, and hence satisfies xh = 1. Since x is reachable from z, by
Theorem 4.5 there must exists h ∈ Iν , h /∈ I such that xh = 0. By Remark 4.3 there
exists another fixed point y �= x , y ∈ x[I ], that satisfies y j = 0. Since y coincides
with x outside I , for any ν there exists h ∈ Iν such that yh = 0, and by Theorem 4.5
the state z is in the basin of attraction of both x and y. �	

We nowmove on to the two-variable models. For the asynchronous dynamics asso-
ciated to the network F , we show that all the attractors found in the minimal trap space
containing the state are reachable. While in the reduced model any change in Notch
immediately translates into a different behaviour of the cell in terms of effects on the
neighbouring cells, in the full model the additional intermediate variables play a mem-
ory role which allows for a delay in the effect, resulting in more possible asynchronous
paths. This different behaviour might be relevant in a biological context, where pro-
cesses that take place at different times scales are involved, for example including
signalling and gene regulation mechanisms. The effects generated by interacting pro-
cesses with significantly different time scales might be more faithfully captured by
the extended models.

The idea of the proof of the lemma below is as follows. If a given state x does not
belong to any non-trivial trap space, a path can be exhibited from x to a state with
homogeneous, low levels of Delta. The path can be obtained through the following
steps: first all low levels of Delta that can increase are increased, but only if they are
not completely surrounded by cells with high Notch and lowDelta. Then, Notch levels
are increased in all cells where it is possible. Since x does not belong to any non-trivial
trap space, it is then sufficient to bring all the levels of Delta down.

Lemma 4.2 Consider x ∈ B
2L such that κ(x) = B

2L . Then there exists a path in ADF

from x to (1, 0).

Proof It is sufficient to show that there exists a path in ADF from x to a state z with
zi+L = 0 for all i ∈ C (see Remark 4.1).

Define the set J = {i ∈ C | xi = 0 and x j = 1, x j+L = 0 for all j ∈ S(i)}. If
xi+L = 1 for some i ∈ J , then the subspace y[I ∪ (I + L)] with I = C\({i} ∪ S(i))
satisfies the conditions of Theorem 4.4 and is a trap space containing x . Since x does
not belong to any non-trivial subspace, we have xi+L = 0 for all i ∈ J .

Consider the set of indices J1 = {i ∈ C | xi = xi+L = 0}. Then J ⊆ J1, and there
is a path in ADF from x to v = x̄ (J1+L)\(J+L).

123



478 E. Tonello, H. Siebert

Now define J2 = {i ∈ C | vi = 0 and v j+L = 1 for some j ∈ S(i)}. Again, there
is a path in ADF from v to w = v̄ J2 . Note in addition that w ≥ v ≥ x , so that xi = 1
implies wi = 1. If xi = 0 for some i ∈ C , we have:

– If i ∈ J , wi+L = vi+L = xi+L = 0.
– If i /∈ J and x j+L = 0 for all j ∈ S(i), then there exists k ∈ S(i) such that xk = 0
and vk+L = 1, so that wi = 1.

– If i /∈ J and there exists k ∈ S(i) such that xk+L = 1, then vk+L = 1 and wi = 1.

In summary, w verifies wi = 1 for all i ∈ C\J and wi+L = 0 for i ∈ J . As a
consequence, taking J3 = {i ∈ C\J | wi = wi+L = 1}, we have that the state
z = w̄ J3+L is reachable fromw and verifies zi+L = 0 for all i ∈ C , andwe conclude.�	

The previous lemma shows that, from states that do not belong to any non-trivial
subspace, any homogeneous state can be reached. This result, combined with Theo-
rem 4.2, gives that any fixed point can be reached from such initial conditions. When
the initial state y belongs to some non-trivial subspace, the fixed points that can be
reached are limited by the minimal subspace κ(y) containing y. To prove that all fixed
points contained in κ(y) can be reached from y, we consider the projection of the
dynamics on the subspace κ(y), and study it as the combination of smaller Boolean
Delta–Notch subnetworks. It can be shown that, in general, in such a scenario, the full
dynamics in the trap spaces can be derived from the dynamics of the isolated active
subnetworks (Siebert 2009). Here we give a self-contained proof.

Proposition 4.6 Consider a fixed point x and a trap space x[I ] for F with ID �= C,
and call z the state in x[I ] with zi = 1 for i ∈ I , i ≤ L and zi = 0 for i ∈ I ,
i ≥ L + 1. Then:

(i) There exists a path in ADF from z to x.
(ii) There exists a path in ADF from any state y ∈ x[I ] with κ(y) = x[I ] to z.
(iii) If S(I ) ∩ ID = ∅, then x[I ] contains exactly one fixed point.
(iv) If S(I ) ∩ ID �= ∅, then x[I ] contains at least two fixed points, and ADF admits

a cycle with vertices in x[I ].
Proof Consider the subgraph G′ of G obtained by removing all vertices outside
ID and all the incident edges. Then G′ can be decomposed into connected graphs
G1, . . . ,Gk with vertex sets C1, . . . ,Ck respectively. We will now consider the pro-
jection of the dynamics on the components identified by C1, . . . ,Ck . For each
h ∈ {1, . . . , k}, writing Ch = { j1, . . . , j|Ch |}, and denoting by πi : B2L → B the
projection on the i th component, consider the maps πh : B2L → B

2|Ch | defined
by πh = (π j1, π j2 , . . . , π j|Ch | , π j1+L , π j2+L , . . . , π j|Ch |+L ), and ιh : B2|Ch | → B

2L ,

ιhi (y) = yi for i ∈ Ch ∪ (Ch + L), ιhi (y) = xi for i /∈ Ch ∪ (Ch + L). Define, for
each h ∈ {1, . . . , k}, the Boolean network Fh : B2|Ch | → B

2|Ch |, Fh = πh ◦ F ◦ ιh .
Then, (y, ȳi ) is a transition in ADF for some y ∈ x[I ] and i ∈ Ch if and only if

(πh(y), πh(y)
i
) is a transition in ADFh . In addition, πh(x) is a fixed point for Fh .

Since, by Theorem 4.4(ii), x j+L = 0 for all j ∈ S(I ) ∩ I cD , we have that, for each
h ∈ {1, . . . , k}, i ∈ Ch and y ∈ x[I ], Fi (y) = ∨

j∈S(i) y j+L = ∨
j∈S(i)∩Ch

y j+L ,
that is, the dynamics on each connected component Ch is not influenced by variables
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outside Ch , and Fh is a Boolean Delta–Notch system on Gh . Then (i) follows from
the application of Theorem 4.2 to each Boolean network Fh .

If y ∈ x[I ] satisfies κ(y) = x[I ], first observe that, if i ∈ ID and i /∈ IN , then
by Theorem 4.4(i) xi+L = 1, xi = yi = zi = 0, and yi+L = zi+L = 0. In addition,
for each h = 1, . . . , k, πh(y) does not belong to any non-trivial trap space defined by
Fh . (ii) is therefore a consequence of Lemma 4.2.

To prove (iii), consider w fixed point in x[I ] and i ∈ I . Since by Theorem 4.4(ii)
x j+L = w j+L = 0 for all j ∈ S(i), we have xi = wi = 0 and xi+L = wi+L = 1,
and hence w = x .

The first part of (iv) was shown in Remark 4.3, and the second follows from
Remark 4.1. �	
Theorem 4.6 For every y ∈ B

2L and for every fixed point x ∈ κ(y) there exists a path
from y to x in ADF.

Proof Take y ∈ B
2L and any x fixed point in κ(y). By Theorem 4.4, we can write

κ(y) = x[I ] for some I ⊆ {1, . . . , 2L}. We conclude using Proposition 4.6, (ii) and
(i). �	
The theorem states that, for any Boolean Delta–Notch model and any state y, all
attractors that are contained in the minimal trap space containing y are reachable from
y. As a corollary of the theorem, the basin of attraction of a fixed point x is found by
taking all the trap spaces defined starting from x as in Theorem 4.4, and removing all
states found in trap spaces that do not contain the fixed point x . We can reformulate
the observation as follows.

Proposition 4.7 For L ≥ 2, for each fixed point x ∈ B
2L , the basin of attraction is

given by

B
2L\

⋃

t∈M,x /∈t
t,

where M is the set of maximal, non-trivial trap spaces.

Proof Write T for the set of all non-trivial trap spaces. Consider a fixed point x , and
denote by B its basin of attraction. Given y ∈ Bc, by Theorem 4.6 we have that
x /∈ κ(y), hence the equality Bc = ⋃

t∈T ,x /∈t t . It remains to show that any state y
contained in a trap space that does not contain x is also contained in a maximal trap
space that does not contain x . Suppose that y ∈ z[I ] with z fixed point and x /∈ z[I ].
Then there exist an i /∈ I , i ∈ C such that zi = 0 and xi = 1. The characterisation
of trap spaces in Theorem 4.4 implies that {i} ∪ S(i) ⊆ I c, and by Remark 4.2 the
subspace z[J ∪ (J + L)] with J = C\({i} ∪S(i)) is a maximal non-trivial trap space
that contains y and does not contain x . �	

We can also characterise the strong basins of attraction.

Proposition 4.8 For each fixed point x ∈ B
2L , the strong basin of attraction is given

by the union of the trap spaces x[I ] with ID �= C and S(I ) ∩ I = ∅.
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Proof For L = 1, the result is trivial. For L ≥ 2, first observe that, by Proposition 4.6,
(iii), the trap spaces x[I ] with I �= C and S(i) ∩ I = ∅ for all i ∈ I are contained in
the strong basin of attraction of x . It remains to show that any other state in the basin
of attraction of x is also in the basin of attraction of some other fixed point.

Consider a state z in the basin of attraction of x , and suppose that the trap space
κ(z) can be written as x[I ] with I such that there exist i, j ∈ I with j ∈ S(i). By
Remark 4.3 there exists another fixed point y �= x , y ∈ x[I ]. Then by Theorem 4.6
the state z is in the basin of attraction of x and in the basin of attraction of y. �	

The size of the strong basins of attraction grows therefore with the number of low
Notch whose neighbouring high-Notch cells have other neighbours with low Notch.
For example, for the linear graphs PL the size of the strong basin of attraction is the
largest for “regular” patterns, i.e., patterns that do not admit two adjacent cells with
high Notch.

Example 4.1 If G = P3, the strong basin of attraction of p1 = 101010 is given
by the fixed point itself, whereas the strong basin of attraction of p2 = 010101 is
J = �10�01∪01�10�. The basin of attraction of p1 is the setB6\J , whereas the basin
of attraction of p2 is the set B6\{p1} (see Fig. 3 right).

4.4 Summary and considerations on robustness of patterns

We can use the characterisation of strong and weak basins of attraction to study the
robustness of stable patterns in response to small perturbations. We want to answer
the following questions:

1. Which patterns can be obtained after perturbing a given pattern?
2. Which perturbations do not affect the pattern?
3. Can the system enter a cyclic path?

The results of the previous section provide answers to these questions. Consider a
fixed point x , and call y the state obtained by “perturbing” the pattern x . Then, for the
Boolean Delta–Notch model F , we have:

1. the patterns that can be reached from y are all the fixed points found in the minimal
trap space κ(y) containing y (Theorem 4.6),

2. the system reaches exclusively the pattern x if and only if κ(y) can be written as
x[I ] with S(i) ∩ I = ∅ for all i ∈ I (Proposition 4.8), and

3. in any other case, there are cyclic paths reachable from y (Proposition 4.6(iv)).

On the other hand, for the reduced models N , while the result on the strong basins
still holds (Proposition 4.5), not all fixed points contained in the minimal trap space
are reachable (Theorem 4.5), and cyclic paths are excluded (see Sect. 3).

Propositions 4.1 and 4.3 show that, for both the one and two-variable model, pertur-
bations to a pattern do not propagate beyond cells at distance 2. The following result
is a corollary:

Proposition 4.9 Consider x ∈ B
2L fixed point for a Boolean Delta–Notch system, and

take i ∈ C.
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n:
d:

n:
d:

→

→ → → → →

n:
d:

n:
d:

→

→ → → → →

pattern perturbation possible path after perturbation

Fig. 4 Changes in levels of Notch or Delta in one cell can induce the system to attain a different pattern.
Changes to low levels of Notch or high levels of Delta can propagate to neighbour cells, and changes to
high levels of Notch or low levels of Delta can affect cells at distance two (see Proposition 4.9). White
represents high activity

(i) If xi = 0, then there exists a trap space x[I ∪ (I + L)] such that {i} ⊆ I ⊆
{i} ∪ S(i).

(ii) If xi = 1, then there exists a trap space x[I ∪ (I + L)] such that {i} ⊆ I ⊆
{i} ∪ S(i) ∪ S(S(i)).

The analogous statement holds for N . For changes of only one variable level in one
cell, we have that:

– Isolated changes of low Notch to high Notch, or high Delta to low Delta can only
affect direct neighbour cells.

– Isolated changes from high Notch to low Notch, or low Delta to high Delta can
only affect cells at maximum distance of 2 from cell i .

The examples in Fig. 4 show that the bounds on the distance of affected cells are the
smallest possible.

5 A generalisation

In this section we give a brief look at a class of networks that generalise the models
previously considered in this paper. We fix again an undirected graph G without loops
with vertex setC . Given k ∈ N, k ≥ 1, consider theBoolean function Fk : B2L → B

2L

defined by
Fk
i (n, d) = 1 if and only if

∑

j∈S(i)

d j ≥ k,

Fk
i+L(n, d) = n̄i ,

for all i ∈ C . That is, at least k high level of neighbouring Delta are required to activate
Notch. For k = 1 we obtain the Delta–Notch model defined in Sect. 2.1.

We denote by Nk : BL → B
L the reduced model

Nk
i (n) = 1 if and only if

∑

j∈S(i)

n̄ j ≥ k for i ∈ C . (3)
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As seen in Sect. 3 for N , the network Nk is a strict threshold network, with A ∈
{0,−1}L×L and b ∈ R

L defined as follows:

Ai j =
{

−1 if j ∈ S(i),

0 otherwise,
bi = −|S(i)| + k − 1

2
.

Since A is symmetric and Aii ≥ 0 for all i ∈ C , all the attractors for ADNk are fixed
points (Goles-Chacc et al. 1985), and ADNk has no cyclic paths. By Theorem 2.1(i) the
fixed points of N and F are in one-to-one correspondence. It was shown in Veliz-Cuba
and Laubenbacher (2012) that the fixed points of N are in one-to-one correspondence
with theminimal vertex covers of the graph G.We show how this result can be partially
extended to Nk .

In the following, we writeP(A) for the subsets of a set A andPk(A) for the subsets
of A of size k. Define the undirected hypergraphH(k) with vertex set C and edge set

{{i} ∪ H | i ∈ C, H ∈ Pk(S(i))}.

The edges ofH(k) are given by subsets of the vertices C of cardinality k + 1, each
consisting of a vertex and k of its neighbours.

Recall that a transversal or hitting set of a hypergraph is a subset of the vertices that
has non-empty intersection with every edge. We introduce the following terminology:
we say that a transversal Q of H(k) is k-minimal if, for each i ∈ Q, |S(i) ∩ Q| ≤
|S(i)| − k. Note that a k-minimal transversal does not contain any vertex with fewer
than k neighbours in G.
Theorem 5.1 The fixed points for Nk and Fk are in one-to-one correspondence with
the k-minimal transversals of the hypergraph H(k).

Proof Consider the bijective map h : BL → P(C) defined by x �→ {i ∈ C | xi = 1},
and let n ∈ B

L be a fixed point of Nk . Observe that n j = 0 for all j such that
|S( j)| < k. Take I edge inH(k), and suppose that i ∈ I and H ∈ Pk(S(i)) are such
that I = {i} ∪ H . Since ni = ∨

J∈Pk (S(i))
∧

j∈J n̄ j , either ni = 1 or n j = 1 for some
j ∈ H . Hence h(n) is a transversal.
To see that h(n) is k-minimal, take i ∈ h(n). Since ni = 1, there exists a subset

H ∈ Pk(S(i)) such that n j = 0 and j /∈ h(n) for all j ∈ H . Hence |S(i) ∩ h(n)| ≤
|S(i)| − |H | = |S(i)| − k.

Vice versa, consider a k-minimal transversal Q of H(k), and define n = h−1(Q).
Given i ∈ C , if

∑
j∈S(i) n̄ j ≥ k, then there exists H ∈ Pk(S(i)) such that n j = 0 and

j /∈ Q for all j ∈ H . Hence {i}∪H is an edge inH(k) and since Q is a transversal we
must have i ∈ Q and ni = 1. If instead

∑
j∈S(i) n̄ j < k, then |S(i)|−|S(i)∩Q| < k,

and since Q is k-minimal, we find i /∈ Q and ni = 0. �	
As in Theorem 4.1, it is possible to show that all fixed points are reachable from

homogeneous initial conditions. We now give a description of the trap spaces for Nk

and Fk .

Proposition 5.1 The trap spaces for Nk are of the form x[I ], with x fixed point, and
for all i ∈ S(I ) ∩ I c:
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(i) if xi = 1, the set { j ∈ S(i) ∩ I c | xi = 0} has cardinality greater or equal to k;
(ii) if xi = 0, the set { j ∈ S(i) ∩ I c | xi = 0} ∪ (S(i) ∩ I ) has cardinality smaller

than k.

Proof Consider a subspace x[I ] as in the statement, and take y ∈ x[I ]. We need to
show that all successors of y in the asynchronous state transition graph are in x[I ], or,
in other words, Nk

i (y) = yi for all i /∈ I . If S(i) ∩ I = ∅, then the conclusion follows
from the fact that x is a fixed point. If i ∈ S(I ), and yi = 1, then Nk

i (y) = 1 follows
from (i), and if yi = 0, Nk

i (y) = 0 follows from (i i).
Vice versa, consider a trap space x[I ]. Since we must have Nk

i (x) = xi for all
i /∈ I , and all attractors of Nk are fixed points, we can assume that x is a fixed point.
Take i ∈ S(I ) ∩ I c with xi = 1, and y ∈ x[I ] such that y j = 1 for all j ∈ S(i) ∩ I .
Then 1 = xi = Nk

i (y) shows point (i). If i ∈ S(I ) ∩ I c is such that xi = 0, taking
y ∈ x[I ] such that y j = 0 for all j ∈ S(i) ∩ I gives point (i i). �	

Proposition 5.2 The trap spaces for Fk are of the form x[I ], with x fixed point, IN ⊆
ID, and, for i ∈ I cN :

(i) if xi = 1, the set { j ∈ S(i) ∩ I cD | xi+L = 1} has cardinality greater or equal to
k;

(ii) if xi = 0, the set { j ∈ S(i)∩ I cD | xi+L = 1}∪(S(i)∩ ID) has cardinality smaller
than k.

Proof Consider a subspace x[I ] as in the statement, and take y ∈ x[I ]. Then for
i ∈ I cN we have yi = xi , and in both cases we have Fk

i (y) = Fk
i (x) = xi . For i ∈ I cD ,

yi+L = xi+L and since x is fixed, Fk
i+L(y) = Fk

i+L(x) = yi+L .
Vice versa, consider a trap space x[I ]. The containment IN ⊆ ID follows from the

definition of F . Since we must have Fk
i (x) = xi for all i /∈ I , and all attractors of Fk

are fixed points, we can assume that x is a fixed point. Take i ∈ S(I )∩ I cN with xi = 1,
and y ∈ x[I ] such that y j+L = 0 for all j ∈ S(i) ∩ ID . Then 1 = xi = Fk

i (y) shows
point (i). If i ∈ S(I ) ∩ I cN is such that xi = 0, taking y ∈ x[I ] such that y j+L = 1
for all j ∈ S(i) ∩ ID gives point (i i). �	

Recall that for the case k = 1 we were able to describe the minimal trap space
containing a fixed point and some of its adjacent states (Propositions 4.1, 4.3), and
to show that changes in a pattern can not propagate to cells at distance greater than
2. The following example shows that a similar result does not hold for k > 1. The
characterisations of the basins of attraction for N and F also do not immediately
generalise to Nk and Fk , and are left as open problems.

Example 5.1 For Nk (and Fk) with k = 2, one can construct a network such that a
change in one cell can cause repercussions at arbitrary distance. Consider the example
in Fig. 5 left. By changing the low level (in black) to high level (in white) in the cell
with a dashed border, the pattern on the right can be reached. The network can be
made as large as wanted.
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... ...

Fig. 5 Example showing the propagation of a pattern perturbation in ADNk for k = 2. White cells have
high levels of Notch. The pattern on the right can be reached from the state obtained from the pattern on
the left when changing the level of Notch in the cell with a dashed border

6 Conclusion and prospects

In thisworkwe gave some characterisations of the dynamics of simpleBooleanmodels
of the Delta–Notch system, complementing existing computationally-costly algorith-
mic analyses (e.g.Mendes et al. 2013; Varela et al. 2018a).We consideredmodels with
two variables per cell, and reduced models with only one variable per cell. Results
on Boolean threshold networks (Goles-Chacc et al. 1985) imply that all attractors
are fixed points, and that the asynchronous dynamics of reduced models do not con-
tain any cyclic path. In addition, the identification of the fixed points can be traced
back to determining the minimal vertex covers (or the maximal independent vertex
sets) of the graph representing the neighbour relation between cells (Veliz-Cuba and
Laubenbacher 2012). The emerging patterns are consistent with those obtained in the
spatially-discrete continuous model of Collier et al. (1996). We gave a characterisa-
tion of the trap spaces (Theorems 4.3, 4.4) and of the patterns that can be reached
from a given state (Theorems 4.5, 4.6) for both the one- and two-variable models.
In particular, we saw that all patterns can be obtained from homogeneous starting
points (Theorem 4.1, 4.2). For the two-variable models, all the fixed points in the
minimal trap space containing the initial state are reachable, a property that does not
hold for the one-variable models. The effects of cell perturbations on patterns were
discussed in Sect. 4.4: changes in patterns can only propagate to cells at maximum
distance 2. Finally, we considered a generalisation of the models (Sect. 5), where
Notch is assumed to be activated when a certain minimum amount of neighbour cells
with high levels of Delta is reached, as in Varela et al. (2018b). Although results on the
asymptotic behaviour extend to these models, we showed with an example (5.1) that
the characterisation of the minimal trap spaces does not in general extend. We leave as
open question the problem of determining if some results on the reachability and trap
spaces can be extended to these models under some assumptions on the underlying
graph.

Our results concern the structure of the dynamics and do not allow for quantita-
tive results regarding, for instance, the distribution of Notch obtained with trajectories
starting from a given initial condition, as considered, for example, in Varela et al.
(2018b). The study of the asynchronous dynamics as a Markov chain is used to quan-
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tify simulation results of Boolean models (Stoll et al. 2017) and could help with the
interpretation of simulation results. The model presented here provides a basis for
the exploration of networks with more elaborate cell modules, and for the investiga-
tion of the role of the simple mechanism we considered in the generation of spatial
inhomogeneity in more complex Boolean systems.
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