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Objective: HIV testing services (HTS) are a crucial component of national HIV
responses. Learning one’s HIV diagnosis is the entry point to accessing life-saving
antiretroviral treatment and care. Recognizing the critical role of HTS, the Joint United
Nations Programme on HIV/AIDS (UNAIDS) launched the 90-90-90 targets stipulating
that by 2020, 90% of people living with HIV know their status, 90% of those who know
their status receive antiretroviral therapy, and 90% of those on treatment have a
suppressed viral load. Countries will need to regularly monitor progress on these three
indicators. Estimating the proportion of people living with HIV who know their status
(i.e. the ‘first 90’), however, is difficult.

Methods: We developed a mathematical model (henceforth referred to as ‘Shiny90’)
that formally synthesizes population-based survey and HTS program data to estimate
HIV status awareness over time. The proposed model uses country-specific HIV
epidemic parameters from the standard UNAIDS Spectrum model to produce out-
puts that are consistent with other national HIV estimates. Shiny90 provides
estimates of HIV testing history, diagnosis rates, and knowledge of HIV status by
age and sex. We validate Shiny90 using both in-sample comparisons and out-of-
sample predictions using data from three countries: Côte d’Ivoire, Malawi, and
Mozambique.

Results: In-sample comparisons suggest that Shiny90 can accurately reproduce lon-
gitudinal sex-specific trends in HIV testing. Out-of-sample predictions of the fraction
of people living with HIV ever tested over a 4-to-6-year time horizon are also in
good agreement with empirical survey estimates. Importantly, out-of-sample pre-
dictions of HIV knowledge of status are consistent (i.e. within 4% points) with those
of the fully calibrated model in the three countries when HTS program data are
included. The model’s predictions of knowledge of status are higher than available
self-reported HIV awareness estimates, however, suggesting – in line with previous
studies – that these self-reports could be affected by nondisclosure of HIV status
awareness.
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ôte d’Ivoire, fNational AIDS Council, Maputo, Mozambique, and gDepartment of Infectious Disease
perial College London, St Mary’s Hospital, London, UK.

o Mathieu Maheu-Giroux, ScD, McGill University, Montr�eal, Canada.

aheu-giroux@mcgill.ca
ary 2019; revised: 20 May 2019; accepted: 19 September 2019.

.0000000000002386

yright Q 2019 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open-access article distributed under the
e Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and
ided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. S255

mailto:mathieu.maheu-giroux@mcgill.ca
http://dx.doi.org/10.1097/QAD.0000000000002386


S256 AIDS 2019, Vol 33 (Suppl 3)
Conclusion: Knowledge of HIV status is a key indicator to monitor progress, identify
bottlenecks, and target HIV responses. Shiny90 can help countries track progress
towards their ‘first 90’ by leveraging surveys of HIV testing behaviors and annual
HTS program data. Copyright � 2019 The Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction

HIV testing services (HTS) are the entry point for
diagnosis and access to life-saving antiretroviral therapy
(ART) [1]. Early diagnosis and initiation of ART have
been shown to drastically decrease viral load, which
reduces individual morbidity and mortality, and limits
onward HIV transmission [2]. HTS can also offer a
pathway for primary prevention interventions, including
programs that deliver pre-exposure prophylaxis, volun-
tary medical male circumcision, and prevention of
mother-to-child transmission.

Recognizing the critical role of HTS in a country’s national
response, the Joint United Nations Programme on HIV/
AIDS (UNAIDS) launched in 2014 the 90-90-90 targets
stipulating that by 2020, 90% of people living with HIV
(PLHIV) know their status, 90% of PLHIV who know
their status receive ART, and 90% of those on treatment
have a suppressed viral load [3–5]. To reach those targets,
countries need to monitor progress on these three
indicators, identify bottlenecks, and implement or adapt
targeted testing and treatment services in a timely
manner.

As of 2017, UNAIDS estimates that the biggest
bottleneck globally in achieving the 90-90-90 targets is
access to HIV testing, with about 25% of PLHIV not
knowing their HIV status [6]. Estimating the proportion
of PLHIV who know their status (i.e. the ‘first 90’),
however, is difficult. For countries with robust and
comprehensive HIV case surveillance systems, the
proportion of diagnosed PLHIV can be estimated by
triangulating HIV incidence and mortality with the
cumulative number of new HIV diagnoses annually.
In sub-Saharan Africa (SSA), where more than two-thirds
of PLHIV reside [7], surveillance systems are not yet
sufficiently developed. Many countries estimate the
proportion of PLHIV who know their status primarily
from nationally representative household surveys.

Most Demographic and Health Surveys (DHS) and AIDS
Indicator Surveys (AIS) in SSA include HIV serology,
with respondents self-reporting whether they have ever
been tested for HIV, but are rarely being asked directly if
they are aware of their HIV status. The proportion of
HIV-positive respondents who report ever having been
tested for HIV serves as an upper bound for the level of
HIVawareness, because the last HIV test might have been
HIV-negative (i.e. occurring before the person serocon-
verted). In recent years, Population-based HIV Impact
Assessment (PHIA) surveys and a few other surveys
conducted in SSA countries have collected information
on both HIV seroprevalence and self-reported awareness
status. These data have been used directly to estimate the
‘first 90’ [8,9]. However, comparison of self-reported
awareness of HIV status with biomarker measurements of
antiretroviral usage and viral load suppression reveals
sometimes substantial nondisclosure of awareness of HIV
status for persons who are on ART [9,10].

The infrequency of large population-based seropreva-
lence surveys, which are typically conducted every
5 years, also hampers regular monitoring of HIV
awareness [11]. UNAIDS has previously estimated the
change in knowledge of status over time in countries with
survey data by applying additional increases in knowledge
of status proportional to the scale-up in ART coverage
between the current reporting year and the year of the last
survey [12]. However, there is a need to better estimate
progress towards the ‘first 90’ in relation to changes in
ART coverage and HTS program efforts [13]. For
example, the relationship between ART coverage and
knowledge of status has likely changed as a function of
eligibility for treatment initiation. Further, program-
matic data of the numbers of people tested and those
testing HIV-positive could help inform changes in
testing levels.

To address these challenges, we developed a mathematical
model – henceforth referred to as ‘‘Shiny90’’ – that
formally synthesizes population-based surveys and HTS
program data within a Bayesian framework to annually
estimate knowledge of status among people (�15 years) in
SSA. Shiny90 estimates HIV testing and diagnosis rates
over time by age, sex, and previous HIV testing history, to
generate estimates of the ‘first 90’ and other indicators of
interest such as positivity among HIV testers and yield of
new HIV diagnoses. Key features of this new model are
the following:
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(1) S
hiny90 takes as inputs – and therefore is fully consistent

with – national modeled estimates of HIV prevalence,

incidence, mortality, and ART coverage derived using

the UNAIDS-supported Spectrum modeling software.
(2) u
ses data about self-reported HIV testing history from

surveys that both include and do not include HIV

serology.
(3) in
corporates programmatic data on the annual numbers

of HIV tests administered (testing volume) and number

of positive HIV tests (positivity), where available.
Methods

Modeling framework
HIV testing uptake is dynamically modeled using a
deterministic framework based on a system of ordinary
differential equations adapted from a well-established
South African model [14]. Shiny90 stratifies a country/
region’s population by HIV testing history and,
additionally among PLHIV, by knowledge of HIV status
and ART status. This results in the following six main
stages: HIV-susceptible who have never been tested;
HIV-susceptible ever tested; PLHIV who have never
been tested; PLHIV unaware who have ever been tested;
PLHIV aware (untreated); and PLHIV on ART. A
schematic of the compartmental flows between these
different stages is presented in Fig. 1.

Individuals enter the population at age 15 years and are
assumed to have never been tested for HIV (unless already
living with HIV and on ART). Shiny90 has been
developed to use as inputs annual estimates of HIV
incidence, mortality, and ART coverage produced by
countries and published annually by UNAIDS [15]. At
the core of this estimation process is Spectrum’s AIDS
Impact Module and its Estimation and Projection
Package (EPP) [16]. The Spectrum model, its assump-
tions, data requirements, and software are described in
detail elsewhere [17]. Importantly for the new Shiny90
model, Spectrum produces epidemic statistics stratified by
age and sex, CD4þ cell count category, and ART status.

The transition rates between HIV-susceptible individuals
and PLHIVare informed by point estimates of the sex and
age-specific incidence rates estimated by Spectrum/EPP,
and also the transition rates from the three PLHIV
untreated stages to the PLHIVon ARTone (and the ART
discontinuation rate) [17]. Spectrum/EPP also informs
demographic rates and HIV disease progression and
mortality [17]. Shiny90 is used to estimate all HIV testing
rates, as further described in the next sections.

Model specification for HIV testing
The per capita rate tkius(t) at which individuals are tested
for HIV varies by calendar time (t), sex (k), age (i), HIV
testing history and awareness status (u), and, for PLHIV,
CD4þ cell count (s). Specifically, it takes the following
form:

tkius tð Þ ¼ b tð ÞMk tð ÞAkiFu tð Þ þ rk tð ÞOls

Here, b(t) is the testing rate for the referent group of
women in the 15–24-year age category for calendar year
t, which is assumed to be negligible in SSA before 1995
(see Text S1 for full details, http://links.lww.com/QAD/
B543). From 2000 onwards, b(t) is modeled as a first-order
random walk with annual time steps. Mk(t) represents the
HIV testing rate ratio for men (k¼ 1) aged 15–24 years
relative to women aged 15–24 at time t (equal to one for
this referent group). We allow changes in this ratio from
2005 and 2010 to account for potential scaling up of
prevention of mother-to-child transmission programs in
SSA countries [18,19], which could have influenced sex
differences in HIV testing uptake. The term Aki contains
the age and sex-specific HIV testing rate ratios for ages
15–24 (i¼ 1), 25–34 (i¼ 2), 34–49 (i¼ 3), and 50þ
(i¼ 4) age groups, which are assumed to be time-
invariant [8,14,20,21].

The term Fu tð Þ allows potential differences in HIV
testing rates according to prior HIV testing history and
HIV status between HIV-susceptible who have never
been tested (u¼ 1), HIV-susceptible previously tested
(u¼ 2), PLHIV who have never been tested (u¼ 3),
PLHIV unaware who have ever been tested (u¼ 4),
PLHIV aware not on treatment (u¼ 5), and PLHIV on
ART (u¼ 6), as displayed in Fig. 1 and further described
below.

Fu tð Þ ¼

1:00; if u ¼ 1

RRtest tð Þ; if u ¼ 2

RRunaware; if u ¼ 3

RRtest tð Þ � RRunaware; if u ¼ 4

RRaware tð Þ; if u ¼ 5

RRart; if u ¼ 6

8>>>>>><
>>>>>>:

In many SSA countries, a substantial fraction of the
population is tested every year, but the proportion of
people reporting having ever been tested remains lower
than what would be expected if everyone in the
population had tested at an equal rate. Empirical
evidence also suggests that rates of HIV testing are
higher among people who have previously been tested
for HIV [22–26]. The RRtest tð Þ rate ratio is introduced
to take this potentially higher re-testing rate into
account. PLHIV who are unaware of their status could
also test at higher or lower rates than individuals who are
HIV-susceptible. Hence, potential differential testing
rates in this group are accounted for with the RRunaware

rate ratio. Further, the number of positive tests is often
very large, such that the cumulative number of positive

http://links.lww.com/QAD/B543
http://links.lww.com/QAD/B543
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Fig. 1. Intercompartmental flow describing HIV testing uptake as a function of HIV status (susceptible versus living with
HIV), testing history (never versus ever tested), HIV awareness status, and antiretroviral treatment (ART) status. All
parameters related to HIV testing tkist are estimated by the model. Other rates, such as HIV incidence, and ART recruitment
(adjusted for ART discontinuation), are informed by Spectrum/EPP, and also demographic parameters governing entry in the
model at 15 years of age and both natural and HIV-related mortality (not depicted on the figure for ease of visual
interpretation).
HIV tests reported by HTS programs substantially
outstrips the number of PLHIV who could have been
newly diagnosed. This points to a non-negligible
fraction of PLHIV aware of their status and PLHIV
receiving ART that may also be re-tested for HIV each
year [27,28]. For example, in many countries (e.g. Côte
d’Ivoire [29]; Mozambique, F. Mbofana, pers. comm.;
Senegal [30]; Sierra Leone [31]; Uganda [32]), the
annual numbers of positive tests reported can represent
up to 25–30% of the whole estimated PLHIV
population, which is inconsistent with survey data on
the proportion of PLHIV ever tested. To reproduce the
number of positive tests, and in line with empirical
evidence, we allowed re-testing of diagnosed PLHIV
using the time-varying RRaware tð Þ rate ratio. Finally,
PLHIV on treatment could also be re-tested for HIV,
albeit at lower rate, through the RRart rate ratio. The
main studies informing differential testing rates are
summarized in supplementary material (Tables S1–S2,
http://links.lww.com/QAD/B543).
Lastly, we consider that HTS uptake will depend on the
proportion of untreated PLHIV experiencing HIV/
AIDS-related symptoms who are not on ART. OIs is the
time-invariant incidence of opportunistic infection by
CD4þ cell count category s [33,34] (as tracked in
Spectrum) and rk(t) is the sex-specific proportion of
these infections that are tested for HIVat time t (see Text
S1 for full details on the model; http://links.lww.com/
QAD/B543).

Data sources, likelihood function, and model
calibration
Two main data sources are used for model calibration:
household survey data about the proportion of adults
who self-report having ever been tested for HIV; and
HTS program data about the total number of HIV
tests conducted each year and number of HIV-positive
tests. For national surveys, we used the proportion of
respondents reporting having ‘ever been tested and
received the result of the last HIV test’, stratified by sex,

http://links.lww.com/QAD/B543
http://links.lww.com/QAD/B543
http://links.lww.com/QAD/B543
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age (15–24, 25–34, and 35–49 years), and, if
available, HIV serostatus from nationally representa-
tive household surveys, including DHS, AIS, Multiple
Indicator Cluster Surveys (MICS), PHIA surveys, and
relevant country-specific surveys (e.g. South African
National HIV Prevalence, Incidence, Behavior and
Communication Survey; Kenya AIDS Indicator
Survey). For surveys that do not include HIV
serostatus (e.g. some MICS and DHS), data on ever
testing by age and sex, irrespective of HIV status, are
used in model calibrations. We assume that self-reports
of ‘ever having been tested and receiving the result of the
last HIV test’ are unbiased estimates of HIV testing
history.

For HTS program data, Shiny90 can also be calibrated to
the annual number of HIV tests performed in the
population (�15 years) and, if available, the number of
positive tests (�15 years; stratified by sex or overall). Such
data may be useful to inform testing trends after the last
population-based survey has been performed. Details
of the likelihood specification can be found in the
supplemental material (Text S2).

Notably, we purposely excluded two commonly refer-
enced data types from surveys as potential inputs into
Shiny90. First, information on HIV testing in the past
year is not used in model calibration due to evidence that
this likely overstates the true annual testing rate [14,35],
perhaps due to ‘telescoping bias’ in which respondents
may inadvertently recall testing that occurred beyond the
last 12 months [36] (see supplemental materials, Text S3).
Second, information on self-reported awareness of HIV-
positive status, even when partially adjusted for detection
of ART among PLHIV who report not knowing their
status, is not incorporated due to evidence of systematic
nondisclosure of knowledge of status [9,10,37–44]. In
particular, nondisclosure of HIV status was found to be
1.4 times higher among individuals not on ART in
Mozambique [38] compared to those on ART. This
implies that adjustments for presence of ART metabolites
may be insufficient, especially when ART coverage
is low.

Model parameters were estimated using a Bayesian
framework. To constrain the parameters space to plausible
values in data-limited settings, we elicited prior
distributions following a review of the literature (Tables
S1–S2, http://links.lww.com/QAD/B543; prior distri-
butions are described in Text S1). Posterior modes of
model parameters were obtained via nonlinear optimi-
zation using the Broyden-Fletcher-Goldfarb-Shanno
algorithm [45]. The joint posterior distribution was
estimated using a Laplace approximation [46,47] and 95%
credible intervals (CrIs) for quantities of interest were
obtained by sampling 3000 parameter sets from this
approximated joint posterior distribution. The posterior
distributions of relevant outputs were summarized using
their median, and 2.5th and 97.5th percentiles. This
calibration method was chosen for its computational
efficiency. Table S3 (http://links.lww.com/QAD/B543)
presents comparisons of summary statistics of the
posterior distributions of selected model outputs using
the Laplace approximation, Sampling Importance
Resampling (SIR), and the Incremental Mixture
Importance Sampling (IMIS) [48] algorithms. These
suggest good performance of the Laplace approximation
in our settings.

All analyses were conducted in the R statistical software
[49]. The system of ordinary differential equations was
solved using a Euler algorithm with a time step of 0.1
years. All functions are available for download from a
Github repository (https://github.com/mrc-ide/first90-
release).

Model outputs (estimates)
Shiny90 generates outputs for comparisons to input data
and several indicators of interest. It estimates the total
number of HIV tests (negatives and positives), tests among
first-time testers, positivity (the percentage of positive
tests among all tests), yield (the percentage of new
HIV diagnoses among all tests), the proportion of the
population ever tested for HIV, the proportion of PLHIV
who know their HIV status, and other indicators (Table S4,
http://links.lww.com/QAD/B543).

Model validation
There are few empirical estimates of knowledge of status
among PLHIV, and, as described earlier, these self-
reported estimates are likely to reflect substantial under-
reporting of HIV awareness [9,10,37–44]. We therefore
validated Shiny90 by performing both in-sample
comparisons (A) and out-of-sample predictions (B and
C) of the proportion of the population ever tested for
HIV (stratified by sex and HIV status). We focused our
analyses on three countries with multiple surveys and
availability of HTS program data: Côte d’Ivoire, Malawi,
and Mozambique. For the out-of-sample predictions, we
first excluded all surveys conducted after 2012 and all
HTS program data after the last available pre-2012 survey
(B). This was performed to examine the model’s ability
to predict testing histories over a time horizon of
approximately 5 years (the time interval often observed
between two population-based surveys). We then re-
calibrated the model, this time incorporating the post-
2012 HTS program data. To appreciate the added value of
the HTS program data sources, we re-calibrated our
model both on the sex-combined (C1) and sex-
disaggregated HTS data (C2). In the case of Mozambi-
que, available HTS program data were not stratified by sex
and we instead used the fully calibrated model (A) to
predict sex-stratified HTS program data (2009–2017)
which was then used for the out-of-sample validation
(C2). The data sources used for model calibration are
presented in Table 1.

http://links.lww.com/QAD/B543
http://links.lww.com/QAD/B543
https://github.com/mrc-ide/first90release
https://github.com/mrc-ide/first90release
http://links.lww.com/QAD/B543
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Table 1. List of surveys of with information on the proportion of respondents having ever been tested for HIV (2000–2017) and HIV testing
services program data used to calibrate Shiny90 in Côte d’Ivoire, Malawi, and Mozambique.

Data types Côte d’Ivoire Malawi Mozambique

Surveys MICS 2000a (women only) DHS 2004 DHS 2003
AIS 2005 MICS 2006a (women only) MICS 2008M (women only)
DHS 2012 DHS 2010 AIS 2009
MICS 2016a (E) MICS 2014a (E) DHS 2011M
PHIA 2017b (E) DHS 2015 (E) AIS 2015 (E)

PHIA 2016 (E)
HIV testing services

program data
Direction de l’information, de la

planification et de l’�evaluation
(total tests and number positives
for 2010–2017; sex-
disaggregated for 2014–2017)

Malawi Integrated HIV Program
Report (total tests and number
positives 2003–2017; sex-
disaggregated for 2013–2017c)

National HIV/AIDS Control
Program (F. Mbofana,
personal
communication). (2013–
2017; total tests and
number positives)

E: Indicates that the survey was excluded in the out-of-sample validation analyses. AIS, AIDS Indicator Survey; DHS, Demographic and Health
Survey; MICS, Multiple Indicator Cluster Survey; PHIA, Population-based HIV Impact Assessment.
aSurvey does not include serology and estimates of ‘ever tested for HIV’ cannot be stratified by HIV status.
bThe 2017 PHIA survey in Côte d’Ivoire has yet to be released in the public domain. Preliminary results from this survey were used in the model
calibration and validation but the relevant point estimates cannot be presented at this time.
cOnly the total number of sex-disaggregated tests is available and the number of positive tests is for both sex combined.
Ethics
All analyses were performed on anonymized and de-
identified data. Further, all DHS/AIS survey protocols
have been approved by the Internal Review Board of ICF
International in Calverton (USA) and by the relevant
country authorities for other surveys (MICS and PHIA).
Further information on the ethics approval can be found
in the individual country reports. Ethics approval for
secondary data analyses was obtained from McGill
University’s Faculty of Medicine Institutional Review
Board (A10-E72-17B).
Results

Description of survey data on HIV testing history
and HTS programs data
In each of the three countries, the survey data for the
proportion of the population reporting having ever
been tested for HIV and receiving the last test’s result
increased from under 15% at the beginning of the 2000
to 50% in Côte d’Ivoire (2016), 75% in Malawi (2016),
and 51% in Mozambique (2015) (Fig. 2). Women are
more likely to report having ever been tested than men.
As for age, the highest proportions of participants
reporting a history of HIV testing is consistently found
in the 25–34-year-old age group in all three countries.
Testing among PLHIV is higher than in the general
population, with survey estimates indicating that 68%
and 93% of PLHIV in Malawi (in 2016) and
Mozambique (in 2015), respectively, report a history
of HIV testing (Fig. 2).

The HTS program data suggest that a substantial number
of HIV tests are administered annually. For example, the
reported maximum annual number of tests performed
corresponds to 21% of the population aged 15–49 years
old in Côte d’Ivoire, 49% in Malawi, and 59% in
Mozambique (Fig. 2). Concomitant with important
increases in total testing volume, the number of positive
tests has decreased in all three countries, resulting in
downward trends in positivity rates. In addition, the
number of positive tests reported in HTS program data
suggests that a substantial fraction of diagnosed PLHIV
could be re-tested every year. For example, the volume of
positive tests corresponds to the equivalent of up to 30%
of the total PLHIV population aged 15–49 years in Côte
d’Ivoire, 29% in Malawi, and 31% in Mozambique. If
these were all new diagnoses, we would expect that close
to all PLHIV should be aware of their status within a
few years.

In-sample comparisons: calibration on all available
survey and HTS program data (A)
The calibrated Shiny90 models for Côte d’Ivoire,
Malawi, and Mozambique can accurately reproduce
annual HTS program data both for the total number
of HIV tests performed and the number of positive
tests (Fig. 2). In addition, the model adequately reflects
sex-specific survey estimates of the proportion of
respondents ever tested for HIV. In 2017, these were
estimated by Shiny90 to be 33%, 71%, and 42% among
men in Côte d’Ivoire, Malawi, and Mozambique,
respectively. Testing was notably higher among women,
with 53% (Côte d’Ivoire), 86% (Malawi), and 69%
(Mozambique) of women reporting having ever been
tested for HIV. Overall, for 2017, average testing
rates were estimated to be 0.17 per year in Côte d’Ivoire,
0.21 per year in Malawi, and 0.52 per year in
Mozambique.

Shiny90 is also able to replicate longitudinal trends in the
proportion of PLHIV ever tested. It estimates that 66%,
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Fig. 2. Comparison of calibrated Shiny90 model fits with programmatic and survey data for Côte d’Ivoire (first column),
Malawi (second column), and Mozambique (third column) over 2000–2017. The shaded areas on all graphs correspond to
the 95% credible intervals of the posterior estimates, with the lines corresponding to the median. Black dots on the first and
second row of graphs correspond to the reported HIV testing services program data for the overall number of tests (top row)
and number of positive tests (second row; see Table 1 for details). The points on the third and fourth rows of graphs are the
survey estimates of the proportion ever tested among women (squares) and men (circles) among the overall population (third
row) and people living with HIV (PLHIV; bottom row). The lines crossing the points are the 95% confidence intervals of the
survey estimates.
95%, and 76% of PLHIV in Côte d’Ivoire, Malawi, and
Mozambique, respectively, have ever been tested for HIV
in 2017. In turn, knowledge of HIV status is estimated by
Shiny90 at 58% in Côte d’Ivoire, 84% in Malawi, and
72% in Mozambique. These numbers are within the
range of values obtained from the previous UNAIDS
methodology for 2017 in Côte d’Ivoire (54%; uncertainty
range 38–75%) and Malawi (90%; 84 to >95%), but
the previous estimate was lower in Mozambique (59%;
49–70%) [6].
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Table 2. Comparisons of empirical survey estimates of the proportion of individuals aged 15–49 years ever tested for HIV (by sex and HIV status)
and self-reported awareness status among PLHIV with Shiny90 model predictions from (a) the fully calibrated model and from out-of-sample
predictions that (b) excluded all post-2012 survey and HIV testing services (HTS) program data, (c1) excluded all post-2012 survey data (included
sex-combined HTS program data), and (c2) excluded all post-2012 survey data, but included sex-disaggregated HTS data.

Comparisons Predictions (95% CrI)

Country/outcome
Survey

and year

Survey
estimates
(95% CI)

(a) Full data
calibration

(b) Excluding
survey and
HTS data

(c1) Excluding
survey data

only (HTS data
sex-combined)

(c2) Excluding
survey data

only (HTS data
sex-disaggregated)

Côte d’Ivoire
Women ever tested MICS 2016 56% (54–58%) 52% (51–53%) 51% (43–65%) 53% (49–58%) 53% (51–55%)
Men ever tested MICS 2016 35% (32–37%) 32% (30–33%) 35% (28–46%) 36% (31–41%) 29% (28–31%)
WLHIV ever tested PHIA 2017 NPD 74% (70–77%) 72% (64–83%) 74% (69–79%) 74% (73–76%)
MLHIV ever tested PHIA 2017 NPD 49% (46–52%) 52% (44–66%) 54% (48–61%) 47% (45–49%)
PLHIV aware (’first 90’) PHIA 2017 37%a 58% (53–61%) 56% (47–70%) 59% (53–64%) 57% (55–58%)

Malawi
Women ever tested PHIA 2016 83% (82–84%) 82% (81–83%) 88% (77–96%) 91% (90–92%) 89% (87–90%)
Men ever tested PHIA 2016 66% (65–68%) 67% (66–68%) 61% (51–76%) 64% (60–68%) 68% (66–70%)
WLHIV ever tested PHIA 2016 96% (94–97%) 95% (94–96%) 98% (93–100%) 98% (98–99%) 98% (97–98%)
MLHIV ever tested PHIA 2016 89% (86–92%) 88% (87–89%) 86% (79–93%) 87% (84–89%) 90% (88–91%)
PLHIV aware (’first 90’) PHIA 2016 76% (73–78%) 81% (79–82%) 81% (73–89%) 83% (82–85%) 84% (82–85%)

Mozambique
Women ever tested AIS 2015 60% (57–63%) 62% (61–64%) 56% (48–67%) 70% (64–77%) 65% (62–68%)
Men ever tested AIS 2015 38% (35–41%) 36% (35–38%) 28% (24–37%) 38% (32–46%) 38% (36–40%)
WLHIV ever tested AIS 2015 73% (68–77%) 77% (75–79%) 74% (67–83%) 84% (78–89%) 80% (76–83%)
MLHIV ever tested AIS 2015 56% (51–62%) 55% (51–57%) 48% (42–56%) 57% (50–64%) 57% (53–60%)
PLHIV aware (’first 90’) AIS 2015 40% (37–44%) 63% (60–65%) 52% (44–63%) 68% (61–72%) 66% (61–69%)

95% CrI, 95% credible interval; 95% CI, 95% confidence interval; HTS, HIV testing services; MICS, multiple indicators cluster survey; MLHIV, men
living with HIV; NA, not available; NPD, not in public domain (but included in the calibration); PHIA, population-based HIV impact assessment;
WLHIV, women living with HIV.
aAge group is 15–64 years and estimate is not adjusted for presence of antiretroviral metabolites.
Shiny90 also suggests important differences in knowledge
of status by sex, with higher proportions of women being
aware of their status than men. Knowledge of HIV status
is greatest in older age groups in all three countries. It
increases from 41% among 15–24-year-olds to 65%
among 35–49-years-olds in Côte d’Ivoire, from 69%
(15–24 years) to 89% (35–49 years) in Malawi, and from
57% (15–24 years) to 74% (35–49 years) in Mozambique
for the year 2017. Consistent with previous literature
suggesting nondisclosure of awareness of HIV status, the
proportions of PLHIVaware of their status are higher than
survey estimates of self-reported awareness, when these
are available (Table 2 and Fig. 3). In Malawi, estimates of
knowledge of status are generally between estimates of
ART coverage and PLHIV ever tested. In Côte d’Ivoire
and Mozambique, the ‘first 90’ is closer to the proportion
of PLHIV ever tested because survey and HTS program
data suggest high rates of re-testing. For example, the rate
ratios for re-testing were estimated to be 3.7 (95% CrI
3.2–4.3) in Côte d’Ivoire and 7.2 (95% CrI 6.4–7.7) in
Mozambique, as compared to 1.2 (95% CrI 1.1–1.4) in
Malawi. Posterior estimates for the main model para-
meters are reported in supplemental materials (Table S5,
http://links.lww.com/QAD/B543).

Out-of-sample predictions: removing both recent
survey and HTS program data (B)
When excluding all data from surveys conducted after
2012 and HTS program data after the last survey,
Shiny90’s predictions underestimate by 6% points the
2016 survey estimate of the proportion of the
population ever tested for HIV in Côte d’Ivoire
(susceptible and PLHIV combined). In Malawi, the
model’s out-of-sample predictions for 2016 are
higher than the survey estimates among women by
5% points and underestimate the same proportion
among men by 5% points, but both are included
within the predicted uncertainty intervals (Table 2 and
Fig. 4). Finally, in Mozambique, the proportion of
women ever tested is overestimated by 4% in 2015,
but, for men, the underestimation is 10% points for
that same year.

Estimates of ever testing among PLHIV are, arguably,
a more relevant outcome to the ‘first 90’ than
corresponding estimates among the overall population.
For PLHIV, out-of-sample predictions are quite accurate,
even over a full 5-year time horizon for the three
countries (Fig. 4). In Côte d’Ivoire, the difference
between the 2017 model prediction of the fraction of
PLHIVever tested and the empirical estimates is less than
3% points (for both sexes combined; empirical estimates
from the Côte d’Ivoire PHIA are not yet in public domain
and are not shown). A similar pattern is observed for
Malawi with differences of less than 1 and 3% points
between predictions and empirical estimates for women
and men, respectively. In Mozambique, there are
differences of 4 and 10% points of the proportion ever

http://links.lww.com/QAD/B543
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Fig. 3. Comparisons of calibrated Shiny90 model fits with survey data on proportion of people living with HIV (PLHIV) aged 15–
49 years ever tested, model-predicted proportion of PLHIV aware of their status (’first 90’), and survey estimates of awareness
status and Spectrum/EPP’s antiretroviral therapy (ART) coverage estimates. The shaded areas correspond to the 95% credible
intervals of the posterior estimates. Estimates used for cross-validation are shown as empty symbols. (The self-reported estimate of
awareness in Côte d’Ivoire corresponds to the 15–64-year age group.).
tested among men and women, respectively. As for the
proportion of PLHIV aware of their status in 2017,
the out-of-sample predictions are within 2% points
of the ones obtained using full data calibration in
Côte d’Ivoire and Malawi. In Mozambique, the
difference is 13% points, but the uncertainty intervals
are very wide and include the estimate from the full
data calibration.
Fig. 4. Out-of-sample predictions (solid lines) of models calibrate
data, for Côte d’Ivoire, Malawi, and Mozambique, and model pr
predictions from the fully calibrated models. The vertical lines indi
fitting (to the right of the lines are the predictions). The shaded ar
estimates. Points represent the survey estimates (Table 1) and em
included in the likelihood but are shown for cross-validation purpos
the 95% confidence intervals of the survey estimates. PLHIV, peo
Out-of-sample predictions: added value of HTS
program data (C)
Adding the post-2012 HTS program data (sex-combined;
C1) yields mixed results with respect to improving
estimates (Fig. 5, a). It adds little to the already accurate
predictions in Côte d’Ivoire. In Malawi, however,
it improves estimates for women but magnifies the
underestimation in men (Table 2, Fig. 5). For
d to survey data from 2000 to 2012, excluding all program
edictions for the 2013–2017 period. Dashed lines represent
cate the date of the last survey data estimates included in the
eas correspond to the 95% credible intervals of the posterior
pty symbols indicate that these survey outcomes were not
es. The vertical solid lines crossing these points correspond to
ple living with HIV.
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Mozambique, HTS program data increase the accuracy of
predictions for men, but result in overestimating the
proportion of women ever tested. Predictions of
knowledge of HIV status are nevertheless within 4%
points of the ones obtained using the full data calibration,
and have overlapping uncertainty intervals (Table 2).

On the contrary, the sex-disaggregated HTS program
data (C2) generally increase the accuracy of the
predictions, in both the overall population and among
PLHIV (Fig. 5, b). In all countries, the model’s
predictions for the proportion of the population ever
tested for HIV were 6% or less points different from the
predictions obtained using the full data calibration
(Table 2). Among PLHIV, all predictions had overlapping
uncertainty intervals with those of the empirical survey
estimates, and differences were always less than 7% points.
Predictions of the proportion of PLHIV aware of their
status were also in very good agreement with those of the
full data calibration, with differences of 3% points or less
in all three countries.
Discussion

Knowledge of HIV status is a key indicator to monitor
progress, identify bottlenecks, and ultimately implement
effective HIV responses. In this study, we describe a new
model that combines survey and HTS program data to
estimate the ‘first 90’ in SSA. We validated Shiny90
through in-sample comparisons, and our results demon-
strate that it can accurately reproduce longitudinal sex-
specific trends in HIV testing among the overall
population, and, more importantly, among PLHIV.
Out-of-sample predictions of the fraction of individuals
ever tested over a 4-to-6-year time horizon are also in
good agreement with empirical survey estimates for
PLHIV. When recent population-based surveys are not
available, the accuracy of Shiny90’s predictions for the
proportion of the population ever tested for HIV is
improved by the addition of sex-disaggregated HTS
program data. Importantly, our out-of-sample validations
provided estimates of the fraction of PLHIVaware of their
status that are consistent with the ones obtained using full
data calibration and their uncertainty intervals overlap.

We compared our results to empirical estimates of
knowledge of status among PLHIV. As expected,
Shiny90’s predictions are higher than self-reported
awareness status – even if adjusted for presence of
antiretroviral metabolites. For example, our model-based
estimates of knowledge of HIV status are 58% (95% CrI
53–61%) in Côte d’Ivoire, 81% (95% CrI 79–82%) in
Malawi, and 63% (95% CrI 60–65%) in Mozambique,
compared to 37% (not antiretroviral metabolites-
adjusted), 76% (antiretroviral metabolites-adjusted), and
40% (antiretroviral metabolites-adjusted) of PLHIV who
reported being aware of their HIV status in the 2017
Ivoirian, 2016 Malawian, and 2015 Mozambican surveys,
respectively. The fundamental reason for the higher
estimates of HIV status awareness is that the gap between
the proportion of PLHIV ever tested, which are well
reproduced by the model, and the proportion with
knowledge of their status, is constrained by the high rate
of testing (i.e. any PLHIV who have ever been tested, but
are not aware, must have been infected since the most
recent HIV test). For the model’s predictions to be
consistent with survey-based estimates of self-reported
awareness, country-specific HIV incidence rates would
need to be several-fold higher than the ones estimated by
Spectrum/EPP and PHIA surveys, and/or re-testing rates
among PLHIV ever tested would have to be much lower
than suggested by the survey and HTS program data.
Other possible explanations include over-reporting of
HIV testing history by survey respondents who were not
aware, or very substantial levels of return of false-negative
HIV test results, though such levels would have to be
extremely high considering the high levels of re-testing.

The Shiny90 model can be applied to countries with at
least two population-based surveys that collected
information on both HIV testing history and HIV
prevalence. Because model predictions are expected to be
more accurate over the short term, it is advisable to
interpret with caution estimates produced for countries
where the last population-based survey was conducted
more than 5 years in the past. The HTS program data on
the number of tests performed should be carefully assessed
to ensure that it accurately represents annual national
testing volume among the population aged 15 years and
over, and that it includes information from both private
and public sectors. Sex-disaggregated HTS program data
should be especially useful for countries without recent
survey estimates of HIV testing histories. However,
model predictions should be reasonably accurate, even if
sex-disaggregated HTS data are unavailable, if the male/
female testing ratios have remained relatively constant in
recent years. Finally, it is advised to ensure some temporal
degree of overlap between survey and program data to
facilitate estimation of re-testing parameters. The latter is
especially important if countries wish to examine
additional model outputs of interest. For example, the
model can provide information on the distribution of
negative tests among first-time and repeat testers, and the
distribution of positive tests among new diagnoses, retests
among PLHIV aware of their status (untreated), and re-
tests among PLHIV on ART (Fig. 6).

To facilitate model use, an online version was developed
using the RShiny framework. Users can freely access the
web-app (https://shiny.dide.imperial.ac.uk/shiny90/),
review data sources, edit information, add new data,
and run the model. It requires the users to provide a
Spectrum/EPP projection file to use as input. Users can
save their current analyses, perform sensitivity analyses,
and export their results.

https://shiny.dide.imperial.ac.uk/shiny90/
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Fig. 5. Out-of-sample predictions of Shiny90 models calibrated to survey data from 2000 to 2012, including all available
program data, for Côte d’Ivoire, Malawi, and Mozambique, and model predictions. The top panel (a) uses the overall (both sex
combined) HIV Testing Services (HTS) program data, whereas the bottom panel (b) uses the sex-disaggregated HTS program data.
Dashed lines represent predictions from the fully calibrated models. The vertical lines indicate the date of the last survey data
estimates included in the fitting (to the right of the lines are the predictions). The shaded areas correspond to the 95% credible
intervals of the posterior estimates. Points represent the survey estimates (Table 1) and empty symbols indicate that these outcomes
were not included in the likelihood but are shown for cross-validation purposes. The vertical solid lines crossing these points
correspond to the 95% confidence intervals of the survey estimates. PLHIV, people living with HIV.
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Fig. 6. Model predictions of the distribution of the annual total number of HIV-negative tests performed among first-time testers
versus repeat testers (top row), distribution of HIV positive tests by awareness status and antiretroviral treatment (ART) status
(middle row), and longitudinal trends in HIV testing positivity, yield of new diagnoses, and Spectrum/EPP’s estimates of HIV
prevalence (aged 15R years; bottom row); in Côte d’Ivoire (first column), Malawi (second column), and Mozambique (third
column).
Model limitations
Our proposed approach to estimate the ‘first 90’ has
several limitations, mainly due to data considerations.
First, we assumed that self-reports of ever testing are
accurate. Quantifying the sensitivity and specificity of
those self-reports is difficult and their accuracy could
differ by HIV status [14]. However, limited evidence
suggests that testing histories are probably better reported
than other potential indicators [50], but incorrect reports
of HIV testing history could result in underestimation of
the ‘first 90’ [51]. As evidence accrues on the sensitivity
and specificity of those self-reports, adjustments for
potential misclassification, if warranted, could be
incorporated into the model. An additional source of
uncertainty lies in the accuracy of HIV tests results
provided back to HTS users. In the model, we assume
that national HIV testing algorithms are accurate,
but some programs have reported suboptimal field
sensitivity and specificity [52–54]. Second, published
HTS program statistics usually relate to public sector
programs and do not necessarily reflect private sector
testing, NGO testing programs, and self-testing. The
latter poses additional challenges to the correct estima-
tion of the number of HIV tests performed annually and
difficulty in assessing trends over time in terms of
positivity and yield of new diagnoses. We recommend
sensitivity analyses to explore model robustness to
assumptions regarding completeness of HTS program
data. Thirdly, some national programs may have
difficulties differentiating between tests performed on
children aged less than 15 years from those in the
modeled population. Data from Malawi suggest that
children (<15 years) can comprise a small but
nonnegligible fraction (�16%) of overall testing volume
[55], though pediatric tests account for a substantially
lower fraction of HIV-positive tests due to the low HIV
prevalence in children, the result of effective prevention
of mother-to-child transmission programs.
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Regarding model structure and assumptions, a fourth
limitation is that the present model implementation does
not incorporate uncertainty in both the denominator of
the ‘first 90’ and the estimated ART coverage. This may
result in an underestimation of uncertainty. Finally, the
model does not, at present, disaggregate indicators by
members of key populations (e.g. MSM, female sex
workers, clients) or produce estimates of HIV diagnosis
among children. Key populations are important to overall
transmission dynamics in several countries [56–59], and
the sustainable control of HIV epidemics also hinges on
also achieving the 90–90–90 targets in these groups [60].
The general framework outlined above could in theory be
used to monitor awareness status for key populations, but
additional challenges related to representativeness of key
population surveys, among others, are expected [13].

Model strengths
Our proposed approach to estimate the proportion of
PLHIV who know their status has several strengths. First,
our model uses Spectrum outputs and is therefore fully
consistent with other epidemiological data (e.g. sex and
age-specific HIV incidence, prevalence, mortality) and
programmatic outcomes (ART coverage). Second, it
integrates routinely collected HTS program data with
population-based surveys. These data triangulation enables
monitoring of HTS’ effectiveness by providing estimates of
annual new HIV diagnoses. Third, our approach attempts
to overcome the limitations of self-reported knowledge of
HIV status by pooling information on ART coverage, HIV
re-testing rates, and HIV incidence to estimate how many
PLHIV acquired their infection after their last HIV-
negative test. Finally, the present framework enables us to
further refine the Shiny90 model and its assumptions as
more granular program data become available (e.g. age-
stratified HIV testing program data) and provides a
foundational framework for future work to incorporate
data about HIV testing and diagnosis into estimates of HIV
incidence trends.
Conclusions

Identifying the proportion of PLHIV who know their
status is challenging and the aim of our model is to
triangulate different data sources to improve the accuracy
of the ‘first 90’ indicator. Beyond the estimation of HIV
knowledge of status, the model also produces estimates of
annual number of new HIV diagnoses. Such information
can help countries improve the effectiveness of their HIV
testing programs and assist them in reaching the ‘first 90’
target by 2020.
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