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The molecular hallmark of childhood acute lymphoblastic leukemia (ALL) is characterized by

recurrent, prognostic genetic alterations, many of which are cryptic by conventional

cytogenetics. RNA sequencing (RNA-seq) is a powerful next-generation sequencing technology

that can simultaneously identify cryptic gene rearrangements, sequence mutations and gene

expression profiles in a single assay. We examined the feasibility and utility of incorporating

RNA-seq into a prospective multicenter phase 3 clinical trial for children with newly diagnosed

ALL. The Dana-Farber Cancer Institute ALL Consortium Protocol 16-001 enrolled 173 patients

with ALL who consented to optional studies and had samples available for RNA-seq. RNA-seq

identified at least 1 alteration in 157 patients (91%). Fusion detection was 100% concordant

with results obtained from conventional cytogenetic analyses. An additional 56 gene fusions

were identified by RNA-seq, many of which confer prognostic or therapeutic significance. Gene

expression profiling enabled further molecular classification into the following B-cell ALL

(B-ALL) subgroups: high hyperdiploid (n 5 36), ETV6-RUNX1/-like (n 5 31), TCF3-PBX1 (n 5 7),

KMT2A-rearranged (KMT2A-R; n 5 5), intrachromosomal amplification of chromosome 21

(iAMP21) (n 5 1), hypodiploid (n 5 1), Philadelphia chromosome (Ph)-positive/Ph-like (n 5 16),

DUX4-R (n 5 11), PAX5 alterations (PAX5 alt; n 5 11), PAX5 P80R (n 5 1), ZNF384-R (n 5 4),

NUTM1-R (n 5 1), MEF2D-R (n 5 1), and others (n 5 10). RNA-seq identified 141

nonsynonymous mutations in 93 patients (54%); the most frequent were RAS-MAPK pathway

mutations. Among 79 patients with both low-density array and RNA-seq data for the

Philadelphia chromosome-like gene signature prediction, results were concordant in 74 patients

(94%). In conclusion, RNA-seq identified several clinically relevant genetic alterations not detected

by conventionalmethods,which supports the integration of this technology into front-line

pediatric ALL trials. This trialwas registered atwww.clinicaltrials.gov as #NCT03020030.

Submitted 6 July 2021; accepted 27 November 2021; prepublished online on Blood
Advances First Edition 21 December 2021; final version published online 21 February
2022. DOI 10.1182/bloodadvances.2021005634.

Publication-related additional information can be requested by sending an email to
Thai Hoa Tran at thai.hoa.tran@umontreal.ca or to Daniel Sinnett at daniel.sinnett@
umontreal.ca.

The full-text version of this article contains a data supplement.

© 2022 by The American Society of Hematology. Licensed under Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-
ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other
rights reserved.

Key Points

� RNA-seq is feasible in
the context of a
prospective clinical
trial for de novo ALL
within a clinically
sensitive turnaround
time.

� RNA-seq identified
several genetic
alterations not
detected by
conventional methods
that confer potential
prognostic and
therapeutic impact.
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Introduction

Acute lymphoblastic leukemia (ALL) is the most common childhood
cancer, constituting �25% of annual diagnoses among children
under age 15 years.1 Cure rates for childhood ALL have steadily
increased over the past 5 decades, and long-term overall survival
now exceeds 90% with contemporary chemotherapy regimens.2 This
remarkable success culminates from well-designed randomized multi-
institutional clinical trials to optimize chemotherapy regimens,
enhanced supportive care measures to minimize treatment-related
morbidity and mortality, and refinement of risk stratification based on
presenting characteristics, leukemia biology, and early disease
response to therapy as measured by minimal residual disease (MRD).

Advances in genomics over the last decade, particularly with the
advent of next-generation sequencing (NGS) technologies, continue
to unravel the genomic landscape of ALL and deepen the under-
standing of ALL biology. The molecular hallmark of ALL is character-
ized by recurrent somatic genetic alterations that may carry
diagnostic, prognostic and/or therapeutic significance. The constel-
lation of genetic alterations encompasses aneuploidy (eg, hyperdi-
ploidy vs hypodiploidy), chromosomal rearrangements that result in
expression of chimeric fusion oncoproteins (eg, BCR-ABL1 and
ETV6-RUNX1) or deregulate gene expression, DNA copy number
alterations, and sequence mutations.2,3 Current conventional cyto-
genetic and molecular analyses fail to identify sentinel alterations in
�25% of childhood ALL.4 In recent years, broad application of
NGS technologies, notably whole-transcriptome sequencing (com-
monly referred to as RNA sequencing [RNA-seq]), has redefined
the molecular taxonomy of ALL. RNA-seq enabled discovery of novel
genomically defined ALL subtypes characterized by chromosomal
rearrangements that are cryptic on karyotyping (eg, DUX4-rear-
ranged [DUX4-R] ALL), myriad gene fusions with numerous partners
(eg, MEF2D, ZNF384, or NUTM1-R ALL), and complex and hetero-
geneous genetic alterations within a single ALL subtype (eg, Phila-
delphia chromosome-like [Ph-like]) or PAX5 alterations [PAX5alt]
ALL).4,5 Thus, RNA-seq offers the ability to simultaneously identify
cryptic gene rearrangements, sequence mutations and gene expres-
sion profiles in a single assay to accurately determine novel leuke-
mia subtypes along with their drivers, which renders this platform
one of the most efficient and clinically relevant among the NGS
technologies.

Several nationwide, large-scale precision medicine initiatives, includ-
ing those from our group, have demonstrated the feasibility of incor-
porating NGS platforms into expeditious and pragmatic diagnostic,
prognostic, and therapeutic algorithms for children with relapsed
and/or refractory cancers.6,7 Clinical RNA-seq platforms are becom-
ing increasingly available, but there is little information regarding the
use of this technology in the clinical setting.8,9 Herein, we report our
experience using RNA-seq to prospectively and in real time molecu-
larly profile a large cohort of consecutive patients with childhood
ALL as part of the Dana-Farber Cancer Institute (DFCI) ALL Consor-
tium Protocol 16-001.

Materials and methods

Study design and patient samples

From March 2017 to February 2021, 173 bone marrow or periph-
eral blood samples were obtained from consecutive children and

adolescents age 1 to 21 years with newly diagnosed ALL enrolled
on the DFCI ALL Consortium Protocol 16-001 (hereafter DFCI 16-
001). The DFCI 16-001 study is a phase 3, multicenter, open-label,
randomized clinical trial, testing a novel risk group classification and
comparing 2 different pegaspargase dosing regimens after induc-
tion (standard fixed dose vs adjusted dose based on nadir serum
asparaginase activity levels). The initial risk group was determined at
study entry on the basis of age, white blood cell count (WBC),
immunophenotype, and central nervous system (CNS) status.
Patients who met the following criteria were considered initial
low risk (LR): B-cell ALL (B-ALL), younger than age 15 years,
WBC , 50000/mL, and CNS-1 or CNS-2. Patients with any of the
following criteria were considered initial very high risk (VHR): IKZF1
deletion, KMT2A-R, low hypodiploidy (#40 chromosomes), or
t(17;19). Final risk group was assigned based on the MRD results.
MRD was assessed at 2 time points (TPs) by the clonoSEQ assay
(Adaptive Biotechnologies)10: at day 32 of induction 1A (TP1), and
for those with high MRD at TP1, at the end of induction 1B (TP2)
(supplemental Figure 1). The study was conducted at 8 pediatric
oncology centers in the United States and Canada and was to be
closed to the pegaspargase randomization by the end of 2021 with
the accrual goal of 480 patients. Diagnostic bone marrow or periph-
eral blood samples from patients who consented to optional studies
on DFCI 16-001 were sent to Centre Hospitalier Universitaire
Sainte-Justine (CHUSJ; Montreal, QC, Canada) for sample process-
ing and sequencing. All patient samples were subjected to conven-
tional cytogenetic and molecular analyses to assess for ploidy
(karyotype and fluorescence in situ hybridization [FISH]) and the
risk-stratifying gene rearrangements by FISH and/or reverse tran-
scriptase polymerase chain reaction (ETV6-RUNX1, TCF3-PBX1,
TCF3-HLF, BCR-ABL1, iAMP21, and KMT2A-R) according to insti-
tutional standards. A DNA-based NGS assay, the Rapid Heme
Panel (RHP), was centrally performed in all patients to detect IKZF1
deletions. The low-density array (LDA) card for Ph-like ALL screening
was mandatory for all National Cancer Institute (NCI) patients with
high-risk (HR) B-ALL. The protocol was approved by the institutional
review board at each participating center. Written informed consent
was obtained from parents or legal guardians of all participants.

RNA extraction, library preparation, and sequencing

Total RNA was extracted from the patient’s leukemia cells using
mini AllPrep DNA/RNA kits from QIAGEN. TruSeq Stranded Total
RNA libraries were prepared by using the Ribo-Zero Gold Kit
according to Illumina’s protocol. The resulting libraries (stranded
and ribosomal RNA-depleted) were sequenced (paired-end 2 3 75
bp or 2 3 100 bp) on HiSeq 2500, HiSeq 4000, or NovaSeq
6000 systems at the Integrated Center for Clinical Pediatric Geno-
mics at CHUSJ.

Bioinformatic pipelines

RNA-seq analysis was performed as previously described.6 Briefly,
alignment to the hg19 (GRCh37) reference genome was performed
by using the Spliced Transcripts Alignment to a Reference (STAR)
aligner.11 Gene expression was measured with the cufflinks soft-
ware using the Ensembl version 75 gene coordinates. Point muta-
tions and small insertions/deletions (indels) were identified using the
HaplotypeCaller software included in the Genome Analysis Toolkit
(GATK) developed at the Broad Institute (Cambridge, MA). Subse-
quent annotations were added, such as 1000 Genomes Project,12
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the Catalogue Of Somatic Mutations In Cancer (COSMIC),13 and
predicted effects by Sorting Intolerant From Tolerant (SIFT)14 and
Polyphen2 databases.15 Fusion genes, translocations, and chimeric
transcripts were identified with FusionCatcher,16 STAR-Fusion,17

and Arriba18 to rank putative reciprocal breakpoints from the STAR
output.

Detection of fusions and mutations

Recurrent fusions in ALL, as well as novel fusions implicating 1
known fusion partner were considered for the analysis. Known
fusions (available in public databases) or fusions implicating 1 known
gene partner in cancers were considered positive when detected by
1 of the 3 tools with at least 2 spanning reads, whereas novel
fusions had to be identified by all 3 tools, and they required at least
10 spanning reads. For variant interpretation, the coding regions of a
set of 246 leukemia-related genes were analyzed. Filtered-based
depth of coverage .30 and allele frequency of ,1% in any of the
subpopulations of the 1000 Genomes Project database were
applied; mutations listed in COSMIC and located within defined
genetic hotspots were identified (supplemental Table 2). Novel muta-
tions lying in hotspots and those predicted to be pathogenic by SIFT
and Polyphen2 were also reported. Intragenic deletions of IKZF1
were visually detected using the GVIZ R package (version 1.34.0).19

Prediction of ALL subtypes using

transcriptional signatures

Hierarchical clustering and experimental t-distributed stochastic
neighbor embedding (tSNE) were performed by using the R statisti-
cal package and DESeq2 (version 1.30.1).20 We trained the 1-layer
neural network (nnet R package, version 7.3-15) on 1134 ALL
samples from both in-house (n 5 72) and public data sets
(n 5 1062)21,22 using the top 500 most statistically significant dif-
ferentially expressed genes among 17 ALL subtypes. The trained
model was applied to the sample from each patient in our study,
and the subtype with the highest probability by the neural network
model was reported as the predicted ALL subtype. In addition,
CRLF2 expression was compared with that in the public pediatric
ALL TARGET data set and in-house pediatric ALL cohort. CRLF2
expression was considered high when its expression was at the
99th percentile (outlier) with a fragments per kilobase of transcript
per million mapped reads (FPKM) value .30. However, the CRLF2
expression was not assessed for all patients but was determined
only in patients with CRLF2 fusions or those who had Ph-like gene
expression profiles.

Deconvolution of bulk RNA-seq data sets using

primary cell types

The proportion of primary hematopoietic cell types in each sample
was obtained with DeconRNASeq version 1.18.023 using 13 primary
cell-type expression profiles.24

Results

Patient characteristics and RNA-seq

turnaround time

The clinical characteristics of our RNA-seq cohort and those of the
overall DFCI 16-001 cohort are shown in Table 1. The median age
at diagnosis was 7.2 years (range, 1.0-21.7 years) and the WBC

count was 24.6 3 109/L (range, 1.5-874.4 3 109/L) for the RNA-
seq cohort. Boys constituted 54.9% of the cohort. There was a pre-
dominance of children of the White race (67.6%), whereas patients
of Hispanic, Black, or Asian descent represented 13.9%, 5.8%, and
2.9% of the patient cohort, respectively. The majority of patients
were CNS-1 (74%) at diagnosis, and only 1 patient presented with
testicular involvement. Among 136 patients with B-ALL, 58 (43%)
were classified as standard risk (SR), and 78 (57%) as HR accord-
ing to the NCI Rome criteria. According to the DFCI 16-001 risk
stratification, initial risk groups based on presenting clinical features,
leukemia immunophenotype, and cytogenetics were low (35.8%),
high (43.4%), and very high (20.8%), whereas final risk groups
based on initial risk and MRD were low (28.8%), intermediate
(28.1%), high (18.1%), and very high (25.0%) for this cohort. As of
August 27, 2021, compared with the remainder of the DFCI 16-001
cohort comprising 285 patients, our RNA-seq cohort had a higher
median presenting WBC (24.6 vs 9.6 3 109/L; P , .0001), higher
proportion of NCI HR patients (65.9% vs 44.0%; P , .001), and
higher prevalence of T-cell ALL (T-ALL) patients (21.4% vs 14.0%;
P 5 .053). The comprehensive transcriptomic analysis of 173 unse-
lected patients with de novo ALL (B-ALL, n 5 136 [78.6%]; T-ALL,
n 5 37 [21.4%]) led to the identification of at least 1 genetic alter-
ation in 157 patients (91%) (Figure 1; supplemental Table 1). These
alterations included both known and novel fusions genes, nonsynon-
ymous mutations, and intragenic deletions of IKZF1 specifically. The
mean time for library preparation, sequencing, bioinformatic analysis,
and data interpretation was 19 days (range, 7-48 days). The mean
time from sample receipt to final report delivery was 36 days (range,
15-63 days) (Figure 2). The mean time from sample receipt to final
report delivery for patients analyzed within the 2017 to 2018 period
compared with those analyzed during the 2019 to 2021 period
decreased from 38 days to 35 days. The minimal time required from
sample receipt to final report completion also shortened to 15 days
in 2019 to 2021 compared with 21 days in 2017 to 2018.

Detection of fusion genes

The median coverage depth by RNA-seq was 179 million read-pairs
(range, 63-406 read-pairs). Using this data set, we detected at least
1 expressed gene fusion in 104 (60%) of the 173 patients tested
for a total of 110 fusions. Only 37% (41 of 110) of gene fusions
identified by RNA-seq would have been identified by conventional
cytogenetic modalities. Fusion detection by RNA-seq was 100%
concordant with the results obtained from conventional cytogenetic
analyses for all 41 fusion genes detected in the clinic. In 4 additional
patients, RNA-seq allowed the identification of partner genes or
breakpoints for a gene rearrangement identified by FISH in the clinic
(eg, KMT2A-R). In addition to recurrent fusion genes that are rou-
tinely tested for in the clinic (ETV6-RUNX1, BCR-ABL1, TCF3, or
KMT2A-r by FISH), we uncovered 56 clinically relevant gene fusions
by RNA-seq. Some of these gene fusions have recently been asso-
ciated with prognostic or therapeutic significance. For instance,
DUX4-r has been associated with a favorable outcome,21 and
ZNF384-r and PAX5-r have been associated with an intermediate
prognosis.25,26 In addition, several kinase-activating fusions involving
ABL1, PDGFRB, CRLF2, or JAK2 could be targeted by therapy
with specific tyrosine kinase inhibitors.27 RNA-seq also led to the
identification of novel oncogenic fusions (eg, the ZBTB44-JAK2
[exon 2-exon 19]) in-frame fusion and its reciprocal product (identi-
fied in a patient with Ph-like ALL) that contained the N-terminal
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Table 1. Baseline characteristics of 173 patients with ALL analyzed by RNA-seq and the remainder of the DFCI 16-001 cohort

RNA-seq cohort DFCI 16-001 cohort

PN % Median (range) N % Median (range)

Total no. of patients 173 285

Age at diagnosis, y 7.2 (1.0-21.7) 5.6 (1.0-20.8) .12

1-10 109 63.0 202 70.9 .13

10-15 42 24.3 48 16.8

$15 22 12.7 35 12.3

WBC at diagnosis 310
9/L 24.6 (1.5-874.4) 9.6 (0.6-612.5) ,.001

,50 104 60.1 242 84.9 ,.001

$50 69 39.9 43 15.1

Sex

Female 78 45.1 130 45.6 .92

Male 95 54.9 155 54.4

Race/ethnicity

White 117 67.6 177 62.1 .88

Hispanic* 24 13.9 41 14.4

Black 10 5.8 20 7.0

Asian 5 2.9 14 4.9

More than 1 race 4 2.3 8 2.8

Other 11 6.4 17 6.0

Unknown 2 1.2 8 2.8

Immunophenotype

B-cell 136 78.6 245 86.0 .053

T-cell 37 21.4 40 14.0

CNS status at diagnosis

CNS-1 128 74.0 211 74.0 .86

CNS-2 40 23.1 57 20.0

CNS-3 3 1.7 4 1.4

Traumatic LP with blasts 2 1.2 5 1.8

Other or missing 0 0 8 2.8

Testicular involvement

Yes 1 1.0 2 1.3 .99

No 94 99.0 149 96.1

Unknown 0 0 4 2.6

NCI risk

Standard 59 34.1 155 56.0 ,.001

High 114 65.9 122 44.0

DFCI risk

Provisional

Low 81 46.8 201 70.5 ,.001

High 92 53.2 84 29.5

Initial (n 5 434)

Low 62 35.8 161 61.7 ,.001

High 75 43.4 65 24.9

Very high 36 20.8 35 13.4

*Patients indicated as Hispanic are included here regardless of other races provided.
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protein-interacting BTB domain of ZBTB44 and the kinase domain
of JAK2 (Figure 3).

IKZF1 intragenic deletion

An increasing body of clinical evidence demonstrates that the pres-
ence of IKZF1 deletion is associated with adverse outcome in chil-
dren and adult ALL.28-32 Among 25 patients with IKZF1 deletions
identified by the RHP, RNA-seq identified only the intragenic dele-
tion of exons 4 to 7 of IKZF1 resulting in the dominant-negative
IK6 isoform in 4 patients (Ph-like, n 5 1; DUX4-R, n 5 1; PAX5alt,
n 5 1; B-Others, n 5 1) (Figure 4). Combining gene expression sig-
nature from RNA-seq and IKZF1 deletion status from the RHP,
IKZF1 deletion was found in patients with Ph-like ALL (n 5 10),
PAX5alt (n 5 3), B-Others (n 5 2), ZNF384-R (n 5 1), BCR-
ABL1 (n 5 1), TCF3-PBX1 (n 5 1), and 28% of favorable sub-
types (high hyperdiploid [HHD], n 5 5; DUX4-R: n 5 2).

Detection of mutations

Using RNA-seq data, we identified a total of 141 sequence mutations
in a list of 246 leukemia-related genes. At least 1 pathogenic muta-
tion was found in 93 patients (54%) (Figure 1). Among these, 108
were distinct mutations, including 20 that were recurrent in our cohort
(supplemental Table 3). Seventy-nine patients (85%) harbored a
mutation that carries a potential prognostic and/or therapeutic signifi-
cance. We identified recurrent mutations in genes or related signaling
pathways including RAS-MAPK, JAK-STAT, FBXW7/NOTCH, and
epigenetics that could provide a rationale for targeted therapies.
RAS-MAPK pathway mutations were most prevalent within the HHD
subtype. The alterations identified in this study were not mutually
exclusive, as illustrated by patients who carried several mutations in
their cancer. The most frequently mutated signaling pathway was the
RAS-MAPK pathway with 56 mutations, which represented 40% of
all detected mutations. Most mutations were listed in COSMIC.13

We detected 21 novel potentially oncogenic mutations that were

located within known functional hotspots and/or that predicted dam-
age that would require further functional characterization.

Molecular classification of known and novel ALL

subtypes using gene expression signature

We developed gene expression profiling tools using hierarchical
clustering, tSNE analysis, and a trained 1-layer neural network
(Figure 5) to predict different ALL subtypes using RNA-seq data. We
applied the molecular classifier to each of the 173 patients with ALL.
This allowed the classification of patients into 1 of the following 17
subtypes: HHD (n 5 36), ETV6-RUNX1 (n 5 29), TCF3-PBX1
(n 5 7), KMT2A-R (n 5 5), BCR-ABL1 (n 5 1), iAMP21 (n 5 1),
hypodiploid (n 5 1), Ph-like (n 5 15), ETV6-RUNX1-like (n 5 2),
DUX4-R (n 5 11), PAX5alt (n 5 11), PAX5 P80R (n 5 1),
ZNF384-R (n 5 4), NUTM1-R (n 5 1), MEF2D-R (n 5 1), B-Others
(n 5 10), and T-ALL (n 5 37) (Figure 1). Using transcriptional signa-
tures from RNA-seq data, it was possible to reclassify 42 of 52
B-others into novel molecular subtypes based on subtype-defining
alterations, leaving 10 patients (7%) as truly B-Others (supplemental
Figure 2).

Ph-like gene classifier by LDA card vs RNA-seq

The LDA card is a screening assay for patients with the Ph-like
kinase-activated gene signature33,34 used in the Children’s Oncol-
ogy Group (COG) and other North American consortia and is man-
datory for all patients with NCI HR B-ALL enrolled on the DFCI
16-001 protocol. RNA-seq analysts were blinded to the LDA
results, and results from both assays were compared for concor-
dance. Among 79 patients with both LDA and RNA-seq data for
the Ph-like gene signature prediction, the results were concordant in
74 (94%) of 79 patients. A total of 5 patients had discordant results
with a positive score by LDA and a negative score by RNA-seq for
the Ph-like gene signature for which 3 of 5 patients could represent
LDA’s false-positive patients. The first patient (#57) with a discor-
dant result was identified as hypodiploid subtype with a TP53

Table 1. (continued)

RNA-seq cohort DFCI 16-001 cohort

PN % Median (range) N % Median (range)

Final (n 5 402)

Low 46 28.8 117 48.3 ,.001

Intermediate 45 28.1 42 17.4

High 29 18.1 45 18.6

Very high 40 25.0 38 15.7

Complete remission (n 5 420)

Yes 161 97.6 252 98.8 .44

No 4 2.4 3 1.2

MRD

TP1 (n 5 404)

Low (,1024) 110 67.0 172 72.2 .27

High ($1024) 54 32.9 66 27.7

TP2 (n 5 140)

Low (,1023) 57 80.2 62 89.9 .16

High ($1023) 14 19.7 7 10.1

*Patients indicated as Hispanic are included here regardless of other races provided.
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mutation, whereas the other 2 discordant patients (#130 and
#156) were HHD patients without kinase-activating alterations by
RNA-seq. Low-hypodiploid and HHD ALL subtypes had distinct
expression signatures and are typically mutually exclusive with
Ph-like ALL.4 RNA-seq failed to identify 2 patients (#96 and #167)
with CRLF2 overexpression and P2RY8-CRLF2 fusions. Further-
more, we identified 3 Ph-like patients (5%) among 59 patients
with NCI SR B-ALL, which supports the clinical relevance of an
unbiased screening approach. Of importance, RNA-seq detected
targetable kinase-activating alterations in 11 (73%) of 15 patients
with Ph-like ALL.

Molecular classification of T-ALL

Among 37 patients with T-ALL, 25 gene fusions and 47 sequence
mutations were identified in 36. Twenty-four patients (67%) har-
bored gene fusions that could be subdivided into the following
categories: T-cell receptors and transcription factor oncogenes
(n 5 17), KMT2A-r (n 5 3), PICALM-MLLT10 (n 5 3), and ABL1-r
(n 5 1). Five of the 8 molecular subgroups previously reported in
T-ALL35 could be classified by the presence of fusions involving the
following genes: TAL1 (n 5 7), TLX1 (n 5 2), LYL1 (n 5 1), TLX3
(n 5 1), and HOXA (n 5 1). Mutations were identified in 7 of the
10 most frequently dysregulated functional pathways in T-ALL35:
NOTCH (n 5 16), JAK-STAT (n 5 5), Ras (n 5 4), epigenetic (n 5

4), PI3K-AKT (n 5 3), transcription (n 5 3), and cell cycle or tumor
suppression (n 5 2).

Determination of blood cell types

We used DeconRNASeq to estimate the proportions of both B-
and T-cell types by deconvoluting blood cell types using patients’
bulk expression data (Figure 6). Immunophenotype was concor-
dant between clinical conventional assessment and deconvoluted
cell analysis in 142 (82%) of 173 patients. Among the 31 discor-
dant cases, 16 (52%) were T-ALL, and 15 (48%) were B-ALL.
Among 170 samples with available blast percentages provided
by the clinical laboratory, 66 samples (39%) had more than 25%
discordance between the deconvoluted cell type proportions by
DeconRNASeq and the clinical blast count. Although all samples
had a clinical blast count .25%, 28 samples (16%) had ,25%
blast count estimated by DeconRNASeq, of which an alteration
was detected in 26 (93%) of 28 samples. RNA-seq did not
detect any alteration in 13 samples, of which 2 (15%) had a blast
count ,25% by DeconRNASeq.

Discussion

Our study demonstrated the feasibility and clinical utility of RNA-seq
as an integrative diagnostic assay in the molecular classification and
prognostic stratification of an unbiased cohort of de novo childhood
ALL. We analyzed whole-transcriptome data from 173 consecutive
childhood ALL patients and identified at least 1 genetic alteration in
91% of them that may carry diagnostic, prognostic, and/or thera-
peutic significance. There was a 100% concordance of gene fusion

Figure 1. Comprehensive heatmap of molecular profiling findings by RNA-seq of 173 patients with ALL enrolled on DFCI 16-001. RNA-seq data from 173

patients with ALL are summarized in this heatmap. Patients were classified on the basis of their respective clustering analysis subtype, gene fusions, and somatic mutations.

Specific gene fusions and mutational categories are indicated by colored squares and classified by associated gene signaling pathways. Mutation types included single

nucleotide variants, indels, and intragenic IKZF1 deletion (IK6). iAMP21, intrachromosomal amplification of chromosome 21; NA, not applicable; TCR-R, T cell receptor

rearrangement; VUS, variant of unknown significance.
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Figure 2. Timeline of the clinical implementation of RNA-seq from sample receipt to report delivery and factors contributing to timeline variation at each step.
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detection between RNA-seq and conventional cytogenetics. This
high concordance level might be explained by the deep coverage
and the accurate fusion calls enabled by the combination of 3 pre-
dicting algorithms (FusionCatcher, STAR-Fusion, Arriba). Although
RNA-seq was not used for DFCI-defined risk-stratifying criteria,
RNA-seq enabled the identification of 56 clinically relevant gene
fusions not detected by conventional cytogenetics, and it accurately
identified novel molecular subtypes with prognostic and/or therapeu-
tic significance, especially Ph-like ALL, thus reducing the proportion
of the B-Others subgroup by conventional cytogenetics from 39%
to 7%. In addition to fusion transcripts and gene expression profiles,
RNA-seq also identified clinically relevant mutations in more than
half the patients in our cohort. We further showed that centralized

RNA-seq was feasible within a prospective multi-institutional trial;
results were returned within a mean of 36 days from sample receipt.
It is worth mentioning that samples were batched at different steps
from sample shipping to report delivery, which accounts for the
wide range in the timeline that could be significantly shortened by
direct sample processing and sequencing. Indeed, the minimal time
required to complete the final report from sample receipt was 15
days for samples analyzed within the 2019 to 2021 study period.

Because subtype-defining chromosomal alterations in ALL are het-
erogeneous and/or cryptic with conventional karyotype analysis,
RNA-seq offers an integrated platform to provide leukemic gene
expression signatures, known and novel chromosomal rearrange-
ments, and sequence mutations, each of which greatly contributes
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to ALL profiling and refining risk stratification. For instance, several
groups, including ours, are currently using IKZF1 deletions for risk
stratification and treatment intensification.36,37 Nevertheless, IKZF1
alterations are enriched in Ph1 ALL and Ph-like ALL which are asso-
ciated with an unfavorable outcome. But they are also prevalent in
DUX4-R and ETV6-RUNX1-like ALL which confer a favorable prog-
nosis.21 Therefore, RNA-seq provides a global genomic landscape
for each patient rather than a single alteration that may not allow for
accurate molecular classification and risk stratification. RNA-seq
allows for ongoing discovery of novel gene fusions, especially
among the Ph-like ALL subtype, which is characterized by a
heterogeneous spectrum of kinase fusions.27 In our cohort, we iden-
tified the ZBTB44-JAK2 fusion, which has not been reported
thus far. ZBTB44 is a member of the zinc finger and BTB/POZ
domain–containing protein (ZBTB) family that is involved in both
normal and malignant hematopoiesis.38 A similar ZBTB44 fusion
with the kinase FLT3 was previously found in a 64-year-old man
with unclassified myeloproliferative neoplasms and hypereosino-
philia.39 Other members of the ZBTB family were reported as 59

partners of JAK2 fusions in ALL (eg, ZBTB20-JAK2 and ZBTB46-
JAK2).40,41 To date, more than 20 different partner genes have
been identified with JAK2 fusions in Ph-like ALL; all JAK2 fusions
conserved an intact kinase domain and conferred constitutive JAK2
kinase activation.41

Another advantage of RNA-seq that we demonstrated is the ability
to identify clonal mutations at diagnosis that may carry prognostic
and therapeutic impact. For example, RAS-MAPK pathway muta-
tions and mutations in genes involved in drug metabolism, which
are often enriched in relapsed ALL, were identified at diagnosis in
our cohort. We and others have shown that patients with HHD ALL
with clonal RAS or CREBBP mutations at diagnosis had a worse
outcome compared with their counterparts without clonal RAS or
CREBBP mutations.42 Therefore, early detection of these variants
at diagnosis could further refine risk stratification in HHD which is
usually associated with favorable prognosis but still contributes to a
significant proportion of relapses in the current treatment era.
Regarding T-ALL, those harboring PI3K pathway mutations had an
inferior prognosis as previously reported by our group43 and
others.44,45 Furthermore, RNA-seq identified several dysregulated
signaling pathways in T-ALL that may represent novel therapeutic
targets for a patient population in whom treatment of primary refrac-
tory and recurrent disease remains suboptimal. Several signal trans-
duction inhibitors targeting JAK-STAT,46 Ras-MAPK,47 or PI3K-AKT-
mTOR48,49 pathways have been investigated in preclinical models
and early-phase trials. Despite the initial failure of gamma-secretase
inhibitors (GSIs) in treating NOTCH1-activated tumors because of
insufficient efficacy and excessive gastrointestinal toxicity, ongoing
efforts are underway to target NOTCH because it is the most fre-
quently mutated pathway in T-ALL. For example, the combination of
corticosteroids and GSIs for mitigating gastrointestinal toxicity and
enhancing antitumor activity are being evaluated in clinical trials in
addition to newer, more selective GSIs such as PSEN1 inhibitors50

or NOTCH1 monoclonal antibodies.51 Incorporating RNA-seq could
thus facilitate molecular-based risk stratification and precision medi-
cine opportunities for specific T-ALL subsets.

Although the comprehensive ALL profiling by RNA-seq enables the
identification of novel molecular subtypes, Ph-like ALL is currently
the most important clinically relevant subtype that cannot be easily
identified by conventional cytogenetic techniques. The primary

strategy currently used by the COG for Ph-like ALL screening is the
LDA card.33 We have demonstrated the high concordance of the
LDA assay and RNA-seq to accurately identify patients with a
Ph-like gene expression profile. However, RNA-seq offers a greater
advantage than the LDA card itself because RNA-seq simulta-
neously detected the underlying kinase-activation alteration that may
be therapeutically targetable in 11 (73%) of 15 of patients with
Ph-like ALL. Furthermore, 3 NCI patients with Ph-like ALL in our
cohort had SR B-ALL, which would further support Ph-like ALL
screening in patients with either NCI SR or HR ALL.

In this study, we pilot the use of a deconvolution tool (DeconRNA-
Seq) into our RNA-seq pipelines to determine different cell-type pop-
ulations, which may serve multiple functions. First, the tool evaluates
the true blast content of the sequenced sample, because the bone
marrow sample received for molecular sequencing often had a differ-
ent blast percentage than what had been determined in the clinic as
a result of consecutive bone marrow aspirations (eg, first aspirate vs
subsequent pull). Low blast content may fail to detect sequence
mutations by RNA-seq. Among 66 samples with either a 25% dis-
cordance rate in blast percentage or having ,25% of blasts evalu-
ated by DeconRNASeq, 61 samples (92%) still had an alteration
detected by RNA-seq, but only 27 (41%) were found to have a
sequence mutation. In the future, this tool could be optimized to fur-
ther determine which patients have mixed-phenotype acute leukemia,
an entity in which lineage plasticity may render the immunopheno-
typic interpretation difficult, or to assess the immune repertoire of
patients with ALL at specific time points during treatment.

As noted in other reports, RNA-seq is not optimal for assessing copy
number alterations.52 The assessment of IKZF1 deletions by RNA-
seq in our study is limited to the dominant-negative IKZF1 isoform.
The full spectrum of IKZF1 deletions may be complemented by other
diagnostic assays such as microarray comparative genomic hybridiza-
tion37 or the RHP, which is currently used in the DFCI 16-001 proto-
col.53 In addition, RNA-seq cannot detect the intragenic amplification
of PAX5, which is another alteration found within the PAX5alt sub-
type. This may explain the absence of PAX5 alterations in 4 of the
11 patients with PAX5alt predicted by RNA-seq. Other limitations of
RNA-seq include longer turnaround time and costs that are mutually
related; however, these limitations can be overcome over time as the
clinical algorithms become standardized, and NGS can replace some
of the more labor-intensive cytogenetic tests. Alternatively, we pro-
pose a tiered algorithm in which RNA-seq could be incorporated
after a restricted FISH panel of relatively frequent and prognostically
relevant fusions (ETV6-RUNX1, BCR-ABL1, TCF3, or KMT2A-r) to
rapidly exclude recurrent alterations associated with a favorable prog-
nosis and/or those that are mutually exclusive with subtypes that are
primarily detected by RNA-seq or other molecular techniques (Figure
7). By using this algorithm, we would exclude a third of our patient
cohort that required further genomic characterization and enrich our
cohort to identify those with subtype-defining alterations by RNA-seq.

In conclusion, RNA-seq is feasible in the context of a multicenter pro-
spective clinical trial within a clinically sensitive turnaround time. We
further identified several clinically relevant genetic alterations that were
not detected by conventional methods, which supports integrating
this technology into front-line trials for childhood ALL. The lessons
learned from this experience provided opportunities to optimize our
bioinformatic pipelines, standardize variant interpretation, and lay the
foundation for implementing RNA-seq in the clinic. With longer follow-
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up, future analysis will focus on describing the outcomes of our DFCI
16-001 patient cohort when stratified by RNA-seq–based molecular
subtypes to further determine the clinical value of RNA-seq.
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tr�eal, QC H3T 1C5, Canada; e-mail: daniel.sinnett@umontreal.ca.

References

1. Howlader N, Noone AM, Krapcho M, et al, eds. SEER Cancer Statistics Review, 1975-2010. National Cancer Institute Bethesda, MD, based on
November 2012 SEER data submission, posted to the SEER web site, April 2013. https://seer.cancer.gov/archive/csr/1975_2010/

2. Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med. 2015;373(16):1541-1552.

3. Mullighan CG. Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(4):314-324.

4. Mullighan CG. How advanced are we in targeting novel subtypes of ALL? Best Pract Res Clin Haematol. 2019;32(4):101095.

5. Tran TH, Hunger SP. The genomic landscape of pediatric acute lymphoblastic leukemia and precision medicine opportunities [published online
ahead of print 13 November 2020]. Semin Cancer Biol. doi: 10.1016/j.semcancer.2020.10.013.

6. Khater F, Vairy S, Langlois S, et al. Molecular profiling of hard-to-treat childhood and adolescent cancers. JAMA Netw Open. 2019;2(4):e192906.

7. Wong M, Mayoh C, Lau LMS, et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediat-
ric cancer. Nat Med. 2020;26(11):1742-1753.

8. Inaba H, Azzato EM, Mullighan CG. Integration of next-generation sequencing to treat acute lymphoblastic leukemia with targetable lesions: The St.
Jude Children’s Research Hospital approach. Front Pediatr. 2017;5:258.

9. Chang F, Lin F, Cao K, et al. Development and clinical validation of a large fusion gene panel for pediatric cancers. J Mol Diagn. 2019;21(5):873-883.

10. Ching T, Duncan ME, Newman-Eerkes T, et al. Analytical evaluation of the clonoSEQ Assay for establishing measurable (minimal) residual disease
in acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. BMC Cancer. 2020;20(1):612.

11. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.

12. 1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68-74.

13. Tate JG, Bamford S, Jubb HC, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47(D1):D941-D947.

14. Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc. 2016;11(1):1-9.

15. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249.
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