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Genetic association of leukocyte
telomere length with Graves’
disease in Biobank Japan: A
two-sample Mendelian
randomization study

Meijie Ye †, Yu Wang † and Yiqiang Zhan*

Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University,
Shenzhen, China
Background: Telomere length (TL) has been recognized to be fundamental to

the risk of autoimmune disorders. However, the role of leukocyte TL in Graves’

disease has not yet been fully elucidated. In the study, we exploited the two-

sample Mendelian randomization (MR) design to evaluate the causal effect of

leukocyte TL on the risk of Graves’ disease.

Methods: Genome-wide association study (GWAS) data of leukocyte TL from

the Singapore Chinese Health Study (SCHS) cohort and Graves’ disease from

Biobank Japan (BBJ, 2176 cases and 210,277 controls) were analyzed. Nine

single nucleotide polymorphisms (SNPs) were selected as instrumental

variables (IVs) for TL. We used the inverse variance weighted (IVW) approach

as the main estimator and MR-Egger regression, weighted median, simple

mode, and weighed mode methods as complementary estimators. Horizontal

pleiotropy was assessed using the intercept from MR-Egger.

Results: The analysis demonstrated that genetically predicted longer leukocyte

TL was causally associated with a lower risk of Graves’ disease using the IVW

method (odds ratio [OR]: 1.64, 95% confidence interval [CI]: 1.23-2.17, P=2.27e-

04, and other complementary MR approaches achieved similar results. The

intercept from the MR-Egger analysis provided no noticeable evidence of

horizontal pleiotropy (b=0.02, P=0.641). MR-PRESSO method reported no

outliers (P=0.266).

Conclusions: Our results provided evidence to support a genetic

predisposition to shorter leukocyte TL with an increased risk of Graves’

disease. Further studies are warranted to explore the mechanism underlying

the association.

KEYWORDS

Graves’ disease, leukocyte telomere length, Mendelian randomization analysis, single
nucleotide polymorphism, risk factor
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Introduction

Graves’ disease is the most frequent cause of persistent

hyperthyroidism due to the overproduction of thyroid hormones

(1–3). Graves’ disease is an organ-specific autoimmune thyroid

disorder that is characterized by breaking immune tolerance

against thyroid antigens resulting in thyroid autoimmunity (4).

The primary clinical symptoms or signs of Graves’ disease are

diffuse thyroid enlargement and overaction, ophthalmopathy,

pretibial myxedema, palpitations, weight loss, and others (5).

The incidence of Graves’ disease is 20-40 cases per 100,000

person-years worldwide (6), and is more common in women

than men, which approximately affects 0.2% of men and 2% of

women (7, 8). Graves’ disease is commonly observed in women

aged 20-50 years, whilst all ages could be affected (6). Although the

autoimmune mechanism of Graves’ disease has been proposed for

several decades, its etiology has not been well accepted and needs

to be further elucidated.

Telomeres, the terminal nucleoprotein-DNA complexes of

eukaryotic chromosomes, play crucial and pervasive roles in

capping and protecting chromosome DNA ends (9, 10).

Telomeres, to a certain extent, can maintain the integrity of

the replicative capacity of the chromosomes after each cell cycle

(11). Telomeres progressively shorten with each cellular division

cycle until eventually reaching a critically short length or

sufficiently damaged, which triggers subsequently cellular

senescence or apoptosis (12). Consequently, telomere length

(TL) has been proposed as an underlying biomarker for

cellular aging and mortality (13–15). Furthermore, telomere

attrition might give rise to potential cell changes, block cellular

division, and interfere with the normal function of tissues (12).

Phenome-wide analyses provided evidence for association of

shorter leukocyte TL with increased risk of thyroid disorders in

more than 350,000 UK participants (16). However, whether
Frontiers in Immunology 02
there is a potential causal effect on leukocyte TL and Graves’

disease has not yet been investigated.

Mendelian randomization (MR) study, an epidemiological

method, could minimize potential bias due to confounding and

reverse causation (17). MR provided a novel opportunity to

explore the potential causal association between an exposure of

interest and outcome in an observational study (18). It relies on

three core assumptions (Figure 1): (I) the instrumental variables

are associated with the exposure of interest (e.g. leukocyte

TL); (II) the instrumental variables are not associated with

confounders; (III) the effects of instrumental variables on the

outcome (e.g. Graves’ disease) are only through the exposure of

interest. To the best of our knowledge, there is no study

examining leukocyte TL and Graves’ disease using the

MR approach.

In the present study, we identified nine SNPs to be of

genome-wide significance for leukocyte TL in a large-scale

genome-wide association study (GWAS) from the Singapore

Chinese Health Study (SCHS) cohort and examined its

association with Graves’ disease in Biobank Japan.
Materials and methods

Instrumental variable selection for
leukocyte TL

The Singapore Chinese Health Study is a large prospective

cohort and recruited 63,257 Singaporean Chinese men and

women aged 45-75 years from April 1993 to December 1998.

TL was assessed in a subset of 23,096 individuals of Chinese

ancestry and a GWAS was conducted (19, 20). Multiplex

quantitative PCR (qPCR) was utilized to measure relative

telomere length (21). For single-nucleotide polymorphism
FIGURE 1

Mendelian randomization model of leukocyte TL and risk of Graves’ disease. MR depends on three assumptions: I. Relevance: The genetic
variants are associated with the exposure of interest (Leukocyte TL); II. Independence: The genetic variants are not associated with confounders;
III. Exclusion restriction: The genetic variants affect outcome of interest (Graves’ disease) except through their potential effects on the exposure
(Leukocyte TL). Solid arrows represent causal effects; dashed arrows represent causal effects that are particularly violated by the IV
assumptions. SNPs, single-nucleotide polymorphisms; TL, telomere length.
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(SNPs) quality control, sex-linked and mitochondrial SNPs were

omitted, leaving autosomal SNPs in this study. In total, the

genetic assessment identified ten independent SNPs (P<5e-08)

to be of genome-wide significance with TL, and the annotated

genes play crucial roles in the biological mechanisms of

the telomere.
GWAS summary statistics for
Graves’ disease

Genetic association data on Graves’ disease was obtained

from a large-scale GWAS in a Japanese population, including

2,176 cases (in 597 male patients and 1,579 female patients) who

participated in the BioBank Japan Project (BBJ) and 210,277

population-based controls of Asian ancestry (22). BBJ, one of the

largest non-European biobanks, collects collaboratively DNA

and serum samples from 12 Japanese medical institutions and

comprises a large cohort of approximately 200,000 participants

(23, 24).

For quality control of samples, samples with a call rate <0.98

were excluded. Subsequently, for quality control of genotypes,

variants that were call rate <99%, with Hardy-Weinberg

equilibrium (HWE) P <1.0×10-6, and less than five

heterozygotes were excluded (22). Among identified nine

independent SNPs with leukocyte TL in Singaporean Chinese

individuals, the associations of SNPs with TL and Graves’ disease

were harmonized to make sure that the direction of effects

reflected the same alleles. These GWAS data for Graves’ disease

were publicly available online (http://jenger.riken.jp/65/).
Statistical analysis

MR analysis uses genetic variants (SNPs) as instrumental

variables to assess the causal effect of exposure of interest on the

outcome. A two-sample MR design was performed in the

present study. We combined the GWAS summary statistics (b
coefficients and standard errors) to estimate the causal

association between leukocyte TL and Graves’ disease using

different MR approaches. The inverse variance weighted

(IVW) analysis was selected as the primary method to evaluate

the causal association. The IVW estimate for combining the ratio

estimate on multiple genetic variants is the weighted average of

ratio estimates of the genetically causal association of outcome

with exposure for each SNP (25). Other MR approaches take

into account different types of genetic pleiotropy and are based

on potentially different assumptions, which were conducted to

examine the robustness of the results. For example, a weighted

median estimator (WME) combines multiple genetic variants

into a single causal estimate. The weighted median estimator

may be able to provide consistent and robust estimates, although
Frontiers in Immunology 03
up to 50% of the weights are from invalid instrumental

variables (26).

Further, the MR-Egger regression can correct bias in the

presence of directional pleiotropy and heterogeneity and provide

a less biased estimate for effect estimates (27). The MR-Egger

regression provides a valid test of directional pleiotropy, along

with a robust analysis of invalid instruments (28). When the

SNPs have noticeably non-pleiotropic associations with the

outcome, the coefficient of the slope from MR-Egger

regression might strengthen the confidence of the causal effect

(29). However, the MR-Egger method is more sensitive to the

effects of SNPs on exposure and outcome, which is of lower

statistical power with a wider confidence interval compared to

the IVW analysis. In addition, we applied methods of

visualization to evaluate causal estimates. The scatter plot

visually depicts causal effects on exposure of interest and

outcome via selected MR approaches. Besides, the forest plots

display the causal estimate of a single SNP, which allow for a

visual inspection of heterogeneity around the overall causal

estimate from all SNPs (30).

The study was performed according to the Strengthening the

Reporting of Observational Studies in Epidemiology Using

Mendelian Randomization (STROBE-MR) Statement (31).

Sensitivity analyses primarily are comprised of tests for

heterogeneity, genetic pleiotropy, and the leave-one-out

analysis. Firstly, heterogeneity in causal effects among IVs is

an indicator of potential violations of MR assumptions, which

can be calculated for the IVW and MR-Egger estimates to assess

horizontal pleiotropy (32). The p-value of Cochran’s Q statistic

was used to test for heterogeneity, whilst the I2 statistic assesses

the magnitude of heterogeneity. Secondly, for the estimate of

genetic pleiotropy, the intercept of MR-Egger regression was

used to examine horizontal pleiotropy. Besides, the MR

pleiotropy residual sum and outlier (MR-PRESSO) test is used

to detect and correct for outliers of horizontal pleiotropy in MR

analysis (33). Thirdly, the effect estimates on exposure and

outcome for SNPs are visually plotted to test probable outlier

genetic variants. The leave-one-out analysis is performed by

removing each SNP and the remaining SNPs were further tested.

The fluctuation of the estimates after removing each SNP implies

the probability of identifying any outliers. The funnel plot is

commonly used in the meta-analysis, in which an estimate for a

single SNP is plotted against its precision (34). The funnel plot

can be applied to conduct a visual inspection for asymmetry,

which may be an indication of violations of the MR assumption

via horizontal pleiotropy (27).

We conducted power calculation for MR analysis via using

an online power calculator (https://shiny.cnsgenomics.com/

mRnd/) and found that the statistical power for the present

study was 91% by assuming the odds ratio for Graves’ disease

was 1.5 per SD decrease in TL. All statistical analyses were

conducted in R version 4.1.1. The use of the TwoSampleMR
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package tested the MR approaches. The P-value <0.05 was

significantly statistical.
Ethical approval and informed consent

Our study took advantage of publicly available GWAS

summary data. Informed consent was obtained from all

participants, and each study was approved by their

institutional ethics committees. The original data was not

collected for this manuscript, and thus, no ethical approval

was required.
Results

Selection of instrumental variables

Ten independent SNPs with leukocyte TL association were

originally identified, then the associations of SNPs with exposure

and outcome were harmonized to make sure whether there were

the same effect or risk alleles. However, one SNP (rs28365964

and its proxy SNPs) was missing in the Graves’ disease GWAS,

and it was therefore excluded. Eventually, the remaining nine

SNPs were available for instrumental variables and their effects

on exposure and outcome were extracted and harmonized. The

summary statistics of nine genetic variants was shown in Table 1.
The causal effect of leukocyte TL on
Graves’ disease

Overall, in the primary analysis using IVW that combines

the ratio estimate on multiple genetic variants, genetically

predicted shorter leukocyte TL was causally associated with a

higher risk of Graves’ disease (OR: 1.64, 95% CI: 1.23-2.17,

P=2.27e-04). The odds ratio of Graves’ disease per 1-standard
Frontiers in Immunology 04
deviation decrease in genetically predicted leukocyte TL was 1.64

(Table 2). Results obtained using weighted median (OR:1.79,

95% CI: 1.30-2.44, P=6.16e-04), simple mode (OR:1.64, 95%

CI:1.10-2.50, P=0.043), and weighted mode (OR:1.73, 95% CI:

1.23-2.38, P=0.013) approaches were in the same direction, with

comparable point estimates and confidence intervals. These

causal estimates were further displayed in a scatter

plot (Figure 2).
Pleiotropy and sensitivity analysis

For the heterogeneity test, little evidence of heterogeneity

was found by the Cochran’s Q test for IVW and MR-Egger

methods (both P>0.05). Additionally, for horizontal pleiotropy

analysis, the intercept of MR-Egger regression did not provide

noticeable evidence (intercept=0.02, se=0.03, P=0.641) for

horizontal pleiotropy of these SNPs (Table 2). The result of

MR-PRESSO analysis did not indicate any outliers for any SNPs

(P-global =0.266). In addition, there was no obvious evidence to

support if there was any single SNP that could dominate

the results using one SNP plot and leave-one-out analysis

(Figures 3, 4). The funnel plot did not provide evidence to

support directional pleiotropy from SNPs neither (Figure 5).
Discussion

The present study is the first of this kind to examine the

causal association between leukocyte TL and Graves’ disease

using a two-sample MR design. By leveraging several MR

estimation approaches, we found that shorter TL was

associated with an increased risk of Graves’ disease. Our study,

in line with previous observational studies, provides evidence to

support a causal role of shorter TL for Graves’ disease.

A number of studies about telomere length and lifetime

disease risks have been extensively conducted, including
TABLE 1 SNPs used as instrument variables and its association of leukocyte TL with Grave’s disease.

SNP Chromosome Position Risk allele Other allele SNP- leukocyte TL SNP- Grave’s disease

b SE (b) b SE (b)

rs3219104 1 226562621 A C 0.074 0.009 -0.087 0.031

rs2293607 3 169482335 T C -0.120 0.009 0.073 0.032

rs10857352 4 164101482 A G 0.058 0.010 0.036 0.039

rs7705526 5 1285974 C A 0.118 0.009 -0.063 0.036

rs7776744 7 124599749 A G -0.058 0.009 0.017 0.032

rs12415148 10 105680586 T C 0.204 0.020 -0.064 0.061

rs227080 11 108247888 A G -0.060 0.009 0.056 0.031

rs41293836 14 24721327 C T 0.233 0.017 -0.139 0.063

rs41309367 20 62309554 C T -0.058 0.010 -0.051 0.037
fr
SNP, single nucleotide polymorphism; TL, telomere length.
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autoimmune disorders (35, 36) and age-related diseases (37).

Autoimmune diseases are characterized by spontaneous

hyperactivity of the immune system comprising autoantibody

production. Inflammation and oxidative stress are recognized as

parts of the process for most of these diseases, but their

molecular mechanisms have not fully been understood,

Intriguingly, escalating telomere shorten was primarily caused

by environmental factors concerning inflammation and

oxidative stress, probably indicating an association between

the telomere system and autoimmune or inflammatory

diseases (38, 39). Particularly, for the past decade, data

emerging from studies in oncology on the telomere system

and its underlying therapeutic implications, stimulated studies

estimating the role of the telomere system in the biological

mechanisms of autoimmune diseases. Indeed, many MR studies
Frontiers in Immunology 05
utilized telomere length-associated genetic variants to predict

the risk of disease based on the genomic architectures of the

individuals (40, 41).

To date, no studies, to our knowledge, have been conducted

to investigate the role of TL in Graves’ disease. A recent study

showed that the relationship between Graves’ disease and

rheumatoid arthritis, implying that these two autoimmune

diseases were likely to share similar underlying mechanisms

(42). Inflammation and oxidative stress are recognized as parts

of the process for most of these diseases, but their molecular

mechanisms have not fully been understood. Intriguingly,

escalating telomere shortening was primarily caused by

environmental factors, such as inflammation and oxidative

stress, probably indicating an association between the

telomeres and autoimmune or inflammatory diseases. Of note,
FIGURE 2

Scatter plot for the negative effects of SNPs on telomere length and Graves’ disease. The horizontal and vertical axes represent the effects of
each genetic variant on both telomere length and Graves’ disease. The grey lines around the solid pink points denote the corresponding 95% CI
for the effects. The slopes of solid lines show the effect estimates from four MR approaches. IVW, inverse variance weighted; MR, Mendelian
randomization; SNPs, single nucleotide polymorphisms; CI, confidence interval.
TABLE 2 Associations between leukocyte TL and Graves’ disease using Mendelian randomization method.

Method beta se OR (95%CI) P

Inverse variance weighted (IVW) 0.50 0.15 1.64 (1.23-2.17) 2.27e-04

Weighted median 0.58 0.16 1.79 (1.30-2.44) 6.16e-04

Simple mode 0.50 0.21 1.64 (1.10-2.50) 0.043

Weighted mode 0.54 0.17 1.73 (1.23-2.38) 0.013

MR Eggerslope 0.65 0.34 1.92 (0.99-3.70) 0.097

MR Eggerintercept 0.02 0.03 NA 0.641
frontie
IVW, inverse variance weighted; MR, Mendelian randomization; PRESSO, pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval; NA, not applicable.
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a previous MR study indicated that genetically predicted TL was

associated with a lower risk of rheumatoid arthritis, providing

support for an inverse causal association (43). A possible

biological explanation was that telomerase mutation carriers
Frontiers in Immunology 06
with short TL may develop T-cell aging phenotypes and

immunodeficiency, and T cells with shorter telomeres could

induce DNA damage and upregulate intrinsic apoptosis

pathways (44). Another explanation was that telomere
FIGURE 4

Leave-one-out analysis for the estimates for leukocyte telomere length on the risk of Graves’ disease Each pink dot and grey bar via using the
IVW method illustrate the effect estimates and 95%CI for telomere length on the risk of Graves’ disease when the indicated SNP was removed.
The overall effect estimate and 95% CI are represented by the lowest vertical lines using the IVW method. IVW, inverse variance weighted; OR,
odds ratio; CI, confidence interval.
FIGURE 3

Forest plot for the effects of SNPs on telomere length and Graves’ disease. Each pink dot and grey bar represent the effect estimate and 95% CI
for each SNP, respectively. The overall effect estimates and 95% CI are indicated by using the IVW and MR-Egger approaches. IVW, inverse
variance weighted; MR, Mendelian randomization; OR, odds ratio; SNPs, single nucleotide polymorphisms; CI, confidence interval.
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dysfunction could activate the production and secretion of

inflammatory factors, such as IL-6 and TNF-a, which led to

cellular senescence (45). Although these explanations are

biologically plausible, further studies are required to clarify

underlying mechanisms for the role of TL in the risk of

Graves’ disease.

Our study has some strengths. First, the MRmethod tends to

be less biased than conventional observational studies in the

presence of unmeasured confounding and reverse causation,

therefore it can offer a more robust estimate of a causal

association. Indeed, this study obtained consistent estimates by

using several MR approaches. Second, this study made the best

use of publicly available data associated with the GWAS for

leukocyte TL (23,096 individuals) and Graves’ disease (2,176

cases and 210,277 controls) with large sample sizes, which

rendered us to gain more precise estimates and greater

statistical power. Furthermore, the two-sample MR method

was taken advantage of both GWAS summary levels with

leukocyte TL and Graves’ disease that were derived from two

independent populations (46).

Despite the advantages of the MR design, several limitations

of the study should be acknowledged. Firstly, the instrumental

variables were derived from blood TL and not TL in thyroid

tissues in the present study. However, previous studies have

shown that leukocyte TL was highly correlated with TL in other

tissues (14, 47). Secondly, we cannot prove that the selected

SNPs satisfy the assumption of exclusion restriction. However,
Frontiers in Immunology 07
MR-Egger regression and MR-PRESSO in this study were

applied to assess the extent to which genetic pleiotropy may

bias the results. The intercept of the MR-Egger regression

analysis was close to zero, implying no strong evidence for

supporting directional pleiotropy. Similarly, MR-PRESSO and

the leave-one-out analysis did not detect significant outliers.

Thirdly, it is assumed that the two samples were from the same

underlying populations in a two-sample MR study. Lastly, our

findings rested on data from GWAS that was only performed in

individuals of Asian ancestry, whereas majority of genetic

studies were dominated by European-descent samples, which

made it difficult to generalize to other ethnic populations.

Because of the differences in genetic population structure, the

transferability of genetic results across populations is relatively

limited. The validity of our analysis relies on the MR assumption

that SNPs are not associated with confounders that are related to

the occurrence of Graves’ disease. To minimize bias due to

violations of this assumption, we reviewed previous articles

regarding telomere length and Graves’ disease and screened

risk factors related to both as potential confounders, which

included smoking status, vitamin D deficiency, and immune

status. We found that the instrumental variables were not

associated with these potential confounders. Additionally, we

screened these instrumental variables through GWAS catalog to

try to identify potential genome-wide significant associations

with other traits in Asian population, but we did not find any

such traits.
FIGURE 5

Funnel plot of MR analysis of telomere length on the risk of Graves’ disease by using nine SNPs. The x-axis represents causal estimates (Wald
ratios=bY/bX) for each SNP. The y-axis depicts the inverse of standard errors for the effect sizes for each SNP. The overall effect estimates are
revealed by vertical lines when using the MR-Egger and IVW approaches (black and pink lines, respectively). SE, standard error; IV, instrumental
variable; IVW, inverse variance weighted; MR, Mendelian randomization.
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Conclusions

In summary, in the largest study until now, we provided

novel evidence to support a causal association of genetically

predicted shorter leukocyte TL with an increased risk of Graves’

disease. Further studies are warranted to clarify a biological

mechanism of telomeres in the disease onset and progression of

Graves’ disease in both the Asian and other ethnic populations.
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