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Clinical ribonucleotide reductase (RNR) inhibitors have reinvigorated enthusiasm for 
radiochemotherapy treatment of patients with regionally advanced stage cervical can-
cers. About two-thirds of patients outlive their cervical cancer (1), even though up to 
half of their tumors retain residual microscopic disease (2). The National Cancer Institute 
Cancer Therapy Evaluation Program conducted two prospective trials of triapine– 
cisplatin–radiation to improve upon this finding by precisely targeting cervical cancer’s 
overactive RNR. Triapine’s potent inactivation of RNR arrests cells at the G1/S cell 
cycle restriction checkpoint and enhances cisplatin–radiation cytotoxicity. In this article, 
we provide perspective on challenges encountered in and future potential of clinical 
development of a triapine–cisplatin–radiation combination for patients with regionally 
advanced cervical cancer. New trial results and review presented here suggest that a 
triapine–cisplatin–radiation combination may offer molecular cell cycle target control to 
maximize damage in cancers and to minimize injury to normal cells. A randomized trial 
now accrues patients with regionally advanced stage cervical cancer to evaluate triapine’s 
contribution to clinical benefit after cisplatin–radiation (clinicaltrials.gov, NCT02466971).
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iNtrODUctiON

Cervical cancer forecasts as the fourth most common any-type cancer in women worldwide in 
2018 (3). And it remains the fourth leading cause of cancer-related death (3). About 36% of new 
cases in American women are staged as regionally advanced at first diagnosis (4). This means that 
their disease is confined in the cervix or nearby organs or lymph nodes (International Federation of 
Gynecology and Obstetrics stage IB2 to IVA). Patients with this stage of disease undergo once weekly 
cisplatin chemotherapy (40 mg m−2) and daily radiation (180 cGy per Monday to Friday) repeated 
for 5 weeks followed by intracavitary brachytherapy (1, 5). A 60-month (5-year) survival rate for 
such treated patients is 60% (1).

Prognostic factors such as cell type, histological grade, and invasiveness provide only a partial 
explanation of why only 6 in 10 survive after cisplatin–radiation (6). An overactive DNA damage 
response that involves ribonucleotide reductase (RNR) might further explain this clinical result  
(7, 8). RNR substitutes a hydroxyl group in a ribonucleotide diphosphate for hydrogen for its cor-
responding deoxyribonucleoside diphosphate (dNDP) that ultimately can be used in DNA duplication 
or its repair (9). Both of its higher order (α6β6 or α6β2) forms are active (10). RNR’s large subunit α 
(M1) contains: (1) a catalytic pocket for rNDP substrates; (2) a specificity site that controls which 
nucleotides are made; and (3) an activity site that regulates its own activity through biologic feedback 
(11). Its catalytic pocket is the drug target for gemcitabine (12). RNR’s small subunit β (M2 or M2b) 
shuttles a critical diferric tyrosyl radical to the M1 subunit’s catalytic site (13). The free radical is 
the drug target for hydroxyurea or triapine (14, 15). The response to DNA damage will be different 
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FigUre 1 | Triapine–cisplatin–radiation treatment and cell cycle targets. Damaging agents and DNA damage response repair targets are charted in relation to 
triapine–cisplatin–radiation treatment. Shown in bold are nucleotide supply chain elements likely to be active. *Data suggest M2 or M2b recycling after triapine 
exposure occurs over an 18-h period, but further validation is needed (21). Pie charts indicate representative 24-h cell cycle effects (22). Abbreviations: APE1, AP 
endonuclease 1; ATM, ataxia-telangiectasia mutated; ATR, ataxia-telangiectasia and Rad3-related; DNA-PK, DNA-dependent protein kinase; dNTP, deoxynucleotide 
triphosphate; ERCC1, DNA excision repair protein 1; PARP, poly(ADP-ribose) polymerase; RNR, ribonucleotide reductase; XP, xeroderma pigmentosum.
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depending on cell cycle status (Figure 1). M1 is long-lived and 
found in all cell cycle phases (16). M2 has a KEN-box sequence 
recognized by the Cdh1-anaphase-promoting complex that 
degrades it in late mitosis (17, 18). M2b lacks the KEN-box and 
thus can be detected in all cell cycle phases. M2b transcription is 
p53 dependent (19). This means that cancers in G1-phase of the 
cell cycle do not have M2 available to pair up with M1 for active 
enzyme, and therefore, must depend upon M2b to be available 
for active enzyme. When a drug like triapine inactivates RNR, 
deoxynucleoside salvage kinases supply DNA precursors for 
duplication or repair (20).

Triapine (3-aminopyridine-2-carboxaldehyde thiosemi-
carbazone) potently blocks RNR activity (15). But triapine as 
monotherapy has been ineffective (0–7% response rate) in the 
clinic when given up to 96  mg m−2 daily (23–25). A triapine–
cisplatin combination was tolerable but also clinically ineffective 
with no observed responses (26). A triapine–cisplatin–paclitaxel 
combination too was tolerable but found to not result in objective 

responses (27). Cancer Therapy Evaluation Program (CTEP) 
repositioned triapine as a radiation modifier in 2006. Early 
experiments showed that confluent and growth-arrested cervical 
cancer cells had a 17-fold rise in RNR M2 expression about 18 h 
after radiation exposure (28). There was also a fourfold increase 
in their RNR dNDP output (or DNA precursor output) about 
24 h after radiation exposure (28). Later experiments reinforced 
the notion that triapine offers molecular target control of RNR 
activity for up to 18  h until M2 expression restores enzyme 
output (29). It was shown that triapine strongly arrested cells at 
a G1/S-phase cell cycle restriction checkpoint for up to 18 h, left 
radiation-induced DNA damage unrepaired for at least 6 h, and 
profoundly sensitized cancers to radiation–cisplatin cytotoxicity 
(20–22, 30).

This article provides a state-of-the-art perspective on a triapine–
cisplatin–radiation combination for the treatment of regionally 
advanced stage cervical cancer. The first trial (#7336) reviewed 
here was a phase I dose-finding safety study (clinicaltrials.gov, 
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tAble 1 | Triapine–cisplatin–radiation weeklya treatment schedule.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Triapine Cisplatin Triapine – Triapine – –
Pelvic radiation Pelvic radiation Pelvic radiation Pelvic radiation Pelvic radiation – –

aTreatment began on Monday day 1, and repeated each week for a total of 5 weeks (i.e., days 1, 8, 15, 22, and 29).
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NCT00335998) (31). The second trial (#8327) was a single-arm 
phase II efficacy study (clinicaltrials.gov, NCT00941070) (32). 
Now that the median survivor follow-up in the two trials exceeds 
6 years, CTEP offers perspective on the challenges encountered 
and opportunities gained for clinical development of triapine as 
an anticancer agent.

cHAlleNges AND OPPOrtUNities

Cancer Therapy Evaluation Program’s studies activated as a phase 
I trial in 2006 (#7336) and then a phase II trial in 2009 (#8327). 
The first trial recruited patients mainly with cervical cancers of 
any stage [10 (91%) of 11] (31). The second trial accrued any 
stage cervical or vaginal cancers (32). Tumor stage heterogeneity 
has posed a challenge to long-term interpretation of front-line 
triapine impact upon established cisplatin–radiation combina-
tion treatment. First, in CTEP trials, any cervical cancer disease 
lying outside a pelvic radiotherapy treatment beam portal was 
not irradiated, negating any possibility of radiation–triapine syn-
ergistic cytotoxicity. This too means that those front-line patients 
with initial extrapelvic or metastatic disease only had their unir-
radiated disease treated by cisplatin–triapine, which may have 
only modest anticancer activity in cervical cancer patients (26). 
In this article, we assessed long-term patient outcomes from those 
patients with only regionally advanced stage cervical (IB2 to IVA) 
or vaginal (II to IVA) cancers recruited in its trials. Patients previ-
ously analyzed were excluded for this article if they had metastatic 
disease at treatment onset (n = 4), extrapelvic disease (n = 2), 
death due to protocol-unrelated iatrogenic Mallory–Weiss tear 
(n  =  1), or if they consented but had no treatment (n  =  1). 
Twenty-nine patients are thus discussed below.

Another challenge in front-line triapine clinical development 
has been its administration schedule (Table 1). In trials, radio-
therapy involved 25-fraction (180 cGy) Monday through Friday 
four-field box radiation beginning on day 1. This was followed by 
low-dose-rate (LDR) brachytherapy in one or two implants (day 
49 or 56 ± 3 days). Or, there was an option for high-dose-rate 
(HDR) brachytherapy in five implants (e.g., days 42, 45, 49, 52, 
and 56). Total treatment time was to be 56 ± 3 days. The total 
prescription was 8,000 cGy (LDR) or 7,500 cGy (HDR) or more 
as clinically indicated. Cisplatin (40 mg m−2 capped at 70 mg) 
was moved to a Tuesday intravenous infusion (day 2). There 
was a treating physician’s option for a sixth infusion on day 
36 ± 3 days. Because of triapine’s 2-h half-life, triapine (25 mg 
m−2) intravenous infusions were scheduled three times per week 
beginning on day 1. An often-held perception is that the number 
of triapine infusions is cumbersome to patients. To correct this 
notion, there may be an opportunity to study the oral triapine 
formulation (33) in this patient population as proposed in CTEP 
protocol #9892.

From the CTEP perspective, its trials were the first to used 
18F-fluorodeoxyglucose (FDG) positron emission tomography 
(PET) at baseline and 3 months after treatment completion for 
prognostic treatment response assessment. This third challenge 
necessitated evaluation of its FDG PET metabolic response criteria, 
as there is the possibility of overestimating metabolic complete or 
partial response due to a substantial radiation cytotoxicity effect. 
In the trials, cervical tumor and lymph node regions defined on 
baseline scan were drawn as regions of interest (ROI) that would 
then be assessed on a 3-month follow-up scan. Uptake measure-
ments were made for mean and maximum tumor ROI counts per 
pixel per second (calibrated as MBq L−1). The original FDG PET 
metabolic response evaluation criteria are found elsewhere (34). 
Briefly, a metabolic complete response was defined as absence of 
abnormal FDG uptake at sites of abnormal FDG uptake noted on 
the baseline scan. Partial metabolic response was 15–25% reduc-
tion in tumor FDG uptake. Stable metabolic response ranged 
between less than 15% reduction or less than or equal to 25% gain 
in tumor FDG uptake. Progressive metabolic disease was labeled 
as greater than 25% gain in tumor FDG uptake or appearance of 
new FDG uptake in metastatic lesions. On CTEP’s trials in cervi-
cal cancer, a computed tomography scan was co-acquired for ana-
tomic detail. To overcome challenges, there was an opportunity 
to apply a vetted ratio of 3-month post-treatment to baseline pre-
treatment FDG uptake in cervical tumor. A benchmark threshold 
ratio of 0.33 was applied for mCR (35). In these two trials, the 
0.33 ratio benchmark served well as prognostic indicator of best 
response. There is further possibility to evaluate the performance 
of the 0.33 ratio benchmark in CTEP’s current randomized trial 
(clinicaltrials.gov, NCT02466971).

PersPectives ON NeW triAl FiNDiNgs

Original patient demographics and tumor characteristics are 
summarized elsewhere (31, 32). The median age of the combined 
patients in this 29-patient analysis was 57 years, ranging between 
33 and 68 years. All patients were female. Self-identified race was 
white (72%) or American black (28%). Ten percent identified 
their ethnicity as Hispanic or Latino. Squamous cell carcinoma 
was the most common type of tumor histopathology (93%). The 
29-patient data in this analysis have a cutoff date of October 24, 
2017.

Triapine–cisplatin–radiation appears safe and tolerable. 
Updated results for adverse events on these trials reveal imme-
diate grade 3 or 4 gastrointestinal (nausea 11%, diarrhea 8%, 
anorexia 3%, and dehydration 3%) or hematological toxicities 
(thrombocytopenia 20%, lymphocyte decrease 16%, and ane-
mia 7%) to be generally mild, reversible, but attributable to 
the combination. Triapine has one adverse event of particular 
interest to CTEP and requires adverse event of special interest 
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tAble 2 | Responsesa of cervical tumor to indicated treatment.

triapine–cisplatin–radiation cisplatin–radiation cisplatin-alone radiation-alone

Cisplatin dose (frequency) 40 mg m−2 (x1 weekly) 30 mg m−2 (x1 weekly) 50 mg m−2 (q3 weeks) Placebo
Evaluable 29 50 150 43
Clinical complete response (CR) 29 (100%) 44 (88%) 15 (10%) 21 (49)
Clinical partial response (PR) 0 (0%) 6 (12%) 16 (11%) 7 (16%)
Clinical stable disease 0 (0%) 0 (0%) 60 (40%) 7 (16%)
Clinical progressive disease 0 (0%) 0 (0%) 59 (39%) 8 (19%)
All clinical responses (CR + PR) 24 (100%) 50 (100%) 31 (21%) 28 (65%)
Reference (31, 32) (37) (38) (39)
Cisplatin dose (frequency) 40 mg m−2 (x1 weekly) 40 mg m−2 (x1 weekly)
Evaluable 22 238
Metabolic complete response (mCR) 21 (95%) 173 (73%)
Metabolic partial response (mPR) 1 (4%) 40 (17%)
Metabolic stable disease 0 (0%) 0 (0%)
Metabolic progressive disease 0 (0%) 25 (10%)
All metabolic responses (mCR + mPR) 22 (100%) 213 (89%)
Reference (31, 32) (40)

FDG PET, 18F-fluorodeoxyglucose positron emission tomography.
aResponse Evaluation Criteria in Solid Tumors, version 1.0.
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reporting—methemoglobinemia. Triapine interacts with Fe(2+) 
hemoglobin forming Fe(3+) methemoglobin that does not deliver 
oxygen. For context, Fe(2+) hemoglobin normally auto-oxidizes 
to inactive Fe(3+) methemoglobin at a rate of nearly 3% per day.  
A reductase system counterbalances this process to normally limits 
methemoglobin concentrations to less than 1%. Given repeated 
exposure to triapine during the course of cisplatin–radiation 
treatment in these trials, methemoglobinemia and symptoms of 
dyspnea were monitored by CTEP on both trials. Management 
guidelines for methemoglobinemia were included in each pro-
tocol and can be reviewed elsewhere (36). At a recommended 
phase II trial dose of triapine 25 mg m−2, methemoglobinemia 
peaked on average at 2%. As compared to pre-infusion baseline, 
this post-infusion proportion was on average a fivefold rise 
in methemoglobin. The trials collectively observed one (3%) 
rectovaginal fistula occurring 22  months after treatment. This 
patient underwent diverting colostomy and hyperbaric oxygen 
treatment to aid healing of the rectovaginal fistula. Late ureteral 
obstruction was not encountered. An increased emphasis on 
morbidity outcomes as a component of regulatory filing makes 
careful monitoring of adverse events critical on the randomized 
trial of the triapine–cisplatin–radiation combination.

Confirmed clinical complete responses after triapine–cisplatin– 
radiation treatment were 100% on these trials (29 of 29,  
Table  2). Confirmed mCR rate was 95% (21 of 22, Table  2). 
Median FDG PET uptake before treatment was 14.3 (range 
6.9–32.1) in the 29 patients analyzed here. Median uptake after 
triapine–cisplatin–radiation treatment was 2.8 (range 1.1–6.4) 
for the same population. A median uptake ratio was, therefore, 
resulted at 0.19 (range 0.06–0.56). A single patient who did not 
achieve an uptake ratio of less than 0.33 had the only partial 
metabolic response after combination treatment. And this patient 
developed progressive disease in an intrapelvic lymph node 
8 months after combination treatment.

For this article, an overall survival analysis was based on a total 
of 15 deaths from among the 29 eligible patients with regionally 
advanced stage cervical or vaginal cancer. The median follow-up 

from date of first treatment to database lock, censoring observed 
deaths, was 73  months (range, 58–129  months). A total of 25 
(86%) of 29 patients survived either disease-free (n = 14) or died 
from a variety of non-cancer causes (n = 11). The low number of 
deaths on these two trials means that overall survival estimates 
are underpowered to show meaningful differences between 
triapine–cisplatin–radiation and historical cisplatin–radiation 
controls. Thus, the data here should be treated as preliminary. 
Overall survival estimates after triapine–cisplatin–radiation 
treatment was 83% (95% CI, 63–92%) at 30  months and 59% 
(95% CI, 39–74%) at 60 months (5 years). These two times were 
arbitrarily selected to match reporting in long-term analyses of 
cisplatin–radiation phase III trials in a similarly recruited cervi-
cal cancer patient population. In the comparator, estimates for 
overall survival after cisplatin–radiation treatment were 70% for 
30 months and 60% for 60 months (5 years) (1). In an interesting 
subset of the 29-patient cohort analyzed here, 15 (52% of 29) 
patients at diagnosis had FDG PET-avid pelvic lymph nodes. 
Their overall survival after triapine–cisplatin–radiation combi-
nation treatment was 80% (95% CI, 50–93%) at 30 months and 
60% (95% CI, 32–80%) at 48 months (4 years). In another study, 
estimated overall survival after cisplatin–radiation treatment 
in patients with FDG PET-avid pelvic lymph nodes was 50% at 
30 months and 45% at 48 months (4 years) (41). CTEP regards 
this latter finding quite remarkable.

POteNtiAl FOr triAPiNe iN cervicAl 
cANcer

In these two trials, triapine–cisplatin–radiation was a safe 
therapeutic investigational option for patients with untreated 
regionally advanced stage cervical or vaginal cancers. Patients 
had improvement in pelvic disease response and overall survival, 
suggesting pelvic disease control lowered the risk of cancer-
related death.

Immediate adverse events related to triapine–cisplatin– 
radiation were mild and manageable in both trials. The trials did 
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find an elevated rate of grade 3 or 4 platelet count decrease (20%). 
Cisplatin causes platelet apoptosis (42), possibly mediated by 
mitochondrial DNA depletion and apoptosis (43). Triapine could 
possibly exacerbate this effect. In a previous cisplatin–radiation 
trial, grade 3 or 4 platelet count decreases were seen in 1% of 
patients (44). The observed 16% rate of grade 3 or 4 leukopenia 
in these trials was similar to a 13% rate seen elsewhere (44). Rare 
late gastrointestinal or urological adverse events here were similar 
to prior trials. The limited adverse event profile demonstrated in 
these two trials suggests that there is further potential for combi-
nation clinical development.

Estimated survival was 83% at 30  months after triapine– 
cisplatin–radiation as upfront treatment for patients with region-
ally advanced stage cervical or vaginal cancer. This is better than 
the 70% rate at 30 months after cisplatin–radiation alone (1). But 
here patient survival must be interpreted cautiously, as sample 
sizes, and numbers of death events are both low in these two 
trials. It is known that up to half of primary cervix tumors retain 

residual microscopic cancer (2). This fits with an early cancer 
disease relapse pattern, as about 80% of disease relapses occur 
within 24 months after radiotherapy completion (1). In these two 
trials, triapine–cisplatin–radiation provided near total clinical 
and mCR (95%) in cervical or vaginal tumors. Many survived 
disease-free or died from other causes than cancer. In the absence 
of thorough microscopic examination after radical adjuvant 
surgery, it is impossible to determine triapine’s contribution to 
complete sterilization of residual microscopic disease. Here, FDG 
PET signal might serve as an unproven surrogate. A randomized 
trial better designed to test triapine’s contribution to clinical 
benefit is now active (clinicaltrials.gov, NCT02466971).

Two cell cycle concepts lie behind potential strategies 
targeting cancer DNA damage responses mediated at least in 
part by RNR activity (Figure  2). As outlined elsewhere (45), 
triapine increases susceptibility of cancers to G1-phase or 
S-phase-induced DNA damage. If the levels of G1-phase dam-
age are sufficient, this can lead to cell death through replication 

FigUre 2 | Strategy for ribonucleotide reductase (RNR) inhibitors in cervical or vaginal cancers. The clinical development strategy for RNR-targeted agents like 
triapine is to block or to stall DNA repair after a maximum amount of inflicted DNA damage occurs during the G1 or S phases of the cell cycle. This strategy is 
cytotoxic (1) by itself or (2) disrupts homologous recombination repair.
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catastrophe (46) or apoptosis (47). Cancer cell death may also 
happen if double-strand DNA damage carries through into 
mitosis, resulting in mitotic catastrophe (45). This would explain 
why radiation, which exerts its cytotoxic effect most powerfully 
in either the G1-phase or the G2-M-phase, pairs well with cis-
platin, which manifests S-phase DNA damage. This would also 
explain why triapine might be so effective in combination with 
radiation–cisplatin. Sustained radiation–cisplatin DNA damage 
demands nucleotides for repair. Biologic agents like triapine 
render RNR small β subunits inactive and therefore places a 
much greater dependency on alternative nucleotide sources 
like deoxynucleoside salvage kinases. Sufficient DNA damage 
may be generated to exceed the threshold where cancer cells 
survive on alternative nucleotide sources, regardless of intact 
or exhausted cell cycle restriction checkpoints. RNR inhibi-
tors that can maximize DNA damage, such as gemcitabine or 
hydroxyurea or triapine, provide means to overcome nucleotide 
supply as a vital cancer defense mechanism. In the two trials 
discussed here, evidence of improved disease response and 
patient survival advocate for this strategic attack on the cancer 
cell cycle.

In summary, these two trials provide response and survival 
evidence that triapine–cisplatin–radiation is effective in patients 
with regionally advanced stage cervical or vaginal cancer. Future 
studies should consider oral triapine for RNR blockade for 
patients in first-line cisplatin–radiation treatment.
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