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Background: Chronic kidney disease of unknown origin (CKDu) is an epidemic that disproportionately

affects young agriculture workers in hot regions. It has been hypothesized that repeated acute kidney

injury (AKI) may play a role in the development of disease.

Methods: Latent class mixed models were used to identify groups of Guatemalan sugarcane harvesters

based on their daily changes in creatinine over 6 consecutive days in 2018. Exponential smoothing state

space models were used to forecast end-of-season creatinine between the identified groups. Percent

change in estimated glomerular filtration rate (eGFR) across the harvest was compared between groups.

Results: Twenty-nine percent (n ¼ 30) of the 103 workers experienced repeated severe fluctuations in

creatinine across shift. The model with multiplicative error, multiplicative trend, and multiplicative season-

ality was able to accurately forecast end-of-season creatinine in the severe group (mean percentage error

[MPE]: �4.7%). eGFR of workers in the severe group on average decreased 20% across season compared to

11% decline for those in the moderate group (95% confidence interval for difference: �17% to 0%).

Conclusions: Daily fluctuations in creatinine can be used to forecast end-of-season creatinine in sugarcane

harvesters. Workers who experience repeat severe daily fluctuations in creatinine, on average, experience

a greater reduction in kidney function across the season.
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C
KDu is an epidemic that disproportionately affects
young agricultural workers in hot regions

around the world.1 Unlike other forms of chronic
kidney disease (CKD), CKDu has not been linked to
the traditional risk factors, such as diabetes and
hypertension. A recent systematic review in Central
America found that to date the only personal risk
factors with strong evidence of association with
disease are male sex, family history of CKD, amount
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of water consumed while at work, and residing and
working at low altitude.2

One of the leading hypotheses is that CKDu occurs
when people perform heavy work in hot climates
while under a state of dehydration,1,3–5 leading to
kidney injury experienced across the work shift and
across the harvest season. It has been shown that
agricultural workers experience both acute cross-shift
changes in kidney function5–8 as well as cross-
harvest changes.9–11 Researchers have speculated
that recurrent AKI results in CKDu, although evi-
dence is sparse.12–15 We hypothesize that acute
changes in kidney function can be used to forecast
who will develop CKDu, in which case early detec-
tion and primary prevention strategies can be
deployed.
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In this article we used statistical modeling tech-
niques to identify patterns of daily kidney function
changes, as measured by serum creatinine, over the
course of 6 days, in a cohort of sugarcane harvesters in
Guatemala. We then assessed the accuracy of these
patterns in forecasting the end-of-season creatinine of
workers. To determine the impact of daily creatinine
fluctuations on longer term changes in kidney function
across the season, we compared the percent change in
eGFR 3 months later between the identified groups.

METHODS

Study Population

We conducted a study among male sugarcane har-
vesters who were employed at a large agribusiness in
Guatemala during the 2017–2018 sugarcane harvest.
Individuals in this study were recruited from 2
randomly selected work groups and provided informed
consent. Ethics review and approval for the study was
received from the Colorado Multiple Institutional Re-
view Board (COMIRB #17-1328) and ZUGUEME Comité
Ética Independiente in Guatemala.

Cutting sugarcane is considered very heavy work
involving swinging a machete to cut the stalk a few
centimeters above ground level, followed by lifting,
trimming, and stacking the cane. Sugarcane harvesters
in our population cut on average 6 tons of sugarcane
per day with average temperatures during the work
shift upward of 30 �C.16 Workers are typically in the
field for 10-hour work shifts (7:00 to 17:00) with three
20-minute rest breaks and a 1-hour lunch break.
Workers in our study were provided access to clean
water; electrolytes; rest periods; shade; personal pro-
tective equipment, such as shin guards, sun hats, and
goggles; and education on topics including hydration,
rest, hygiene, safe sexual practices, nutrition, and risks
of using drugs and nonprescription medicines.5,7,11

Study Design

Although the 2017–2018 harvest started in November
2017, primary data collection occurred at mid-harvest,
during a 2-week period in January 2018. January was
selected as the study month to reduce loss to follow-up,
as most workers who leave the workforce do so before
January. 16 It is standard practice for workers to work
6 consecutive days followed by a rest day. Starting on
day 1 of each group’s work week, each worker was
followed for a consecutive 6-day period allowing us to
capture information on the entirety of their work week
(study days 1–6). For each day in the study, pre- and
post-shift measurements of kidney function were
collected.

Follow-up data collection occurred in April 2018,
near the end of the harvest, and included pre-shift
Kidney International Reports (2020) 5, 1558–1566
measurements of kidney function (study day 7). Data
collections occurred in the fields in which the workers
were working. Study design is summarized in Figure 1.

Kidney Function

Serum creatinine is a measurement of kidney function
and is used to determine whether individuals experi-
ence AKI. AKI is defined as an increase in a venous
sample of serum creatinine by $0.3 mg/dl or to $ 1.5
times baseline.17 Either definition was used to indicate
AKI in our study.7 To calculate AKI, we measured
capillary creatinine levels at the start of the work shift
and the end of the work shift using the point-of-care
Nova Statscan (Nova Biomedical Corporation, Wal-
tham, MA). Based on previous comparisons between
venous and capillary samples of post-shift point-of-care
creatinine measures, we applied an adjustment factor of
0.7775 to all the post-shift capillary point-of-care
creatinine values to relate them to venous values.18

Preliminary data have shown that there is good
agreement between venous and capillary samples of
pre-shift measurements requiring an adjustment factor
of 1, or no adjustment, to relate capillary creatinine
values to venous values taken before the start of
work.19

One of the main criticisms of defining AKI across the
work shift is that the observed fluctuations in creati-
nine may be due to already having reduced kidney
function or other factors that might cause a slight acute
increase in creatinine, such as muscle injury,20 rather
than an indicator of true kidney injury measured by
reduction in eGFR. To assess the association of repeti-
tive cross-shift AKI with longer term kidney function
decline, we calculated the percent decline in eGFR for
individuals between January and April. To calculate
eGFR we used the Chronic Kidney Disease Epidemi-
ology Collaboration formula.21 Race was considered
“non-Black” and all workers were male.

Statistical Analysis

Previous research on CKDu, as well as other forms of
CKD, suggest that subpopulations may be at higher
risk for accelerated decline in kidney function.22

Therefore, a 3-step approach was used to analyze
the data. First, we identified latent subpopulations
based on daily changes in creatinine from pre-shift to
post-shift over the 6-day study. We then identified
and used the patterns in creatinine fluctuation
experienced by these subpopulations to forecast end-
of-season creatinine measured in April. To assess
changes in eGFR from January to April, we
compared the average percent change in eGFR be-
tween identified subpopulations. All statistical ana-
lyses were done using R version 3.4.3.23
1559



Figure 1. Summary of data collection and analysis design.
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Step 1: Subpopulations

To identify patterns of cross-shift creatinine changes,
we used latent class mixed models to model the shape
of pre-shift to post-shift to pre-shift changes in kidney
function over the course of the 6-day work week.24

Time was treated as time of day (1 ¼ day 1 pre-shift
creatinine and 1.5 ¼ day 1 post-shift creatinine mea-
surement). Longitudinal change in creatinine was
modeled with a cubic time trend with random term for
time at the individual level. Unconditional models were
used to determine class-membership. Splines with 5
equidistant nodes were used as the link function. To
assess classification error, we examined the posterior
classification probabilities that summarize the mean of
the posterior probability among individuals classified
into each subpopulation along with the proportion of
individuals classified into each subpopulation with
posterior probabilities above 0.7, 0.8, and 0.9.25 Full
specifications for our model selection are provided in
the Supplementary Methods. The package “lcmm”25

was used for this analysis.

Step 2: Forecasting

Each individual was assigned a probability for sub-
population assignment from the latent class mixed
model. Individuals were assigned to the subpopulation
with which they had the highest probability. Data
were then aggregated within each subpopulation by
taking the average creatinine value within the sub-
population at each time point, totaling 13 time points
(12 pre- and post-shift values on days 1–6 and 1 pre-
shift value on day 7).

For each of the subpopulations, we fit exponential
smoothing state space models26,27 using data from
study days 1 to 6. To account for the pre-shift to post-
shift pattern in the data, we defined the seasonality as
pre-shift to post-shift and post-shift to pre-shift by
1560
treating the frequency of the time series as 2. The
exponential smoothing state space models were speci-
fied using 3 parameters: error type, trend type, season
type. Error types were either additive (A) or multipli-
cative (M). Trend and season types were A, M, or none
(N). Defining the error, trend, or season as additive
would indicate that the effect appears to increase with
the mean whereas to define as multiplicative would
indicate that the size of the effect is directly propor-
tional to the mean.28 Having no trend or seasonality
would indicate a flat line.

To assess the appropriate forecast model for each
of the subpopulations, we fit the 12 allowed combi-
natorial models for each subpopulation for the
pattern of day 1 through day 6. We calculated the
accuracy of each model by comparing the forecasted
April creatinine with the observed April creatinine.
We used the MPE as our fit statistics to compare
models. The MPE is calculated as the average per-
centage from which the forecasted values differ from
the actual values. In the case of end-of-season
creatinine, a negative MPE would indicate that the
forecasted value, on average, overestimated the
observed value. The farther away from 0 would
indicate a greater over- or underestimate depending
on if the MPE was negative or positive, respectively.
We chose to select the model with the negative MPE
closest to 0% as the best-performing model, as this
model would error on the side of overestimating
cross-season change. We errored on the side of
overestimating end-of-season creatinine because from
a surveillance and intervention perspective we would
rather predict an overestimate of the severity of
kidney function decline rather than underestimate it.
Should all the MPE values be positive, we select the
model with the lowest MPE. The package “fore-
cast”29 was used for this analysis.
Kidney International Reports (2020) 5, 1558–1566



Figure 2. Individual pre- and post-shift serum creatinine measurements for 103 Guatemalan sugarcane cutters during a 6-day work week in
January 2018, stratified by severe (top) and moderate (bottom) daily fluctuation subpopulations. Red line represents a fitted cubic spline to
demonstrate the average pattern of change for each subpopulation.
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Step 3: eGFR Change

To determine differences in percent change in eGFR
from January to April between the subpopulations,
we calculated the observed individual percent change
in eGFR for each worker. The average percent change
in eGFR was then averaged among workers in each
subpopulation and compared using Student’s t-test.
This step was done independent of the results from
Step 2.
RESULTS

There were 107 male workers who consented to
participate in the study. Of these, 4 workers were
present only during 1 day of the 6-day period and were
excluded from the analysis. The average age of the
study population was 28 years (SD: 7). The average day
1 pre-shift creatinine was 0.66 mg/dl (SD: 0.15) and the
average April creatinine was 0.88 mg/dl (SD: 0.22). All
workers had normal eGFR (eGFR > 90 ml/min per 1.73
m2) at pre-shift on day 1 of the study. The average day
1 pre-shift eGFR was 132.8 ml/min per 1.73 m2 (SD:
15.6) and the average April eGFR was 115.9 ml/min per
1.73 m2 (SD: 20.2), with the average January to April
change in eGFR of �14% (SD: 16%).
Kidney International Reports (2020) 5, 1558–1566
Subpopulations

Two unique subpopulations for daily cross-shift
changes in creatinine were identified, a severe group
and a moderate group. Individuals in the severe group
(n ¼ 30; 29%) had higher daily pre-shift measures,
greater daily fluctuations between pre- to post-shift
creatinine, and higher daily post-shift measures
compared with the moderate group (n ¼ 73; 71%)
(Figure 2). Posterior classification probabilities were
87% for the severe group and 95% for the moderate
group. Of individuals identified in the severe group,
63% had a posterior probability above 90% and 77%
had a posterior probability above 70%. For individuals
identified in the moderate group, 86% had a posterior
probability above 90%, 92% a posterior probability
above 80%, and 97% a posterior probability above
70%.

Daily incidence rates of AKI ranged from 23% to
67% in the severe group compared with 2% to 21% in
the moderate group (Table 1). Although the moderate
group experienced recovery overnight, the severe
group did not fully return to pre-shift creatinine levels.
The pre-shift creatinine of the severe group worsened
over the course of the work week. A summary of the
decomposition of the time series of creatinine over the
1561



Table 1. Daily pre- and post-shift creatinine measurements, presented as mean (SD), and daily incidence rate of AKI, presented as n (%),
stratified by subpopulation

Moderate (n [ 73; 71%) Severe (n [ 30; 29%)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Pre-shift
creatinine
mg/dl

0.62 (0.13) 0.70 (0.09) 0.67 (0.14) 0.63 (0.12) 0.69 (0.12) 0.68 (0.12) 0.78 (0.14) 0.95 (0.14) 0.98 (0.15) 0.98 (0.17) 0.89 (0.30) 0.88 (0.32)

Post-shift
creatinine
mg/dl

0.80 (0.13) 0.76 (0.14) 0.77 (0.13) 0.76 (0.14) 0.70 (0.13) 0.69 (0.16) 1.14 (0.22) 1.23 (0.21) 1.08 (0.21) 1.13 (0.28) 1.15 (0.30) 1.18 (0.28)

AKIa 16 (23) 3 (4) 7 (10) 10 (14) 1 (2) 6 (9) 18 (67) 9 (35) 6 (23) 6 (25) 12 (44) 17 (59)

AKI, acute kidney injury.
aAKI is defined as an increase in serum creatinine by $ 0.3 mg/dl or an increase in serum creatinine to $1.5 times baseline.

CLINICAL RESEARCH M Dally et al.: Daily AKI Leads to Kidney Function Decline
work week for each group is provided in
Supplementary Figure 1 (severe group) and
Supplementary Figure 2 (moderate group). The average
April creatinine was 1.08 mg/dl (SD: 0.27) for the se-
vere group and 0.81 mg/dl (SD: 0.16) for the moderate
group (P-value for difference: 0.0001).

Forecasting

The 3 best-performing models for forecasting the April
creatinine value of the severe subpopulation were with
an additive error and no trend nor seasonality (MPE:
3.4%), with a multiplicative error and no trend or
seasonality (MPE: 3.4%), and with a multiplicative
error, multiplicative trend, and multiplicative season-
ality (MPE: �4.7%). The model with multiplicative
error, trend, and seasonality was selected as the final
model for the severe group (Figure 3), as this model
overestimated end-of-season creatinine, whereas the
other 2 models underestimated end-of-season creati-
nine. A summary of all fit statistics for all tested models
for the severe subpopulation is provided in
Supplementary Table S1.

The 3 best-performing models for the moderate
subpopulation were with an additive error and no
trend or seasonality (MPE: 13.8%), with a multiplica-
tive error and no trend or seasonality (MPE: 13.8%),
and with an additive error with no trend and additive
seasonality (MPE: 18.7%). The model with a multipli-
cative error term with no trend or seasonality was
selected as the final model for the moderate group to
keep the error terms consistent between the sub-
populations. This model, which captures no informa-
tion about trend or seasonality, suggests the best
prediction for April in the moderate group is the
average of all creatinine values observed over the 6
days (Figure 4). A summary of all fit statistics for all
tested models for the moderate subpopulation is pro-
vided in Supplementary Table S2.

Cross-Season eGFR

The average day 1 pre-shift eGFR was 118.8 ml/min per
1.73 m2 (SD: 13.9) for the severe group and 137.0 ml/
1562
min per 1.73 m2 (SD: 13.1) for the moderate group. The
average April eGFR was 94.0 ml/min per 1.73 m2 (SD:
21.8) for the severe group and 119.8 ml/min per 1.73 m2

(SD: 15.5) for the moderate group. The average percent
change in eGFR from January to April was a 20%
decrease (SD: 19%) for the severe group compared with
a 12% decrease (SD: 14%) in the moderate group. On
average, the severe group eGFR declined 8% more
across the season (95% CI: �17% to 0%) compared
with the moderate group (P-value: 0.055).

DISCUSSION

Fluctuations in creatinine between pre- and post-shift
over the course of 6 days can be used to forecast
end-of-season creatinine in agricultural field workers.
Workers who experience repeated severe fluctuations
in creatinine across the work shift, on average, expe-
rience a greater reduction in eGFR across the season. It
has been suggested that due to natural variances in
creatinine, cross-shift measurements of kidney function
decline are not a reliable way of detecting true reduc-
tion of kidney function.30 Our data provide evidence
that daily increases in creatinine are not occurring at
random and suggest that cross-shift changes in creati-
nine may contribute to observed cross-season declines
in kidney function. Interestingly, the 70% of our
sample who we identified as only having moderate
fluctuations in creatinine also experienced cross-season
decline in kidney function, consistent with research in
Nicaragua, which found an average decline of 10% in
eGFR over the course of 9 weeks among sugarcane
harvesters. 9 This suggests that there are factors, in
addition to daily changes in creatinine, contributing to
observed reductions in kidney function.

We observed that the daily pattern in creatinine
identified for the severe subpopulation accurately
forecasted the observed April creatinine for those in-
dividuals. One of the critiques of previous cross-shift
studies of AKI is that random variations in serum
creatinine may be a significant contributor to AKI
diagnosis in the absence of a true reduction of kidney
Kidney International Reports (2020) 5, 1558–1566



Figure 3. Severe group observed January changes in pre- to post-shift creatine and forecasted cross-harvest change in creatinine based on
the MMM exponential smoothing state space model along with 95% confidence bands for projections. Comparison made to the observed April
measurement.
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function.30 This study addresses this concern by
demonstrating that individuals identified in the severe
subpopulation had a greater 3-month reduction in
Figure 4. Moderate group observed January changes in pre- to post-shift c
the MNN exponential smoothing state space model along with 95% confid
measurement.

Kidney International Reports (2020) 5, 1558–1566
eGFR. Although questions remain as to whether this
observed decline in eGFR is reversible or leads to
CKDu, a recent study in Nicaragua found that of 34
reatine and forecasted cross-harvest change in creatinine based on
ence bands for projections. Comparison made to the observed April
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workers who experienced kidney injury, defined as an
increase in serum creatinine $0.3 mg/dl over baseline
to a level $1.3 mg/dl across a 6-month harvest, 40%
had eGFR declines greater than 30% up to 1 year
later.10 Given both these findings, more research is
needed to determine the cause of severe fluctuations in
serum creatinine.

Evidence suggests that AKI and CKD are closely
related, with CKD as a risk factor for AKI and AKI as a
risk factor for the development of CKD.31 However, in
the setting of CKDu, the relationship between cross-
shift changes in creatinine and the observed declines
in kidney function over the course of a harvest season
has been questioned.30,32 This is due to physiologic
variability of serum creatinine levels after physical
activity, where creatinine rises with muscle breakdown
and may not reflect a true AKI. In this study, the
recurrence of severe fluctuations across the work shift
contributed to declines in kidney function measured
by eGFR over the course of 3 months. It should be
noted that those workers in the severe subpopulation
began the harvest with lower eGFR than those in the
moderate subpopulation (119 ml/min per 1.73 m2 vs.
137 ml/min per 1.73 m2, respectively). This finding
may indicate that workers in the severe subpopulation
are already experiencing early reductions in kidney
function, making their kidneys more susceptible to
dehydration or nephrotoxic exposures, which could
explain the observed increase in cross-shift changes in
creatinine and cross-season change in eGFR. This leads
us to suggest that cross-shift changes in creatinine may
be an early indicator for workers at risk for experi-
encing more severe cross-harvest change in kidney
function.

Interestingly, our forecasting models did not
perform well for the moderate group. Because the
moderate group saw a marked reduction in incidence of
AKI and severity of cross-shift creatinine change as the
work week progressed (Supplementary Figure S2), the
models did not accurately forecast the observed cross-
season decline for this group. It is unclear why we
observed a reduction in AKI and less change in creat-
inine across the shift with this subpopulation. Future
research will examine potential occupational and
behavioral factors for assignment to the severe versus
moderate subpopulations.

Limitations

First, we were limited in the number of observations
that made up our time series. Second, the forecasting in
our analysis was dependent on accurate subpopulation
classification through the latent class mixed model.
Although the latent class mixed model provided good
discrimination, evidenced by the high posterior
1564
probabilities, there is the potential that workers were
misclassified into the severe and moderate groups.
Third, the potential for selection bias is present as we
recruited workers in January leading to the potential
exclusion of workers who may have left the workforce
due to health issues.

Although our study shows that repeated severe
fluctuations in creatinine are associated with longer
term changes in eGFR, we cannot say whether this
goes on to cause CKDu, because a probable case of
CKDu is defined as 2 abnormal eGFR results (< 60 ml/
min per 1.73 m2) at least 3 months apart.33 Notably,
we had only 1 data point with which to assess the
validity of the forecast. As shown with the January
data, creatinine is variable in this population. Creat-
inine may also be affected by changes in hydration,
diet, or muscle injury.34 Although we do not suspect
dehydration habits or diet changed between January
and April, the reduced creatinine observed in April
may be an artifact of the timing of the measurement.
In addition, because both muscle mass and GFR
determine an individual’s serum creatinine level, us-
ing calculations such as the Chronic Kidney Disease
Epidemiology Collaboration with only the inclusion
of creatinine to estimate GFR may be inaccurate on an
individual level.35

Although this study suggests that individuals who
experience severe fluctuations in creatinine across a
work shift are more likely to experience a cross-harvest
change in eGFR, future research is required to deter-
mine if the observed changes in kidney function across
the season are real and sustained and if these losses lead
to the development of CKDu.
CONCLUSIONS

Agricultural workers around the world are at risk for
declines in kidney function during their daily work
shifts and harvest seasons, which may lead to the
development of CKDu.1 By recognizing that cross-shift
changes in creatinine may contribute to these cross-
harvest declines in kidney function, we have pro-
vided evidence that interventions are needed to reduce
cross-shift change in creatinine to both prevent AKI
and longer term kidney function decline. Future
research is needed to identify risk factors for cross-shift
kidney function declines so that workplaces are better
positioned to implement programs and interventions to
address kidney health and reduce the risk of devel-
oping CKDu among their workers.
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Table S1. Fit statistics for all tested forecasting models in

the severe group. Exponential smoothing state space

models fit on work days 1 to 6 with fit statistics calculated

for pre-shift April. Fit statistics include MAE, mean abso-

lute error; MAPE, mean absolute percentage error; MASE,

mean absolute scaled error; ME, mean error; MPE, mean

percentage error; RMSE, root mean squared error.

Table S2. Fit statistics for all tested forecasting models in

the moderate group. Exponential smoothing state space

models fit on work days 1 to 6 with fit statistics calculated

for pre-shift April. Fit statistics include MAE, mean abso-

lute error; MAPE, mean absolute percentage error; MASE,

mean absolute scaled error; ME, mean error; MPE, mean

percentage error; RMSE, root mean squared error.

Figure S1. Decomposition of the 6-day work week creati-

nine time series for the severe group. Presented as data,

fitted seasonality, trend, and remainder.

Figure S2. Decomposition of the 6-day work week creati-

nine time series for the moderate group. Presented as

data, fitted seasonality, trend, and remainder.
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