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Purpose: To	develop	predictive	models	to	identify	cataract	surgery	patients	who	are	more	likely	to	benefit	
from	refraction	at	a	four-week	postoperative	exam.	Methods: In	this	retrospective	study,	we	used	data	of	
all	86,776	cataract	surgeries	performed	in	2015	at	a	large	tertiary-care	eye	hospital	in	India.	The	outcome	
variable	was	 a	 binary	 indicator	 of	whether	 the	 difference	 between	 corrected	 distance	 visual	 acuity	 and	
uncorrected	 visual	 acuity	 at	 the	 four-week	 postoperative	 exam	 was	 at	 least	 two	 lines	 on	 the	 Snellen	
chart.	We	 examined	 the	 following	 statistical	 models:	 logistic	 regression,	 decision	 tree,	 pruned	 decision	
tree,	 random	 forest,	 weighted	 k-nearest	 neighbor,	 and	 a	 neural	 network.	 Predictor	 variables	 included	
in	 each	model	were	 patient	 sex	 and	 age,	 source	 eye	 (left	 or	 right),	 preoperative	 visual	 acuity,	 first-day	
postoperative	 visual	 acuity,	 intraoperative	 and	 immediate	 postoperative	 complications,	 and	 combined	
surgeries.	We	 compared	 the	predictive	performance	of	models	 and	assessed	 their	 clinical	 impact	 in	 test	
samples. Results: All	models	demonstrated	predictive	accuracy	better	than	chance	based	on	area	under	the	
receiver	operating	characteristic	curve.	In	a	targeting	exercise	with	a	fixed	intervention	budget,	we	found	
that	gains	from	predictive	models	in	identifying	patients	who	would	benefit	from	refraction	ranged	from	
7.8%	(increase	from	1500	to	1617	patients)	to	74%	(increase	from	250	to	435	patients).	Conclusion: The use 
of	predictive	statistical	models	to	identify	patients	who	are	likely	to	benefit	from	refraction	at	follow-up	can	
improve	the	economic	efficiency	of	interventions.	Simpler	models	like	logistic	regression	perform	almost	as	
well	as	more	complex	machine-learning	models,	but	are	easier	to	implement.
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Several	 studies	 have	 demonstrated	 the	 importance	 of	 an	
intermediate-term	 follow-up	 examination	 after	 cataract	
surgery.[1,2]	 Patient	 benefits	 of	 a	 follow-up	 visit	 include	
appropriate diagnosis and management of postoperative 
complications,	 such	as	 cystoid	macular	 edema,	 rebound	of	
postsurgical	 inflammation,	steroid	response,	and	worsening	
of	diabetic	 retinopathy.	Further,	more	accurate	 refraction	 is	
possible	at	follow-up	because	changes	in	vision	due	to	corneal	
edema	 and	 astigmatic	 shift	 typically	 occur	 in	 the	weeks	
following	 surgery.	Globally	 and	 especially	 in	 developing	
countries,	uncorrected	refractive	error	is	a	significant	source	
of	suboptimal	postoperative	vision.[3–5] Importantly, the most 
commonly	 used	 surgical	 procedure	 for	 cataract	 surgery	
in	 developing	 countries—manual	 small	 incision	 cataract	
surgery	 (SICS)—induces	 a	 greater	 need	 for	 post-surgical	
refractive	 correction	 than	phacoemulsification	 (PE).[1] The 
follow-up	visit	is	also	an	opportunity	for	the	service	provider	
to	measure	 postoperative	 surgical	 and	 visual	 outcomes,	
which	is	useful	feedback	for	continually	refining	the	surgical	
protocol.[5–8]

Postoperative	follow-up	rates	vary	greatly	across	developing	
countries.	 In	a	 recent	 study	of	 40	 centers	 in	 ten	developing	

countries	in	Asia,	Africa,	and	Latin	America	in	which	patients	
were	instructed	to	return	for	follow-up	40	days	after	surgery,	
unprompted	follow-up	rates	ranged	from	27%	to	93%,	with	
an	average	of	51%.[8]	A	study	of	post-cataract	surgery	visual	
outcomes	at	rural	secondary	care	centers	in	India	reports	that	
nearly	10%	of	patients	did	not	return	for	1–3	week	follow-up,	
and	 a	 third	did	not	 return	 for	 the	 4–11	week	 follow-up.[9] 
Three	other	studies	in	developing	countries	report	follow-up	
rates	of	67.2%	at	2	months,[10]	49%	at	12	weeks,[11]	and	91%	at	
4–8	weeks.[12]

An	important	question	for	improving	patient	care	is	how	
to	boost	follow-up	rates	after	cataract	surgery.	In	the	context	
of	low-	and	middle-income	countries,	Ologunde	and	Rafai[13] 
advocate	that	the	healthcare	provider	should	attempt	to	facilitate	
travel.	Studies	of	noncompliance	with	follow-up	in	rural	China	
have	found	that	modest	compensation,	advertisements,	and	
telephone	contact	can	increase	medium-term	follow-up	rates.[14]

In	resource-poor	settings,	it	might	be	prudent	to	focus	efforts	
to	promote	follow-up	on	those	patients	who	are	predicted	to	
be	more	likely	to	benefit	from	the	follow-up	visit.	In	this	study,	
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we	evaluate	the	usefulness	of	predictive	statistical	models	in	
identifying	such	patients.	The	aims	of	our	study	are:	i)	to	build	
statistical	models	to	predict	which	patients	are	more	likely	to	
benefit	 from	refraction	at	a	 follow-up	visit	 four	weeks	after	
cataract	surgery;	ii)	to	compare	the	predictive	performance	of	
alternative	statistical	model	specifications;	and	iii)	to	assess	the	
likely	clinical	impact	of	predictive	models	in	targeted	patient	
interventions	to	encourage	follow-up.

To	develop	the	predictive	models,	we	used	data	of	all	eyes	
that	underwent	cataract	surgery	in	2015	at	a	large	tertiary-care	
eye	hospital	in	India	which	performs	close	to	40%	of	all	cataract	
surgeries	 done	 in	 the	 state.	 Further,	 the	 inclusive	 service	
design of the hospital wherein patients are sought out in the 
community	and	treated	irrespective	of	ability	to	pay	implies	
that the patient population we study is quite representative of 
the	broader	population.

Methods
Ethical approval
The	study	protocol	was	approved	by	the	hospital’s	Institutional	
Review	Board	and	adhered	to	the	tenets	of	the	Declaration	of	
Helsinki.	Patient	confidentiality	was	maintained	by	adherence	
to	privacy	protocols.

Study design and participants
We	conducted	a	hospital-based	retrospective	cohort	study	by	
analyzing	anonymized	data	of	all	phacoemulsification	(PE)	or	
manual	small	incision	cataract	surgeries	(SICS)	performed	at	the	
hospital	during	2015,	in	which	patients	were	asked	to	routinely	
follow-up	after	four	weeks	at	a	hospital-affiliated	facility.	Of	the	
85,977	surgeries,	in	73,728	cases	(85.8%),	patients	returned	for	a	
follow-up	visit	and	their	data	are	included	in	this	study.	Fig.	1 
summarizes	the	cohort	creation	and	subsequent	steps	in	this	study.

Cataract surgery at the hospital
All	patients	with	visually	significant	cataract	preoperatively	
undergo	 baseline	 Snellen	 visual	 acuity	 (VA)	 assessment,	
refraction,	 slit-lamp	 examination,	 duct	 patency,	 biometry,	
and	 systemic	 comorbidity	 evaluation.	 Patients	who	 are	
advised	 surgery	undergo	 structured	 counseling	by	 trained	
counselors.	Surgical	procedures	at	the	hospital	are	performed	
by	its	consultants,	residents,	and	fellows.	Patients	choose	one	
of	 three	 types	of	 facilities	 based	on	affordability	 to	 receive	
cataract	surgical	services:	paying,	subsidized,	and	outreach	
camp	(free).	While	paying	patients	can	choose	either	PE	or	
SICS,	almost	all	the	subsidized	and	camp	patients	receive	SICS.

On	the	day	following	surgery,	the	usual	practice	is	to	check	
Snellen	VA	with	pinhole	and	conduct	a	slit-lamp	examination.	

Figure 1: Schematic outline of cohort creation and data analysis methodology
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Patients	 are	 typically	discharged	1	day	after	 surgery.	 If	 the	
operated	eye	has	 significant	 complications,	 then	 the	patient	
is	discharged	2–3	days	 later.	During	discharge,	patients	are	
advised	to	follow-up	for	a	postoperative	eye	exam	on	a	specific	
date	one	month	(±5	days)	following	surgery.	All	patients	are	
advised	to	come	to	the	hospital	immediately	if	they	experience	
any	sudden	loss	of	vision,	redness,	or	pain.	During	discharge,	
the	importance	of	adherence	to	medications	and	to	follow-up	is	
explained	in	detail	by	patient	counselors.	Each	patient	is	given	
a	written	discharge	summary	relating	to	follow-up	care	and	
medication	and	the	follow-up	date.	Patients	are	not	charged	
for	 follow-up	visits	 at	 any	of	 the	hospital-affiliated	 sites.	 In	
addition,	patients	 included	in	 this	study	were	not	provided	
any	incentives	or	reminders	to	follow-up.	All	patients	undergo	
VA	 testing,	 subjective	 refraction,	 and	detailed	dilated	 eye	
examination	using	slit-lamp	during	the	follow-up	visit.

Data collection
Preoperative, intraoperative, immediate postoperative, and 
follow-up	details	of	all	patients	undergoing	cataract	surgery	
were	obtained	from	the	hospital’s	cataract	quality	monitoring	
database.	These	data	are	captured	as	an	integral	part	of	patient	
flow	and	periodically	checked	for	quality.	In	this	study,	patients	
were	considered	to	have	complied	with	the	advice	to	follow-up	
if	they	returned	for	a	postoperative	examination	between	15	
and	49	days	(both	days	included)	following	surgery.

Outcome measure and predictor variables
The	key	outcome	measure	is	a	binary	indicator	of	whether	the	
patient	will	benefit	from	refraction	at	the	follow-up	visit,	which	
we	operationalize	as	a	difference	of	two	lines	or	more	between	
uncorrected	visual	acuity	(UCVA)	and	corrected	distance	visual	
acuity	(CDVA)	on	the	Snellen	VA	chart.[15]	As	predictors,	we	
included	all	variables	which	are	believed	to	have	an	association	
with	VA	 after	 cataract	 surgery,	 and	 for	which	data	were	
available	 in	 the	database.	Our	 approach	 to	 identifying	and	
including	potential	predictors	 is	consistent	with	our	goal	of	
developing	predictive	models,	wherein	a	causal	link	between	
the	predictor	and	outcome	is	not	required.

The	predictor	 variables	 in	 each	model	 include	 for	 each	
surgery,	 patient	 sex,	 patient	 age	 in	 years,	 source	 eye	 (left	
or	 right),	 preoperative	 VA	 in	 logMAR	 units,	 first-day	
postoperative	VA	 in	 logMAR	units,	 and	binary	 indicators	
of	 intraoperative	 complications,	 first-day	 postoperative	
complications,	 and	 combined	 surgeries.	 Intraoperative	 and	
postoperative	complications	of	OCTET	grades	2	or	3	(greater	
severity)	 are	 included.[16]	A	 combined	 surgery	 is	defined	as	
cataract	surgery	performed	along	with	a	cornea-,	glaucoma-,	
or	retina-related	specialty	procedure.

Predictive models and statistical analyses
We	considered	 six	 alternative	 statistical	models	 and	 three	
“combination”	models	 for	 this	 prediction	 task;	 these	 are	
described	in	Supplementary	Table	S1	as	M1-M9.	The	models	
include	 both	 traditional	multivariable	models	 like	 logistic	
regression,	and	machine	learning	models	like	decision	tree	and	
pruned	decision	tree,[17] random forest,[18]	weighted	k-nearest	
neighbor	(knn),	and	a	neural	network	(multilayer	perceptron).

The	performance	of	predictive	models	should	be	assessed	
not	in	the	sample	in	which	the	model	was	estimated	(“training	
sample”)	but	in	a	separate	sample	of	data	after	the	model	is	

estimated	 (“test	 sample”).	This	 is	because	 complex	machine	
learning	models	are	more	susceptible	to	overfitting,	which	can	
lead	to	an	overly	optimistic	estimate	of	model	performance.[19] 
Consequently,	we	divided	our	 sample	data	 for	each	 type	of	
surgery	(PE	and	SICS)	into	two	random	subsets:	two-third	in	
the	training	sample	and	one-third	in	the	test	sample.	Each	model	
was	estimated	on	the	training	sample	data	and	its	predictive	
performance	was	measured	in	both	the	training	sample	and	the	
test sample. Analyses were performed with the R programming 
language	with	 associated	 statistical	 packages.	 The	 neural	
network	was	implemented	using	the	Keras	package	in	R	with	
Tensorflow	as	the	back-end	for	computational	efficiency.

We	measure	 the	 validity	 of	models	 as	 their	 ability	 to	
discriminate	between	surgeries	in	which	patients	benefit	from	
refraction	versus	those	in	which	patients	do	not	benefit,	using	the	
test	sample	only.	We	use	receiver	operating	characteristic	(ROC)	
curve	analysis.	ROC	curves	plot	 true	positive	 rates	 against	
false-positive	 rates	 for	 patients	 predicted	 to	 benefit	 from	
refraction.	One	ROC	curve	exists	for	each	model	with	each	point	
on	the	curve	representing	a	clinical	decision.	A	model	is	dominant	
compared	 to	others	 if	 its	 true	positive	 rate	 is	highest	 for	any	
given	false	positive	rate.	The	area	under	the	ROC	curve	(AUC)	
is	the	probability	of	a	model	ranking	a	randomly	chosen	patient	
who	benefits	 from	refraction	higher	 than	a	 randomly	chosen	
patient	who	does	not	benefit	from	refraction.	Thus,	high	AUCs	
are	associated	with	better	model	performance	in	discrimination.

Clinical impact of predictive models
We	define	“gainers”	as	patients	who	will	benefit	from	refraction	
at	the	follow-up	visit.	The	primary	goal	of	the	predictive	models	
is	 to	 identify	gainers.	To	assess	 the	 clinical	performance	of	
alternative	predictive	models	in	terms	of	this	task,	we	construct	
the	following	exercise.	Say	a	fixed	total	budget	of	$B	is	available	
to	 intervene	 to	encourage	patients	 to	 follow-up,	and	 that	an	
intervention	 costs	$c	per	patient.	For	 instance,	Meltzer	 et al. 
(2015)[15]	 report	 that	 the	estimated	mean	cost	 to	a	patient	 in	
India	of	a	 spontaneous	 follow-up	visit,	 including	 round-trip	
transportation	cost,	food	and	living	expenses,	and	loss	of	wages	
for	the	patient	and	accompanying	persons,	was	$8.34.	This	implies	
that M	=	$B/$c	patients	can	be	targeted	with	the	intervention.	The	
question of interest is who these M	patients	should	be.	Ideally,	
the	intervention	budget	should	be	spent	entirely	on	gainers.

Say	the	test	sample	includes	NTest	patients,	of	which	 Test
BN

benefited	from	refraction,	i.e.,	are	gainers.	This	implies	that	if	
we	choose	M	≤	NTest patients from the test sample at random, we 
would	expect	a	fraction	 Test Test( / )Random Bk N N= 	to	be	gainers	in	
the	chosen	set.	For	each	estimated	predictive	model,	we	sort	
patients	in	the	test	sample	in	decreasing	order	of	the	predicted	
probability	of	being	a	gainer,	and	then	compute	the	fraction	k 
based	on	the	number	of	gainers	included	in	the	top	M patients. 
We	do	this	exercise	for	different	values	of	M	ranging	from	1	
to NTest.	A	“Gains	Chart”	displays	the	fraction	k	on	the	vertical	
axis,	and	the	fraction	M/NTest	on	the	horizontal	axis,	for	each	
predictive	model	(a	gains	chart	is	closely	related	to	the	ROC	
curve,	but	carries	extra	information.[20])	For	any	point	on	the	
horizontal	 axis,	 a	 larger	k	 indicates	 that	 a	 larger	number	of	
gainers	are	targeted	with	the	intervention;	hence,	this	implies	
better	performance	 from	 the	perspective	of	 clinical	 impact.	
Now	models	can	be	compared	visually	in	terms	of	their	ability	
to	maximize	the	number	of	patients	who	would	benefit	from	
refraction,	in	any	targeted	set	of	M patients.
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Results
Sample description
Table	1	shows	descriptive	statistics	of	the	patient	sample.	As	
expected,	we	find	that	the	profiles	of	patients	in	the	training	
sample	are	very	similar	to	those	in	the	test	sample,	for	both	
PE	 and	SICS.	However,	 there	 are	 important	differences	 in	
the	patient	profiles	of	PE	versus	SICS.	Notably,	while	 21%	
of	 16,412	PE	patients	 in	 the	 training	 sample	 benefit	 from	
refraction	at	follow-up,	the	proportion	is	much	higher	at	71.5%	
of	30,787	patients	for	SICS.

Model validation
In Fig. 2,	we	show	the	area	under	the	ROC	curve	(AUC)	and	
its	 95%	 confidence	 interval	 for	 each	model	 in	 the	 training	
sample	and	the	test	sample,	for	PE	and	SICS	separately.	We	
note	 that	due	 to	overfitting,	 two	of	 the	 six	models	provide	
overly	optimistic	estimates	of	their	performance	in	the	training	
sample	relative	to	their	performance	in	the	test	sample;	this	is	
indicated	by	non-overlapping	95%	confidence	intervals	of	the	

training	and	 test	 samples.	These	 two	are	 the	more	complex	
machine	learning	models:	random	forest	and	knn,	in	both	PE	
and	SICS.	We	note	that	the	neural	network	was	specified	with	a	
low	number	of	layers	(3)	and	neurons	in	each	layer	(20,	20,	and	
2,	respectively)	and	did	not	overfit	in	the	test	sample.	Notably,	
the	performance	of	all	six	models	in	the	test	sample	does	not	
vary	much:	for	both	PE	and	SICS	the	AUC	of	the	six	models	
ranges	from	0.61	to	0.65.

Clinical impact
In Fig.	3,	we	show	the	Gains	Charts	resulting	from	the	estimated	
predicted	models	in	the	training	and	test	samples	for	PE	and	
SICS,	respectively.	For	ease	of	 interpretation,	we	show	only	
three	 curves.	 The	 curve	marked	 “Random”	 is	 the	 45°	 line	
and	 serves	 as	 a	benchmark.	The	 curves	marked	“Frontier”	
and	“Minimum,”	respectively,	show	the	performance	of	the	
best-	 and	worst-performing	models	 for	 each	point	 on	 the	
horizontal	 axis.	Consistent	with	 the	AUC	 results	discussed	
previously,	the	Frontier	and	Minimum	curves	are	very	similar	
in	 the	 test	 sample	 (though	not	 in	 the	 training	 sample)	 for	

Table 1: Descriptive statistics of patient sample

Variables Phacoemulsification (n=24,617) SICS (n=46,180)

Training (n=16,412) Test (n=8205) Training (n=30,787) Test (n=15,393)

Benefitted from Refraction

Yes 3448 21.0% 1711 20.9% 22,000 71.5% 11,034 71.7%

No 12,964 79.0% 6494 79.1% 8787 28.5% 4359 28.3%

Patient Type

Camp and Free 427 2.6% 203 2.5% 27,448 89.2% 13,657 88.7%

Pay 15,985 97.4% 8002 97.5% 3339 10.8% 1736 11.3%

Patient Age (years)

Median 61 61 60 60

Interquartile Range 54.0-67.0 54.0-67.0 55.0-66.0 55.0-67.0

Patient Sex

Female 8211 50.0% 3989 48.6% 17,739 57.6% 8810 57.2%

Male 8201 50.0% 4216 51.4% 13,048 42.4% 6583 42.8%

Operated Eye

Left 8009 48.8% 3973 48.4% 14,916 48.4% 7449 48.4%

Right 8403 51.2% 4232 51.6% 15,871 51.6% 7944 51.6%

Preop UCVA (logMAR)

Median 0.778 0.778 1.079 1.079

Interquartile Range 0.602-1.079 0.602-1.079 1.000-1.778 1.000-1.778

Discharge Pinhole (logMAR)

Median 0 0 0.18 0.18

Interquartile Range 0-0.18 0-0.18 0-0.30 0-0.30

Intraop Complications

Yes 205 1.2% 87 1.1% 342 1.1% 198 1.3%

No 16,207 98.8% 8118 98.9% 30,445 98.9% 15,195 98.7%

Day-1 Postop Complications

Yes 401 2.4% 218 2.7% 525 1.7% 292 1.9%

No 16,011 97.6% 7987 97.3% 30,262 98.3% 15,101 98.1%

Combined Surgery

Yes 182 1.1% 96 1.2% 28 0.1% 7 0.0%
No 16,230 98.9% 8109 98.8% 30,759 99.9% 15,386 100%

SICS – small incision cataract surgery; UCVA – uncorrected visual acuity; logMAR – log of the minimum angle of resolution; Intraop – intraoperative; 
postop – postoperative
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both	PE	and	SICS,	 indicating	that	all	models	exhibit	similar	
performance	 in	 terms	 of	 impact	 for	 each	possible	 clinical	
decision.

Next,	we	compare	the	Frontier	curve	to	 the	benchmark	
Random	 curve	when	 (say)	 50%	of	 the	patients	 in	 the	 test	
sample	are	targeted;	this	is	indicated	by	the	dashed	vertical	
line.	As	 expected,	 the	 Random	 curve	 shows	 that	 if	 the	

targeted	patients	were	selected	at	random,	50%	of	patients	
who	would	benefit	from	refraction	would	be	included	in	the	
targeted	set.	By	contrast,	 if	 the	Frontier	model	were	used,	
close	to	67%	[PE,	left	lower	panel	in	Fig.	3]	and	56%	[SICS,	
right	 lower	panel	 in	Fig.	3]	of	patients	who	would	benefit	
from	refraction	would	be	included	in	the	targeted	set.	Thus,	
the	 predictive	models	 provide	 large	 benefits	 for	 PE	 and	
modest	benefits	for	SICS.

To	 further	demonstrate	 the	clinical	benefits	of	predictive	
models,	we	conduct	an	exercise	wherein	we	assume	values	of	
an	intervention	budget	ranging	from	$10,000—$60,000	[results	
in Table	2].	For	each	level	of	the	budget,	given	an	assumed	cost	
per	intervention	of	$8.34	based	on	Meltzer	et al.,[15] we determine 
the	number	of	patients	who	can	receive	the	intervention.	We	
then	compute	for	PE	and	SICS	separately,	the	number	of	gainers	
who	would	be	captured	in	the	set	of	intervened	patients,	if	they	
were	 chosen	 randomly	 from	 the	 test	 sample,	versus	chosen	
with	 the	best	predictive	model.	We	 see	 that	 the	use	of	 the	
predictive	model	increases	the	number	of	gainers	captured.	For	
PE,	this	increase	ranges	from	7.8%	(1500	to	1617	patients)	to	
74%	(250	to	435	patients),	while	for	SICS	the	gains	are	smaller	
and	range	from	12.4%	(5156	to	5797	patients)	to	18.2%	(859	to	
1015	patients).

For	both	SICS	and	PE,	in	the	models	that	did	not	overfit,	the	
following	four	predictor	variables	were	found	to	be	important	for	
predictions	in	our	models,	with	varying	relative	importance	across	
models:	patient	age,	patient	sex,	patient	type,	discharge	vision.

Discussion
Uncorrected	refractive	error	after	cataract	surgery	is	a	major	
concern	 especially	 in	developing	 countries.	One	 important	
source	 of	 this	 problem	 is	 low	patient	 follow-up	 rates.	 In	
resource-constrained	settings,	it	is	important	to	decide	which	
patients	 to	prioritize	 to	 encourage	 follow-up.	 In	 this	 study,	
we	explored	the	role	of	predictive	models	in	identifying	those	
patients	who	are	likely	to	benefit	from	refraction	during	the	
follow-up	visit	after	cataract	surgery.

Our	most	important	finding	is	that	predictive	models	can	
be	effective	 in	 identifying	 such	patients.	 Say	budgets	 allow	
one	in	two	patients	to	be	targeted	with	an	intervention	such	
as	a	reminder	phone	call	or	a	transport	subsidy	to	encourage	
follow-up.	In	our	data,	we	found	that,	relative	to	not	using	a	
predictive	model,	the	use	of	predictive	models	increased	the	

Table 2: Clinical benefits from use of predictive models in targeting patients to reach “gainers” in the test samples

Budget Cost per 
intervention

Number 
of 

patients 
targeted

Phacoemulsification (Number of Gainers in 
Test Sample=1711 out of 8205)

SICS (Number of Gainers in Test 
Sample=11,034 out of 15,393)

# Gainers 
reached: 
Random

# Gainers 
reached: 

Frontier Model

% 
Improve‑ment 

(PE)

# Gainers 
reached: 
Random

# Gainers 
reached: 

Frontier Model

% 
Improve‑ment 

(SICS)

$10,000 $8.34 1199 250 435 74.0 859 1015 18.2

$20,000 $8.34 2398 500 776 55.2 1718 1996 16.2

$30,000 $8.34 3597 750 1049 39.9 2578 2972 15.3

$40,000 $8.34 4796 1000 1277 27.7 3437 3928 14.3

$50,000 $8.34 5995 1250 1466 17.3 4297 4854 13.0
$60,000 $8.34 7194 1500 1617 7.8 5156 5797 12.4

PE – phacoemulsification; SICS – small incision cataract surgery

Figure 2: Area under the curve (AUC) for receiver operating 
characteristic curve for phacoemulsification (upper panel) and small 
incision cataract surgery (lower panel). Error bars indicate 95% 
confidence intervals
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percentage	in	the	targeted	group	of	those	who	would	benefit	
from	 refraction	by	34%	 (i.e.,	 go	up	 from	50%	 to	 67%).	The	
analogous	benefit	in	the	case	of	SICS	patients	is	12%	(increase	
from	50%	to	56%).

As	discussed,	there	are	large	differences	in	the	performance	
of	predictive	models	between	PE	and	SICS	patients.	While	
refraction	will	only	benefit	about	2	in	ten	patients	who	undergo	
PE,	predictive	models	can	substantially	increase	the	efficiency	
of identifying these patients for targeted intervention. By 
contrast,	as	many	as	7	in	ten	SICS	patients	can	benefit	from	
refraction;	 however,	 the	 gains	 from	predictive	models	 for	
SICS	were	modest.	This	suggests	 the	need	 for	 further	work	
in	 identifying	 explanatory	 variables	 that	would	 improve	
the	predictive	ability	of	models	 for	SICS,	which	 is	often	the	
preferred	technique	in	developing	countries.[21]

While	 our	 findings	 establish	 the	 feasibility	 of	 a	 robust	
predictive	model,	more	work	needs	to	be	done	to	develop	a	
tool	for	patient-level	predictions	that	can	be	integrated	into	a	
clinical	caregiving	process.	Such	a	tool	could	be	used	to	identify	
at	surgical	discharge	specific	patients	who	are	predicted	to	gain	
due	to	refraction.	 Identifying	such	patients	would	also	help	

in	setting	patient	expectations	about	 the	need	 for	corrective	
spectacles.

In	this	study,	we	used	predictor	variables	for	which	data	
were	 routinely	 available	 in	 the	 surgical	 quality	monitoring	
database.	We	recommend	that	hospitals	that	implement	our	
proposed	predictive	models	collect	data	on	at	 least	the	four	
variables	 that	were	 found	 to	be	 important	 in	 the	prediction	
task.	With	our	data,	we	found	that	machine	learning	models	
like	random	forests,	weighted	k-nearest	neighbor,	and	neural	
networks	did	not	outperform	logistic	regression.	This	suggests	
the	limited	role	of	significant	nonlinear	relationships	between	
predictors	and	the	outcome	of	interest.	The	fact	that	traditional	
models	like	logistic	regression	provided	comparable	predictive	
performance	in	our	setting	is	beneficial	from	a	pragmatic	point	
of view. Traditional models require less data and are simpler 
to	calibrate	and	implement.

As	 opposed	 to	 summary	 statistics,	machine	 learning	
models	 find	 patterns	 between	multiple	 factors	 and	 an	
outcome,	simultaneously.	For	example,	a	machine	learning	
model	 may	 learn	 that	 female	 outreach	 patients	 aged	
50+	years	with	a	preoperative	UCVA	<=6/12	are	more	likely	

Figure 3: Gains chart for Frontier model (best-performing for each point on X-axis) and Minimum model (worst-performing for each point on 
X-axis) for phacoemulsification in training sample (upper left panel) and test sample (lower left panel) and for small incision cataract surgery in 
training sample (upper right panel) and test sample (lower right panel)
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to	benefit	from	refraction	at	follow-up.	However,	the	same	
might	not	be	true	for	patients	50+	years	old	regardless	of	
other	 patient	 characteristics.	 Summary	 statistics	 cannot	
efficiently	 capture	 patterns	 between	multiple	 factors	 at	
once	 and	 project	 them	 into	 the	 future.	However,	 using	
machine	learning	models	like	neural	networks	to	identify	
and	interpret	the	important	factors	that	predict	the	gainers	
is	 computationally	 complex,	 and	depends	 in	 part	 on	 the	
skill	 of	 the	 analyst.	We	 also	 found	 that	 some	machine	
learning	methods	like	random	forest	and	weighted	k-nearest	
neighbor	were	susceptible	to	substantial	overfitting	in	the	
training	sample,	reinforcing	the	importance	of	assessing	the	
validity	of	predictive	models	in	test	samples.

Of	 course,	 artificial	 intelligence	 and	 deep	 learning	
models have an important role to play in ophthalmology 
in	 terms	of	detection	of	 eye	diseases	 (diabetic	 retinopathy,	
glaucoma,	age-related	macular	degeneration,	etc.),	predicting	
progression	 (myopia,	 keratoconus,	 and	 glaucoma),	 and	
evaluating	 treatment	 outcomes	 (anti-vascular	 endothelial	
growth	 factor).[22–24]	Our	use	 of	 these	models	 for	 equitable	
distribution	of	 resources	 to	 achieve	 socioeconomic	benefits	
is novel.

Conclusion
The	use	of	predictive	statistical	models	to	identify	patients	who	
are	likely	to	benefit	from	refraction	at	follow-up	can	improve	
the	economic	efficiency	of	interventions	to	encourage	follow-
up.	 Simpler	models	 like	 logistic	 regression	perform	almost	
as	well	 as	more	 complex	machine-learning	models,	 but	 are	
easier	to	implement.		With	currently	available	data	the	benefits	
of	 predictive	models	were	 found	 to	 be	 larger	 for	 patients	
undergoing	phacoemulsification	than	SICS.
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Supplementary Table S1: Brief description of predictive statistical models examined in this study

Model Model Name Description

M1 Logistic Regression Description not needed

M2 Decision Tree Algorithm asks a sequenced set of questions that are designed to maximally separate patients who will 
benefit from refraction into buckets of no less than 7 patients. Most important questions are asked first 
and every patient in the same bucket has the same probability of benefiting from refraction.

M3 Pruned Decision 
Tree

The same as Decision Tree but with fewer questions and more patients in a bucket. Questions are 
removed if they do not decrease the overall lack of fit by a factor of 0.1%. Results in only four predictor 
variables being retained in our study.

M4 Random Forest A combination of 500 decision trees where only three variables can randomly be considered when 
asking any question in any tree. Patients’ probability of benefiting from refraction is computed by 
averaging across the 500 decision trees.

M5 Weighted knn Predicts the probability that a given patient will benefit from refraction as the percentage of the number 
of 101 patients most similar to this patient who each benefited. Defines similarity by using Euclidean 
distance between patients, and weights similar patients by a kernel function.

M6 Neural Network A multi‑layered perceptron with three main layers (2 relu activation function with 20 units each, and 1 
softmax activation function with 2 units) that uses sparse categorical cross‑entropy as a loss function. 
The black box outputs probabilities that patients will benefit from refraction.

M7 Combination Min Patient receives a probability of benefiting from refraction equal to the minimum of the six probabilities 
of benefiting from models M1-M6.

M8 Combination Mean Patient receives a probability of benefiting from refraction equal to the mean of the six probabilities of 
benefiting from the models M1-M6.

M9 Combination Max Patient receives a probability of benefiting from refraction equal to the maximum of the six probabilities 
of benefiting from the models M1-M6.


