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Abstract: Mycoplasma pneumoniae is a prevalent respiratory microbe that causes acute inflammation in the respiratory system. 
Surfactant proteins (SP), particularly SP-A and SP-D, are essential for the immunological protection against M. pneumoniae infection. 
Variant SP-A2 may lead to immune reactions, which could account for the variability in clinical manifestations among individuals. 
Mechanistically, these surfactant proteins may act as candidate receptors, facilitating both the adhesion of M. pneumoniae and 
internalization of community-acquired respiratory distress syndrome toxin. They also exhibit a high affinity for lipid ligands on the 
surface of M. pneumoniae membranes via their carbohydrate recognition domains, which aid in the direct clearing of the bacteria. In 
addition, SP-A and SP-D demonstrated synergistic effects in augmenting the intake and elimination of M. pneumoniae by alveolar 
macrophages. Furthermore, these surfactant proteins negatively regulate pulmonary inflammation by influencing lymphocyte and 
dendritic cell activities, reducing airway eosinophilic infiltration, and managing asthma-related inflammatory responses. A thorough 
understanding of the immunomodulatory roles of surfactant proteins in M. pneumoniae infection will shed light on how homeostasis is 
preserved during mycoplasma pneumonia and may guide the development of novel therapeutic strategies against this organism. 
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Introduction
Mycoplasma pneumoniae is the principal causative agent of pneumonia and many respiratory disorders, including 
tracheobronchitis, bronchiolitis, laryngitis, and pharyngitis, and often worsens many respiratory diseases, such as asthma, 
emphysema, and chronic obstructive pulmonary disease.1–4 M. pneumoniae also acts as an undesirable contaminant in 
advanced therapy medicinal products (ATMPs), posing significant challenges for detection, particularly in immunosup-
pressed patients.5,6 In the normal population, approximately 30% of pneumonia cases are associated with 
M. pneumoniae. However, in vivo experiments have revealed significant differences in bacterial load following 
M. pneumoniae infection across various mouse strains,7 highlighting the importance of host genetic background over 
the innate immune status. The pronounced difference in susceptibility between C57BL/6NCr and C3H/HeNCr mice 
represents different immune responses to M. pneumoniae infection.8 Early resistance to M. pneumoniae in C57BL mice 
may stem from innate defense mechanisms associated with alveolar macrophages (AMs) enriched with pulmonary 
surfactants, whereas impairment of these mechanisms is observed in C3H/HeNCr mice.9 Although M. pneumoniae 
develops multiple strategies to escape the host immune system and even cause persistent infection, it can still be cleared 
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by the host immune immunity,10 in which surfactants play a pivotal role prior to the activation of antibody-mediated 
adaptive immunity.11

Pulmonary surfactants are vital components of the bronchoalveolar microenvironment and are composed of proteins, 
neutral lipids, and phospholipids.12 Surfactants are predominantly produced by alveolar type II cells and disseminate across 
the molecular layer of the alveolar fluid.13 Their role is essential in alleviating tension at the interface between gas and 
liquid in the alveoli, preventing atelectasis upon exhalation, and facilitating effective gas exchange.14 In addition to their 
biomechanical roles, the protein constituents of pulmonary surfactants serve as distinctive elements of the natural immune 
system.15 Surfactant proteins can be classified into four categories: surfactant protein A (SP-A), SP-B, SP-C, and SP-D.16,17 

Among them, SP-A and SP-D belong to the C-type lectin family and are particularly important for their interactions with 
bacteria, fungi, and viruses, thereby playing crucial roles in immune defense against inhalation pathogens.18 For instance, 
SP-A can facilitate pathogen recognition and modulate the activity of immune cells, including AMs, neutrophils, and 
dendritic cells (DCs), thereby promoting or suppressing the overall inflammatory response, depending on the infection 
environment.19 Similarly, SP-D is crucial for adaptive and innate immunity, as it aggregates pathogens and promotes their 
uptake by AMs, while also regulating T and B cell activity to enhance the efficiency of the immune response.20

While pulmonary surfactants are not selective for the bacteria with which they interact, they exhibit a notable capacity 
to facilitate the internalization of community-acquired respiratory distress syndrome toxin (CARDS TX), which is 
a major virulence factor of M. pneumoniae.21 Given that pulmonary surfactants serve as frontline defenders against 
infections, exploring their role in the immunological response to mycoplasma pneumonia is important. Since the 1990s, 
extensive literature has shown that surfactants contribute to various aspects of M. pneumoniae infections, including 
receptor recognition, bactericidal activity, and immune modulation (Figure 1). This study aimed to elucidate the functions 
of SP-A and SP-D in M. pneumoniae infections and immune responses. Understanding the relationship between 
surfactant proteins and M. pneumoniae is crucial for the development of targeted therapies aimed at restoring normal 
lung function and improving patient outcomes.

Chemical Composition and Classification of Surfactant Proteins
The isolated surfactant contains approximately 80% lipids, 10% neutral lipids (predominantly cholesterol), and 10% 
proteins. The lipids of surfactants are mainly phospholipids (95%), of which phosphatidylcholine (PC) is the most common, 
accounting for 70–80%.22 The main component of PC is saturated dipalmitoylphosphatidylcholine (DPPC), which can 
accumulate at very high densities at the air-liquid interface, allowing for the lung exchange of gases by reducing alveolar 
surface tension.23 In addition, about half of the phospholipid components are desaturated, with approximately 15% acidic 
phospholipids such as phosphatidylglycerol (PG), phosphatidylinositol (PI), and bis(monoacylglycerol) phosphate, along-
side minor quantities of phosphatidylethanolamine (PE), sphingomyelin (SM), and lysophosphatidylcholine (LPC).14 These 
lipids are believed to be involved in selected interactions with cationic hydrophobic proteins.24

In contrast, the protein content of surfactants is significantly lower than that of lipids and surfactants are synthesized 
and secreted mainly by bronchiolar Clara cells and alveolar type II cells.25 Currently, four common surfactant proteins 
are directly involved in reducing alveolar surface tension and regulating the host immune defense. These proteins can be 
categorized into macromolecular hydrophilic proteins, SP-A and SP-D, and smaller hydrophobic proteins, SP-B and SP- 
C, based on their hydrophilic properties and molecular weight.17 SP-B and SP-C are tiny molecules that react with 
surfactant lipids to lower the surface tension between the gas and liquid and enhance lung compliance, thereby 
maintaining normal alveolar expansion.26 Conversely, SP-A (26–36 kDa) and SP-D (39 kDa) tend to be large soluble 
hydrophilic proteins present on the majority of mucosal surfaces, with critical overlap and multiple functions in the 
natural defense and immune homeostasis of the lung.27 Intriguingly, despite the fact that SP-A and SP-D are equally 
crucial in immune responses, the level of SP-D in the surfactant of the alveolar epithelium is significantly lower than that 
of SP-A (approximately 10 times).28 SP-A and SP-D, along with mannose-binding lectins (MBL) and serum proteins 
conglutinin and collectin-43 (CL-43), belong to the C-type lectin family,29 an archaic class of carbohydrate-binding 
proteins that perform diverse biological functions, including immune defense, blood coagulation, and cellular interaction 
mediation.30
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Structure of SP-A and SP-D
SP-A and SP-D are classified as collectins, because their lectin domains are associated with collagen-like regions. 
Like other types of lectins, both possess four distinct domains: the cysteine-rich N-terminal domain, the original 
triple helix collagen domain characterized by repeating Gly-X-Y triplets, the neck region featuring short hydro-
phobic amino acid segments as well amphiphilic helices, and the C-terminal carbohydrate recognition domain 
(CRD).28 The triple-helical collagen-like regions of SP-A and SP-D consist of 23 and 59 repeated Gly- 
X-Y motifs, respectively, where X and Y may represent any amino acid, usually proline or hydroxyproline.17,28 

Similar to other Ca2+-dependent lectins, the CRD of both SP-A and SP-D contain four conserved cysteine residues 

Figure 1 Overview of the immune modulation by pulmonary surfactant proteins upon Mycoplasma pneumoniae infection. Pulmonary surfactants contribute to various 
aspects of M. pneumoniae infection. SP-A and SP-D exhibit high affinity for live M. pneumoniae and MMF, enabling them to directly kill M. pneumoniae. In contrast, SP-A acts as 
a co-receptor for CARDS TX, resulting in ADP ribosylation and vacuolation in host cells after internalization (A). SP-A and SP-D attach to alveolar macrophages (AMs) with 
high specificity, release ROS and nitric oxide metabolites, increase chemotactic activity, and augment the phagocytic capacity of AMs to eliminate M. pneumoniae (B). The 
prominent function of surfactant proteins is the negative regulation of the immune system, including interaction with epidermal growth factor receptor to suppress epithelial 
cell secretion of mucin (C), alleviation of airway eosinophil infiltration and inflammation by inhibiting the release of EPO, or inhibition of eosinophil chemotaxis (D). In 
addition, SP-A is suggested to inhibit mast cells recruitment and the subsequent release of TNF-α to regulate the exacerbation of airway hyperresponsiveness and the 
associated influx of inflamed cells in reaction to M. pneumoniae infection (E). Other candidate functions include inhibiting dendritic cells maturation and suppressing the 
expression of HMGB-1 (F) or attenuating cytokine production by T lymphocytes, thereby directly or indirectly influencing T cell proliferation and increasing the number of 
activated B cells during M. pneumoniae infection (G). These factors enable the host immune system to fine-tune homeostasis during M. pneumoniae infection. Created in 
BioRender. You, X. (2025) https://BioRender.com/g33c697.
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that serve as Ca2+-dependent specific carbohydrate-binding sites.31 Both SP-A and SP-D spatially construct 
effective trimers that are maintained by disulfide bonds in the N-terminal region, triple-helix collagen-like 
segments, and hydrophobic interactions that generate coiled helical regions by strong engagement of the three- 
helix neck segments.27 These functional trimers can subsequently oligomerize into an octadecameric-like structure 
for SP-A (similar to a bunch of tulips) and a dodecameric cruciform-like structure, which may further reassemble 
into star multimers for SP-D.19,27 The affinity and specificity of SP-A and SP-D for bacterial surfaces are derived 
from their distinctive carbohydrate-binding motifs and the spatial arrangement of their multiple CRDs, positioned 
at the C-terminus of every trimer unit at certain angles and intervals, ultimately augmenting the overall affinity for 
binding to carbohydrate targets on microorganisms and facilitating bacterial phagocytosis.32 Therefore, SP-A and 
SP-D, also known as “carbohydrate pattern recognition molecules”, predominantly interact with glycoconjugates 
and lipids on microbial surfaces through their CRDs.27

Functions of Surfactant Proteins in Immune System
The host lung defense system comprises AMs, antimicrobial peptides, surfactant lipids, and protein constituents.14 

Pulmonary proteins, specifically SP-A and SP-D, engage with diverse cell surface ligands on leukocytes, thereby 
modulating cellular functions related to phagocytosis and immune responses. Specifically, SP-A demonstrates anti- 
inflammatory effects in vitro by lowering the generation of cytokines, notably TNF-α and IL-1β, from AMs induced by 
LPS,33 as well as inhibiting mitogen-induced T cell proliferation.34 Furthermore, SP-A modulates the creation of major 
mediators, such as TNF and IL-2, in lung lymphocytes, which subsequently affects AM function within the innate 
pulmonary immune system.35 Besides their functions as opsonins, SP-A and SP-D moonlight towards driving factors for 
apoptotic cell clearance and bacterial killing11 (Table 1).

Augment Phagocytic Activity of Phagocytes
Surfactant proteins facilitate the absorption of germs, viruses, and allergens by AMs, monocytes, neutrophils, and DCs; 
delayed microbial clearance has been observed in surfactant-deficient mice.45 Nevertheless, under specific circumstances, 
pulmonary surfactants can exert opposing effects, such as inhibiting immune cell phagocytosis of Pneumocystis 
yersoni.11

Under normal conditions, SP-A and SP-D are believed to impede phagocytosis in macrophages by engaging their 
CRDs interacting with the transmembrane receptor signal inhibition regulator-α (SIRP-α) and result in the activation of 
their downstream effectors like SHP-1 and RhoA.46 After infection, the functions of SP-A and SP-D undergo a notable 
inversion, markedly enhancing the phagocytic abilities of macrophages. The mechanisms driving this shift include, but 
are not limited to ①Function as opsonins by interacting with membrane receptors such as SP-R210, Toll-like receptor 2 
(TLR2), TLR4, CD14, SIRP-α, and CD91-calreticulin,19 thereby augmenting the phagocytic capacity of macrophages 
against invading pathogens, including Aspergillus fumigatus (conidia),47 Cryptococcus neoformans,48,49 Candida 

Table 1 Potential Functions of SP-A and SP-D in M. pneumoniae Infection

Surfactant Action Target Function Reference

SP-A Function as receptor for CARDS TX Lung epithelial cells vacuolization [36]

Binding to phosphatidylglycerol on M. pneumoniae Aggregate M. pneumoniae [37, 38]
Binding to TNF receptors on Mast cells Inhibit Mast cells release of TNF-α [39]

AMs Enhance the mycoplasmacidal activity [40]

Binding to eosinophils Limit eosinophils release of EPO [41]
Binding to M. pneumoniae Inhibition of DCs maturation [42]

Block the EGFR signaling pathway Limit mucin production by MMF [43]

SP-D Binding to phosphatidylinositol on M. pneumoniae Aggregate M. pneumoniae [38]
Behave as C1q to bind AMs Enhance the mycoplasmacidal activity [44]
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albicans,50 and Pneumocystis jirovecii,51,52 or directly interact with the phagocytosis receptor, scavenger receptor A, and 
mannose-receptor on macrophages to increase phagocytosis of microbes and apoptotic cells.53 ②Acting as an activation 
ligand to sense pathogens through their CRDs region to stimulate the phagocytic function of macrophages and 
monocytes.45 ③Behave as C1q to drive phagocytosis absorption of apoptotic cells through its interaction with CD91- 
calreticulin (C1qR),54 a receptor complex common to the collagen lectin family55 present on the surface of AMs owing to 
their homology with C1q,56 although SP-D has a stronger mediating phagocytosis compared to SP-A.55 ④Enhance Fc 
receptor- (FcR) and C3b/C4b receptor (CR1)-facilitated phagocytosis in monocytes and macrophages in vitro.57,58 

⑤Binding to viscous DNA released by dead microbes or necrotic cells to facilitate the absorption of DNA or apoptotic 
cells by macrophages. SP-D-deficient mice exhibit impaired clearance of free DNA from the lungs.59 Recently, a newly 
discovered secretory surfactant candidate, surfactant-associated protein 3 (SFTA3), was shown to enhance phagocytic 
efficiency in the lungs and may contribute to the clearance of particles and pathogenic microbes.60

Negatively Regulate the Inflammatory Response
Accumulating evidence shows that phosphatidylglycerol and phosphatidylinositol, the main components of pulmonary 
surfactants, exert anti-inflammatory action by inhibiting the activation of a variety of TLRs (such as TLR2/1, TLR3, 
TLR4, and TLR2/6), resulting in the secretion of anti-inflammatory mediators that weaken and destroy various respiratory 
RNA viruses.61 Additionally, SP-A and SP-D are reported to be associated with CD1462 or TLR263 and to block 
inflammatory cellular responses induced by stimuli such as smooth LPS, peptidoglycan, or yeast glycan. Borron et al 
reported that intratracheal administration of LPS leads to the production of TNF-α and nitric oxide (NO) in bronchoalveolar 
lavage fluid (BALF) in SP-A-deficient mice, which were significantly higher compared to those of wild mice.64 Moreover, 
SP-A knockout models exhibit heightened vulnerability to various bacterial and viral infections, such as Pseudomonas 
aeruginosa,65 Group B streptococcus,66 Influenza A virus,67 Haemophilus influenzae indissoluble,36 and Respiratory 
syncytial virus (RSV),68 and an enhanced inflammatory response to pathogen attack. From a mechanistic perspective, SP- 
A and SP-D may communicate with membrane receptors, including TLRs, SIRPa, and CD91-calreticulin, on leukocytes, 
thereby inhibiting microbial recognition and influencing the generation of cytokines and inflammatory agents in a microbial 
ligand-specific form.45,69 This process then alters the activity of innate immune cells, such as AMs, that produce IFN-γ and 
inducible nitric oxide synthase (iNOS)70 to negatively regulate the inflammatory balance during infection.

Modulation of Lymphocytes and DCs
SP-A may activate host immunological responses during the early stages of infection. When the anti-infective response is 
sufficient, SP-A subsequently inhibits the production of inflammatory mediators through AMs and ultimately influences 
T-lymphocyte activity, thereby safeguarding fragile lung tissue from T cell-mediated damage in the alveolar space.70 

Both SP-A and SP-D can directly regulate lymphocyte functions at various stages, such as inducing a CD4+CD25+Foxp3+ 

suppressor regulatory T cell population through a TGF-β-dependent mechanism71 and inhibiting the generation of 
cytokines by T lymphocytes, such as IL-2 and IFN-γ, thereby directly or indirectly influencing T cell proliferation, 
lymphokine-activated killer cell activation, and adhesion molecule expression,72–74 ultimately reducing tissue damage 
caused by overactive immune responses. Furthermore, SP-A and SP-D inhibit DC maturation. For instance, SP-A 
attaches to DCs and inhibits their maturation in culture, consequently diminishing their capacity to stimulate allogeneic 
T cells.75 However, surfactant proteins seem to demonstrate different effects in augmenting particle antigen presentation, 
as SP-A inhibits DCs maturation, whereas SP-D promotes bone marrow-derived DCs maturation and enhances its 
antigen-presenting capacity by binding to specific receptors, such as the SP-D receptor and CD91.76 The diversity of SP- 
A and SP-D ensures the accurate regulation of immunity under various infection conditions.

Functions of Surfactants During M. pneumoniae Infection
Functions as Receptor for M. pneumoniae
Common virulence factors of M. pneumoniae include membrane lipoproteins, metabolites, and secretory toxins.77 The 
newly discovered CARDS TX is a 68 kDa membrane-binding protein, referred to as MPN372, which is thought to have 
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a subunit similar to the S1 component of the pertussis toxin.78,79 The expression level of CARDS TX can be markedly 
elevated once M. pneumoniae infects host cells and demonstrates a strong affinity for SP-A in AMs, alveolar epithelial 
cells, and various other tissue cells.80 Recombinant CARDS TX is a Ca2+-dependent protein that interacts with SP-A in 
a concentration-dependent manner. The CARDS TX antiserum has been shown to block the adhesion of M. pneumoniae 
to SP-A,21 suggesting that SP-A may serve as a candidate receptor that facilitates both M. pneumoniae adhesion and 
CARDS TX internalization. Furthermore, CARDS TX binds to SP-A in airway epithelial cells through the AnxA2 
receptor-mediated pathway, leading to its internalization and transport, which results in ADP ribosylation and vacuolation 
activity in mammalian cells.81 Furthermore, the inhibition of AnxA2 and SP-A diminished the binding of CARDS TX 
and the ensuing vacuolation of cells.21 Krishnan et al revealed that SP-A-deficient cells did not appear to influence 
CARDS TX internalization,82 suggesting the existence of other receptors that could substitute for the absence of SP-A. 
Conversely, the suppression of AnxA2 significantly diminishes CARDS TX adherence, internalization, and vacuolation 
toxicity.83 This indicates that SP-A may be merely one of the multiple receptors for CARDS TX, and its precise 
physiological function remains ambiguous, perhaps reflecting a larger dimension of the host’s antimicrobial immunolo-
gical response.

Direct Antibacterial Action by High Affinity Bind M. pneumoniae
In vitro investigations have indicated that SP-A and SP-D exert direct antimicrobial properties on various pathogenic 
organisms, including Escherichia coli, Klebsiella pneumoniae, and Histoplasma capsulatum by increasing their mem-
brane permeability.11,30 SP-A and SP-D exhibit opsonic activity within their immunological activities and bind to and 
aggregate with pathogens through their CRDs.20 This process enhances the uptake of microorganisms by immune cells 
including macrophages and neutrophils, thus facilitating efficient pathogen clearance.53 The membrane components of 
M. pneumoniae could promote eicosanoid synthesis in macrophages via TLR2 receptors. This pathogen-induced reaction 
can be eliminated by the anionic surfactant palmitoyl-oleoyl-phosphatidylglycerol,84 which has generated great interest 
owing to the significance of surfactant proteins in M. pneumoniae infection. Specifically, the CRDs of SP-A and SP-D 
exhibit a strong affinity for lipid ligands on the membrane of M. pneumoniae, particularly a subset of unsaturated 
phosphatidylglycerols.37,38 This is a crucial determinant in the relationship between SP (SP-A and SP-D) and ligands 
present on the membrane of complete M. pneumoniae85 and is strictly dependent on Ca.2+86 This interaction can be 
completely inhibited by the divalent cation-chelating agents EGTA and dipalmitoyl phosphatidylglycerol87 and is 
unaffected by other portion of the surfactant proteins (ie, lipid or hydrophobic surfactant proteins).14 This interaction 
not only impedes the growth of M. pneumoniae, as evidenced by decreased colony formation, metabolism, and DNA 
replication, but also significantly contributes to the establishment of antibody-independent immunity against the 
bacteria,86 thus enabling SP-A and SP-D to facilitate the direct elimination of M. pneumoniae. Meanwhile, Kannan 
et al found that mannose did not impede the binding of M. pneumoniae to hSP-A,21 revealing that CRDs and mannose- 
related components may not be directly involved in this interaction, but rather serve to enhance the clearance of 
pathogens by macrophages. Interestingly, the lipid profile recognized by SP-D differs from that of SP-A, although 
both share a certain degree of overlap.38 Moreover, bacterial recognition by SP-D involves single nucleotide polymorph-
isms (SNPs), since tandem mutants (E321Q/N323D) with altered SP-D carbohydrate content were unable to bind the 
lipid ligands of M. pneumoniae.38

Enhancing the Eradication of M. pneumoniae by AMs
AMs, situated within a phospholipid-rich milieu alongside SP-A and SP-D, act as key effectors that facilitate early 
clearance of M. pneumoniae both in vivo and in vitro, significantly contributing to the ensuing acquired immune 
response.19 SP-A and SP-D have been documented to attach to AMs with high specificity,38,44 affect the release of 
reactive oxygen species (ROS)88 and NO metabolites,69 boost chemotactic activity,89 and augment the phagocytic 
capacity of AMs to eliminate M. pneumoniae. The mechanism by which SP-A and SP-D eliminate M. pneumoniae 
may be linked to a temperature-sensitive, NO-dependent pathway,90 as pharmacological inhibition of iNOS markedly 
diminished SP-A-induced eradication of M. pneumoniae.40 Hickman-Davis et al further revealed the SP-A-mediated 
death of M. pneumoniae with AMs via the generation of peroxynitrite.40 In vivo tests also demonstrated that, following 
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M. pneumoniae infection, the concentrations of NO in the BALF within C57BL/6 mice were significantly higher than 
those in SP-A-deficient mice,91 and the M. pneumoniae load and inflammation severity in iNOS-deficient mice were 
considerably greater than those in wild-type mice.92 However, the absence of iNOS expression cannot be offset by 
alternative NO sources.40 Furthermore, as the synthesis of NO is facilitated by TNF-α, SP-A may also impede NO 
production by inhibiting TNF-α secretion in Ams.93 Interestingly, the function of SP-A in the eradication of 
M. pneumoniae appears to be restricted to lower bacterial doses and the initial phases of infection. SP-A regulates NO 
production in a stimulus-specific manner; it inhibits NO production in the uninfected state but promotes NO formation 
during M. pneumoniae infection.91 Furthermore, SP-A and SP-D modulated ROS generation in AMs. ROS, including 
hydrogen peroxide, hydroxyl radicals, and superoxide, enhanced the antibacterial efficacy of SP-A and SP-D against 
M. pneumoniae.94 Simultaneously, superoxide anions and hydrogen peroxide may kill M. pneumoniae directly or 
indirectly by generating extremely reactive oxygen-nitrogen intermediates, including hydroxyl radicals and 
peroxynitrite.40

Negative Modulation of M. pneumoniae-Induced Inflammation
Polymorphisms of SP-A and M. pneumoniae Pneumonia
Allelic variations in SP-A significantly influence its immunomodulatory functions. Unlike rodents, human SP-A is 
encoded by two functional genes, SFTPA1 (SP-A1) and SFTPA2 (SP-A2), which are transcribed in opposite directions.95 

Each gene exhibits considerable genetic and epigenetic complexity, which variably influences alveolar cell activity and 
the composition of surfactants.96 The distinction between the gene products of SP-A1 and SP-A2, along with their 
corresponding coding variations, was determined at four specific amino acid positions: 66, 73, 81, and 85.96 Notably, 
a particular gene allelic variant in SP-A2 (Gln 223 Lys) is prevalent in the population, where the allelic variation 
corresponds to the substitution of Gln (Q) with Lys (K) at site 223 in the lectin domain.97 Notwithstanding the structural 
similarities between SP-A1 and SP-A2, their functional mechanisms diverge.98 Ledford et al established that the 
recombinant human isoform of SP-A2 with a lysine substitution at position 223 (rhSP-A2 Lys223) binds to 
M. pneumoniae membrane components (MMF) with high affinity, whereas the rhSP-A2 variant with glutamine at 
position 223 (rhSP-A2 Gln223) shows markedly reduced affinity for MMF.43 Furthermore, mice expressing SP-A2 
Gln223 exhibited enhanced neutrophil chemotaxis in response to MMF challenge compared to those expressing SP-A2 
Lys223.43 Additionally, SP-A2 displays superior biological activity to SP-A1 in several key areas; it binds more 
effectively to neutrophils, promotes bacterial engulfment by AMs, enhances the production of proinflammatory factors 
by macrophage-like cell lines, and improves survival rates in lung transplantation patients.99–102 In summary, SP-A2 
polymorphisms may lead to differential immune responses following M. pneumoniae infection, potentially contributing 
to the variability in clinical manifestations among individuals.

Restricts Mucin Production Induced by M. pneumoniae Components
MMF are predominantly identified via TLR1, TLR2, and TLR6.103 MMF can bind to these receptors and activate 
downstream signaling pathways including NF-κB,104 mitogen-activated protein kinases (MAPKs),105 and the epidermal 
growth factor receptor (EGFR).106 EGFR has long been recognized as a prominent receptor that regulates mucin 
production through endogenous and exogenous ligand signaling cascades, including the Ras/ERK or PI3K/Akt 
pathways.43 Previous reports indicated that SP-A exhibits a high affinity for live M. pneumoniae and MMF.107 In the 
absence or downregulation of SP-A, MMF induces increased activation of the EGFR signaling pathway, resulting in 
enhanced mucin production.43 In vitro experiments have indicated that SP-A can inhibit EGF-induced phosphorylation of 
EGFR, ERK, and Akt in a dose-dependent way, thereby inhibiting cell proliferation and motility.43,108 Additionally, SP- 
A-deficient mice show heightened sensitivity to MMF exposure, and the pharmacological inhibition of EGFR before 
MMF stimulation significantly decreases mucin production and neutrophil infiltration in SP-A-deficient mice.109 

Mechanistically, SP-A may interact with EGFR via the neck region of the CRD, effectively blocking the binding of 
EGF to EGFR and suppressing mucin production.107 These findings indicate that SP-A may contribute to the negative 
regulation of pulmonary inflammation to a certain degree.
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Alleviates Airway Eosinophilic Infiltration and Inflammation
The differences between non-allergic and allergic inflammation largely revolve around eosinophils, which are frequently 
observed in the airways of patients with asthma and interact with invading M. pneumoniae.110 In vivo investigations have 
demonstrated that local allergen exposure in patients with asthma leads to a substantial influx of eosinophils, accom-
panied by elevated SP-D and reduced SP-A levels in BALF.111 This shift in surfactant protein dynamics underscores their 
potential role in regulating the immune reactions during allergic inflammation.

The dysregulation of SP-A and SP-D metabolism appears to be a critical underlying illness characterized by 
eosinophil dominance.112 Studies have shown that both SP-A and SP-D modulate eosinophil chemotaxis in inflammatory 
airway diseases, thereby mitigating the inflammatory response and pathological injury associated with M. pneumoniae 
infection.113 Consequently, SP-A appeared to disrupt the host’s natural mechanism of clearing M. pneumoniae. One 
proposed mechanism involves SP-A interacting to eosinophils, limiting the release of eosinophil peroxidase (EPO) upon 
encountering M. pneumoniae.41 SP-A polymorphisms may influence eosinophil regulation. The variant SP-A Lys223, 
stemming from the substitution of glutamine (Q) with lysine (K), significantly enhances eosinophilic granuloma 
formation and offers a nuanced rationale for the capacity of SP-A to limit EPO release,114 highlighting the genotypic- 
phenotypic correlation in airway diseases.115 Additionally, the CRD of SP-A binds to eosinophils to modulate their 
degranulation and apoptosis, promoting phagocytosis by macrophages, which inhibits extracellular trap formation and 
reduces airway inflammation.116 In contrast, SP-D plays a relatively minor role, although it can bind directly to the 
eosinophil surface and inhibit chemotaxis.116,117 Certain dysfunctions in SP-A and SP-D are hypothesized to worsen 
M. pneumoniae infection, as elevated reactive nitrogen species in eosinophilic diseases caused by M. pneumoniae disrupt 
the normal oligomerization of these proteins.112 In summary, SP-A and SP-D promote homeostasis during 
M. pneumoniae infection while mitigating excessive responses that may lead to harm.

Regulation of Asthmatic Inflammation
Asthma is a persistent respiratory condition that can be exacerbated by M. pneumoniae infection.118 In patients with 
asthma, a significant link exists between the number of airway mast cells (MCs) in the airway smooth muscle and airway 
hyperresponsiveness (AHR).119 MCs serve a crucial role as reservoirs of TNF-α,120 amplifying local inflammation and 
worsening conditions such as asthma following M. pneumoniae infection. SP-A is suggested to significantly influence 
immunological responses by inhibiting the recruitment of MCs and the subsequent generation of TNF-α following 
M. pneumoniae infection. Meanwhile, in SP-A-deficient mice infected with M. pneumoniae, MCs further exacerbate 
AHR and the recruitment of inflammatory cells, which is accompanied by a substantial increase in TNF-α production.39 

These findings highlight the protective role of SP-A against asthma. In patients with asthma with SP-A dysfunction or 
deficiency, M. pneumoniae infection can lead to overproduction of TNF-α by epithelial cells, AMs, and MCs, contribut-
ing to increased inflammation and tissue damage.121 In contrast, SNPs in the SP-A and SP-D genes, particularly the SP- 
A2 SNP rs1965708122 and SP-D SNP rs721917,123 correlate with a heightened risk of asthma. Individuals with asthma 
harboring these SNPs exhibited reduced lung function and poor asthma control.124 This suggests that these genetic 
variants influence the expression or function of surfactant proteins, thereby altering the immune response and potentially 
contributing to the development or severity of asthma.116

Inhibition of DCs Maturation and Lymphocytes Activation
Although SP-A has various immunomodulatory functions that influence the phenotype and activity of adaptive immune 
cells,125 its role in DCs maturation and lymphocyte activation following M. pneumoniae infection remains unclear. The 
only available reports, based on research by Ledford, indicate no significant variation in the overall amount of myeloid 
cells discovered in lung digests of M. pneumoniae infected SP-A-deficient mice in relation to WT C57BL/6 mice. 
However, the composition of cells, such as antigen-presenting cells, inflammatory monocytes, and neutrophils in BALF, 
along with the number of DCs, was markedly elevated in SP-A-deficient mice. Concurrently, concentrations of 
chemotactic factors for immature DCs, eg MCP-1, MIP-1α, and GM-CSF, were elevated in the BAL of SP- 
A-deficient mice following M. pneumoniae infection. Further studies confirmed that SP-A-deficient mice exhibited 
more mature DCs and an elevation in CD3+CD4+ and CD3+CD8+ T cells during M. pneumoniae infection. Nonetheless, 
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the elevated burden of M. pneumoniae was not consistent with an increase in T lymphocytes. Additionally, the quantity 
of activated B cells (B220+IgM+CD69+) extracted from the lungs increased significantly, along with increased levels of 
high mobility group box 1 (HMGB-1) in SP-A-deficient lungs and mediastinal lymph nodes. HMGB-1, typically linked 
to necrotic cells, which are indicative of tissue damage and inflammatory signaling responses, has been recognized as 
a potent pro-inflammatory cytokine that actively regulates DCs maturation.125,126 Since the exogenous addition of SP-A 
could suppress HMGB-1 release from THP-1 cells activated by M. pneumoniae, it is speculated that SP-A contact with 
M. pneumoniae may similarly limit HMGB-1 secretion from DCs, which is consistent with the finding that the 
experimental group recovered with SP-A failed to induce HMGB-1 production from DCs.42 Therefore, SP-A reduces 
lung inflammation following M. pneumoniae infection by inhibiting DCs and activating T and B cells through the 
regulation of HMGB-1 expression.

Perspective and Conclusion
Surfactant proteins, particularly SP-A and SP-D, are crucial for maintaining pulmonary homeostasis and resisting 
pathogenic infections. A wide range of their functions not only influence the immune response during pathogen 
encounters but also significantly impact the inflammatory response. Due to this complexity, investigators often find it 
challenging to identify the specific roles of surfactant proteins under various infectious conditions. For instance, while 
SP-A may exhibit protective effects in models of M. pneumoniae infection, it can also demonstrate pro-inflammatory 
effects when confronted with other pathogens such as Influenza A virus, S. pneumoniae, RSV, P. aeruginosa, and HIV.19 

This functional diversity complicates the interpretation of experimental results and the investigation of the underlying 
mechanisms.

Studies investigating the mechanisms of action of surfactant proteins often rely on cellular or animal models. 
However, cellular models struggle to fully replicate the complex host immune environment, and existing animal models 
such as mice exhibit large gaps in the genetic background of the human immune system. Notably, variations in the 
sequence and structure of mouse surfactant proteins compared to those of humans introduce uncertainties in research on 
M. pneumoniae, complicating the interpretation of the study results. With the advent of organoids and humanized cell 
models, it has become feasible to recreate the lung microenvironment and immune response in vitro,127 address the 
limitations of animal models, and provide a reliable experimental platform for investigating the pathogenesis of 
M. pneumoniae.

SP-A exhibits high polymorphism and is unevenly distributed among different individuals and ethnic groups, making 
it challenging to draw universal conclusions regarding the investigation of surfactant proteins. This polymorphism results 
in varying reactivity across patients with M. pneumoniae infection, further increasing the complexity of studies. Future 
research should investigate how this genetic variation influences individual susceptibility to M. pneumoniae and the 
outcomes of infection. By conducting studies on individuals with different genotypes, we may uncover the relationship 
between genetic polymorphisms and susceptibility to M. pneumoniae. This knowledge could facilitate the creation of 
personalized treatment strategies for individual genetic profiles, thereby enhancing the precision of anti-infection 
therapies.

Future research should focus on the processes that allow SP-A and SP-D to recognize M. pneumoniae. Advanced 
structural biology techniques, such as cryo-electron microscopy, allow direct observation of the binding process between 
surfactant proteins and M. pneumoniae at the atomic level, offering new insights into the diverse processes of surfactant 
proteins activity. Additionally, by comparing surfactant proteins in the context of M. pneumoniae and other pathogens, 
we can identify specific immune responses further elucidated their roles in the infectious environment. Investigating the 
regulatory mechanisms and immunomodulatory effects of surfactant proteins will help to clarify their specific functions 
in M. pneumoniae infection. Understanding these mechanisms will be instrumental in developing customized anti- 
infection therapies.

In the future, surfactant proteins should be integrated with other pulmonary immune factors, such as chemokines and 
cytokines, to investigate their synergistic effects on the regulation of M. pneumoniae infection. By systematically 
studying the interactions among these factors, we aimed to construct a more comprehensive lung immune regulatory 
network to provide new insights into the treatment of M. pneumoniae pneumonia.
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