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Background: Accurate classification techniques are essential for the early diagnosis and treatment of 
patients with diabetic retinopathy (DR). However, the limited amount of annotated DR data poses a 
challenge for existing deep-learning models. This article proposes a difficulty-aware and task-augmentation 
method based on meta-learning (DaTa-ML) model for few-shot DR classification with fundus images.
Methods: The difficulty-aware (Da) method operates by dynamically modifying the cross-entropy loss 
function applied to learning tasks. This methodology has the ability to intelligently down-weight simpler 
tasks, while simultaneously prioritizing more challenging tasks. These adjustments occur automatically and 
aim to optimize the learning process. Additionally, the task-augmentation (Ta) method is used to enhance the 
meta-training process by augmenting the number of tasks through image rotation and improving the feature-
extraction capability. To implement the expansion of the meta-training tasks, various task instances can be 
sampled during the meta-training stage. Ultimately, the proposed Ta method was introduced to optimize the 
initialization parameters and enhance the meta-generalization performance of the model. The DaTa-ML model 
showed promising results by effectively addressing the challenges associated with few-shot DR classification.
Results: The Asia Pacific Tele-Ophthalmology Society (APTOS) 2019 blindness detection data set was 
used to evaluate the DaTa-ML model. The results showed that with only 1% of the training data (5-way,  
20-shot) and a single update step (training time reduced by 90%), the DaTa-ML model had an accuracy rate 
of 89.6% on the test data, which is a 1.7% improvement over the transfer-learning method [i.e., residual 
neural network (ResNet)50 pre-trained on ImageNet], and a 16.8% improvement over scratch-built models 
(i.e., ResNet50 without pre-trained weights), despite having fewer trainable parameters (the parameters used 
by the DaTa-ML model are only 0.47% of the ResNet50 parameters).
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Introduction

Diabetic retinopathy (DR) is a microvascular complication 
of diabetes, and one of the leading causes of blindness 
and vision loss worldwide (1). The early and accurate 
classification of DR is crucial for appropriate and timely 
treatment (2). Fundus images are widely used in clinical 
diagnosis. Under the international protocol (3,4), there 
are five categories of DR: (I) non-DR; (II) mild non-
proliferative DR (NPDR); (III) moderate NPDR; (IV) 
severe NPDR; and (V) proliferative DR (PDR) (3,5).  
Figure 1 shows the five categories of fundus images.

In general ,  the severity of DR is  diagnosed by 
ophthalmologists based on their clinical experience. 
However, computer-aided classification technology can 
significantly save time and improve the efficiency and 
accuracy of DR classification (6). Currently, research in this 
area can be broadly categorized into two types: (I) hands-
on engineering; and (II) deep-learning methods. The first 
type, hands-on engineering, uses traditional methods, 
such as Gabor filters, scale-invariant feature transform, 
the histogram of oriented gradient, and the local binary 
pattern, to extract features (7-10). For example, Shahin et al. 
employed morphological processing to extract pathological 
features, calculated entropy and homogeneity, input these 
into a neural network, and achieved 88% sensitivity and 
100% specificity (11). Casanova et al. proposed a random-
forest algorithm that achieved over 90% accuracy in DR 
classification and assessed DR risk based on fundus and 
systematic data (12). However, these methods produce weak 
feature representations and can be adversely affected by 
characteristic factors (13).

The second type, deep-learning methods, has been 
more widely used in image processing, including DR 
classification, with convolutional neural networks (CNNs) 
being particularly popular (14). For example, García et al. 
used the Visual Geometry Group 16 (VGG16) structure 

to classify fundus images of left and right eyes, achieving 
93.65% specificity, 54.47% sensitivity, and 83.68%  
accuracy (15). Shanthi and Sabeenian proposed an improved 
AlexNet architecture that boosted the model accuracy to 
96.25% based on the Messidor data set (16). Deep-learning 
methods enable end-to-end classification without manual 
feature extraction, but they require large amounts of labeled 
training data and expensive computational resources to 
achieve human-level performance (17,18). Similarly, the 
creation of large data sets with annotations involves skilled 
labor, which is costly and time-consuming. In addition, 
CNNs are prone to overfitting when training data are 
insufficient; however, such data can be challenging to obtain 
due to privacy and healthcare laws (19,20).

Given the negative effects of limited data on deep-
learning models, Gao et al. used randomly rotated and 
flipped fundus images to expand the data (21). Zhou  
et al. introduced the DR generative adversarial network, 
which generates fundus images for data augmentation, 
but the generated data were often poor quality and lacked  
diversity (22). Transfer learning has been effective in 
addressing limited data by learning from a source domain to 
improve performance on a target domain (23,24). However, 
this method may not work well in complex target domains 
with insufficient source data.

Recently, meta-learning has attracted attention as a way 
to rapidly adapt to new tasks using small samples by learning 
internal representations from multiple classification tasks 
(25-28). Li et al. achieved an area under the curve (AUC) 
of 83.3% with only five samples per category using meta-
learning on the International Skin Imaging Collaboration 
(ISIC) 2018 skin lesion classification data set (29). Yuan  
et al. proposed an active meta-learning method that focuses 
on difficult tasks using Bayesian dropout uncertainty 
estimation, which achieved an accuracy of 90% on a new 
brain cell type classification task with only 1% of training 
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data and one update step (30).
In this study, we proposed the difficulty-aware and task-

augmentation method based on meta-learning (DaTa-ML) 
model for few-shot DR classification with fundus images. 
The DaTa-ML model can find an initialization point, and 
the subsequent fine tuning of the target data set can achieve 
more accurate results than other state-of-the-art methods. 
The proposed DaTa-ML model:

(I) Has a strong learning ability and can be applied to 
few-shot DR classification;

(II) Can improve the effectiveness of the meta-training 
stage and optimize the initialization parameters;

(III) Can adapt to the classification task of DR more 
quickly by using prior knowledge learned from 
multiple classification tasks.

The rest of this article is arranged as follows: the 
“Methods” section describes the proposed method in detail; 
the “Results” section sets out the experimental results and 
compares the DaTa-ML model with other models; the 
“Discussion” section discusses the proposed method, and 
finally; and the “Conclusions” section concludes the paper. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://qims.amegroups.
com/article/view/10.21037/qims-23-567/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the Institutional Review Board of Shandong 
Normal University, and the requirement of individual 
consent for this retrospective analysis was waived.

Due to the limited annotated DR training data, DR 
classification is a few-shot classification problem. To address 
this problem, the DaTa-ML model was proposed for few-
shot DR classification using fundus images (see Figure 2).

The architecture of meta-learner

Transfer learning is a widely used strategy to initialize 
model parameters; however, well-known pre-trained 
models, such as VGG network (VGGNet) and residual 
neural network (ResNet), are usually require large amounts 
of data and not suitable for solving few-shot problems. 
Meta-learning emphasizes data divergence by using various 
support sets during the meta-training stage, which can 
improve a model’s generalization performance (31).

Table S1 shows the parameter settings of the small 
and lightweight meta-learner model, which uses only 

Non-DR Mild NPDR Moderate NPDR

Severe NPDR PDR

Non-DR Mild NPDR Moderate NPDR

Severe NPDR PDR

Non-DR Mild NPDR Moderate NPDR

Severe NPDR PDR

Figure 1 The five categories of fundus images. The red rectangle marks the lesion area. DR, diabetic retinopathy; NPDR, non-proliferative 
DR; PDR, proliferative DR.

https://qims.amegroups.com/article/view/10.21037/qims-23-567/rc
https://qims.amegroups.com/article/view/10.21037/qims-23-567/rc
https://cdn.amegroups.cn/static/public/QIMS-23-567-Supplementary.pdf
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four convolutional layers. As Figure 3 shows, the feature-
extraction network consists of four parts, each of which 
includes a convolution layer, a batch-normalization layer, a 
rectified linear unit (ReLU) layer, and a maximum pooling 
layer. Fundus images are used as input, and four successive 
convolutions and maximum pooling are performed. The 
resulting feature map is then sent to the full connection 
layer for DR classification.

Model-agnostic meta-learning (MAML) can achieve 
excellent performance on unseen tasks by optimizing the 
model initialization parameters. Our training strategy 
is inspired by MAML to obtain robust meta-learner  
(32-36). For simplicity, Table S2 lists a series of new terms 
for MAML.

The meta-training includes the optimization of the 
inner-loop and the outer-loop, where Dtr is divided into 
“n” meta-training tasks { }i n . In the inner-loop, each meta-
training task trains its own model and yields an independent 
loss value. In the outer-loop, the meta-learner model 
updates once by aggregating the loss results across all the 
meta-training tasks. In this way, the meta-learning model 
can adapt more easily to new tasks through the learning of 
different tasks.

The meta-learner model with parameter θ is denoted by 
fθ, the distribution ( )trP   over the meta-training tasks, and 

( )i trT P  .
For the inner-loop optimization, the support set of each 

meta-training task is randomly sampled from Dtr and fed 

Figure 2 The DaTa-ML model. The images in the meta-training set are from the natural image data set ImageNet (https://www.image-
net.org/). DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning; DR, diabetic retinopathy; NPDR, non-
proliferative DR; PDR, proliferative DR.
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Figure 3 The network architecture of the meta-learner model. ReLU, rectified linear unit.
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into the meta-learner model at each iteration. Thus, the 
meta-learner is neither task nor category-specific, and the 
random sampling of model learning treats each category 
equally. At the beginning, the initial meta-learner model 
parameter θ is updated to ( )1

iθ  with { }i n , which is represented 
as:

( ) ( )1
ii fθ θθ θ α= − ∇ 

 
[1]

where α denotes the learning rate of the inner-loop. At the 
m-th step, the model parameters are the sum of all m steps 
of gradient descent. The formula is as follows:

( ) ( )
( ) ( )( ) ( ) ( )1 1

1
1

0
m mi ii i i i

m
m m

i i f fε
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−
−

=

 = − ∇ = − ∇  
 

∑    [2]

where [ ]0, mε ∈ , and it denotes the index of the iteration, and 
( )m
i

f
θ  represents that the learner model is trained in m steps.

The outer-loop optimization is performed on the query 
set, where the overall loss of the query set is the sum of the 
losses of each meta-training task after m iterations. The 
formula is as follows:

( )
( )

( )( )
( ) ( )

1

( )
0

~ ~
m mi ii

i i i
i i

query
fP P

f f
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 = =   ∑ 
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    [3]

The meta goal is to minimize the total loss function 
and obtain the ground-truth parameter with stronger 
generalization ability. At this point, the meta-learning 
parameter is updated as follows:

( )queryθθ θ β θ← − ∇ 
 

[4]

where the learning rate of the outer-loop is denoted by β. 
The parameters θ of the meta-learner model are fine-tuned 
and the performance is evaluated on the support set and 

query set of the meta-test task, respectively. Figure 4 shows 
the inner-loop and outer-loop optimization process for the 
DaTa-ML model at the m step.

For the few-shot classification problem, as it is a discrete 
classification task with cross loss, the loss function of the 
model is:

( )( ) ( )

( ) ( )
( )

( )( ) ( )( ) ( )

( )( )
, ~

log 1 log 1
i i ij j i

i

j j j j

x y

f y f x y f xε ε
εθθ θ

 = − + − − 
 

∑


  [5]

Here, the input and output of the j-th sample randomly 
chosen from i  are denoted by x(j) and y(j). The training 
details for algorithm 1 are outlined in Table 1.

Task augmentation

The initialization parameters of a model determine its 
generalization performance on unseen tasks. However, 
meta-learning models cannot extract more valuable features 
with fewer meta-training tasks. To optimize the model’s 
initialization parameters, we proposed a rotation-based Ta 
method that increases the quantity of meta-training tasks.

In this study, the total quantity of the meta-training 
set was increased by rotating all the images by 90, 180, 
and 270 degrees. Different task instances can be sampled 
during the meta-training stage to implement meta-training 
task expansion. The proposed Ta method can optimize 
the initialization parameters of the model and improve the 
generalization of meta-learner.

Difficulty-aware (Da)

As the meta-learner model continuously learns based on 
the average estimate of i  sampled by ( )trP  , it may struggle 
with difficult tasks. Thus, we introduced a Da method 
to focus on these tasks. We constructed a Da function 
that automatically reduces the weight of simple tasks by 
dynamically adjusting the cross-entropy loss function. The 
Da function is as follows:

( ) ( )
( )( ) ( )( )( )

, ~

log max ,1
i ii ij j

i

Da
x y

f fε ε

ω

θ θ
λ = − − 

 ∑  


    [6]

where ω is the dynamic factor, and λ is an extremely 
small positive value satisfying ( )( )( )max ,1 0

i i
f εθ

λ − > . Eq. [6] 
introduces a dynamically scaled cross-entropy loss over the 
learning tasks that intelligently down-weights simple tasks 
and shifts focus towards difficult tasks. To rephrase, the Da 
meta-loss method dynamically reduces the contribution of 
easy tasks, concentrating more on difficult tasks and thus 
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Inner-loop 
Outer-loop

Meta-training

...

𝑫𝑫𝟏𝟏
𝒔𝒔 𝜽𝜽𝟏𝟏

(𝒎𝒎) 𝑫𝑫𝟏𝟏
𝒒𝒒

𝓛𝓛𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒𝒒(𝜽𝜽)

Meta-testing

Figure 4 The inner-loop and outer-loop optimization procedure 
for the DaTa-ML model at the m-th step. DaTa-ML, difficulty-
aware and task-augmentation method based on meta-learning.
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heightens the importance of optimizing misclassified tasks. 
The updated parameters are expressed as follows:

Daθθ θ β← − ∇  [7]

Ablation study

The proposed DaTa-ML model leverages the Da method 
to focus on complex tasks. To verify the benefits of this 
method, we compare DaTa-ML with Da based meta-
learning (Da-ML) (i.e., with no Ta method) and Ta based 
meta-learning (Ta-ML) (i.e., with no Da method). We 
also included MAML as a baseline to demonstrate the 
advantages of both the Da and Ta methods.

Results

Data set

The few-shot DR classification data set included two 

subsets. Subset 1 was the Mini-ImageNet data set, which 
comprised 100 categories with 60,000 color images (37). 
Subset 2 was the Asia Pacific Tele-Ophthalmology Society 
(APTOS) 2019 Blindness Detection data set (38), which 
comprised 3,662 fundus images from multiple clinics with 
different cameras, including non-DR [1,805], mild NPDR 
[370], moderate NPDR [999], severe NPDR [193], and 
PDR [295] fundus images. Subsets 1 and 2 were used for 
the meta-training and meta-testing, respectively.

Experimental setting

Considering the distinctions in the training methods between 
the other deep learning–based models and our proposed 
model, the DaTa-ML model was trained in the manner of the 
N-way K-shot (N=5 and K=1, 5, 10, and 20) (39). The inner-
loop learning rate and outer-loop learning rate were set 
to 0.01 and 0.001, respectively, and the model was trained 
for 10,000 iterations on a meta-training set consisting of 
500 tasks. The APTOS 2019 Blindness Detection data 
set was used for both the meta-training and meta-testing, 
with data augmentation generating 2,000 images per 
class. The images used for both the training and testing 
comprised five categories and were completely different, 
and their intersection was the empty set. Each experiment 
was performed five times, with early stopping used to avoid 
overfitting.

The classification method was implemented on an Intel 
(R) Core (TM) i7-8700k CPU@3.70 GHz desktop and 
then transferred to the NVIDIA Tesla P100 GPU. The 
algorithm was programmed using the TensorFlow library.

Evaluation measures

For the dichotomous problem, we applied commonly used 
evaluation indexes (i.e., accuracy, precision, recall, and 
F1-score) to evaluate the performance of the DaTa-ML 
model. The higher the value of these metrics, the better 
the performance. However, for the DaTa-ML model, 
the fundus images were classified into five categories. 
Macro-averaging was used as an evaluation indicator; that 
is, we first statistically assessed each category and then 
arithmetically averaged each category. The macro-averaging 
values are calculated as shown in Eqs. [8,9]:

1

1_
n

i
i

Macro Precision p
n =

= ∑
 

[8]

1

1_
n

i
i

Macro Recall R
n =

= ∑  [9]

Table 1 The training details

Algorithm 1 for model training process

Require: ( )trP  : distribution over tasks

Require: α, β: the learning rates of the inner-loop and outer-loop

Require: m: number of steps for gradient update

(I) Randomly initialize θ

(II) While not done do

(III) Sample batch of tasks ( )~i trP 

(IV) For all i  do

(V) Sample κ datapoints DS = {x(j), y(j)} from i

(VI) For ε = 0 → m –1 do

(VII) Evaluate ( ) ( )( )1 1m mii i
f

θ θ− −∇   using DS and i
  in Eq. [5]

(VIII) Update adapted parameters with gradient descent: 
( ) ( )

( ) ( )( )1 1
1

m mii i

m m
i i f

θ θ
θ θ α − −

−= − ∇ 

(IX) End for

(X) Sample datapoints Dq = {x(j), y(j)} from i

(XI) End for 

(XII) Evaluate ( )( )( )~ mii iP
fθ θ

∇ ∑  
  on Dq

(XIII) Update ( )( )( )~ mii iP
fθ θ

θ θ β← − ∇ ∑  


(XIV) End while
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The Macro-F1 score is defined as shown in Eq. [10] 
(40,41). The Macro-F1 score also lies between 0.0 and 1.0, 
with the smallest value [0] indicating the worst performance 
of the classifier, and the highest value [1] indicating the best 
performance of the classifier. The equation is expressed as 
follows:

_ __ 1 2
_ _

Macro Precision Macro RecallMacro F
Macro Precision Macro Recall

×
=

+  [10]

Comparisons of the MAML, Da-ML, Ta-ML, and  
DaTa-ML models

To better understand the performance of the DaTa-ML 
model, Gradient-weighted Class Activation Mapping 
(Grad-CAM) visualizations were used to show that the 
model effectively focuses on hemorrhage areas and reduces 
background noise in raw features (42). Figure 5 displays 
the highlighted results. Additionally, guided Grad-CAM 
showed that the DaTa-ML model weakens unrelated feature 
areas, such as blood vessels.

Figure 6 presents the adaptation processes of the MAML, 
Da-ML, Ta-ML, and DaTa-ML models under 1-, 5-, 

10-, and 20-shot. MAML was not effective at adapting to 
DR classification. Conversely, after a gradient update, the 
accuracy of the DaTa-ML model significantly improved, 
indicating the rapid adaptation for meta-test tasks. Further, 
the accuracy continued to increase as the gradient update 
steps increased.

The experimental results are presented in Tables 2-5. 
Notably, the DaTa-ML model (ω=5) under 1-, 5-, 10-, and 
20-shot outperformed baseline MAML with an accuracy of 
0.709 [95% confidence interval (CI): 0.708–0.710], 0.775 
(95% CI: 0.772–0.777), 0.832 (95% CI: 0.830–0.834), and 
0.896 (95% CI: 0.895–0.897), respectively. The accuracy 
improvement was 25.6%, 25.9%, 26.3%, and 29.1%, 
respectively. The accuracy of the Da-ML (ω=5) under 1-, 
5-, 10-, and 20-shot was 0.531, 0.588, 0.657, and 0.701, 
respectively, which was 7.8%, 7.2%, 8.8%, and 9.6% higher 
than the MAML model, respectively. Similarly, the Ta-ML 
model under 1-, 5-, 10-, and 20-shot achieved an accuracy 
of 0.582, 0.645, 0.709, and 0.773, respectively, which was 
12.9%, 12.9%, 14.0%, and 16.8% higher than the MAML, 
respectively. These results also indicate that the accuracy of 
the DaTa-ML model improved as the amount of training 

Grad-CAM for hemorrhage

(a) (b)

Input image

Enlarged image

Guided Grad-CAM for hemorrhage

1.0

0.5

0.0

Figure 5 Visualization of Grad-CAM on a random selected example. The input image is shown in the left. The first and second rows are the 
heat maps for the MAML and DaTa-ML models, respectively. For the heatmap, the cool colors represent larger activation. (a) The category-
related discriminating features located by Grad-CAM; (b) the highlighted images obtained by guided backpropagation combined with Grad-
CAM. Grad-CAM, Gradient-weighted Class Activation Mapping; MAML, model-agnostic meta-learning; DaTa-ML, difficulty-aware and 
task-augmentation method based on meta-learning.
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data increased.

Comparison against the state-of-the-art classification models

The DaTa-ML model was compared with six deep 
learning-based classification models including AlexNet (43),  

VGG16 (44), VGG19 (44), ResNet50 (45), GoogLeNet (46), 
and SqueezeNet (47).

Table 6 compares the performance of the DaTa-ML 
model and several pre-trained deep-learning models. 
The DaTa-ML (20-shot) model had an accuracy of 
0.896 and outperformed ResNet50 by an increment of 

Figure 6 The adaptation processes of the MAML, Da-ML, Ta-ML, and DaTa-ML models under 1-shot (top left), 5-shot (top right), 10-
shot (bottom left), and 20-shot (bottom right). MAML, model-agnostic meta-learning; Da-ML, difficulty-aware based meta-learning; Ta-
ML, task-augmentation based on meta-learning; DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning.

Table 2 Experiment results of 5-way, 1-shot

Settings Models Accuracy Macro_Precision Macro_Recall Macro_F1

1-shot (0.05%) MAML (baseline) 0.453 0.456 0.453 0.454

Da-ML (ω=3) 0.509 0.509 0.509 0.509

Da-ML (ω=5) 0.531 0.532 0.531 0.531

Da-ML (ω=7) 0.520 0.521 0.520 0.520

Ta-ML 0.582 0.582 0.582 0.582

DaTa-ML (ω=3) 0.687 0.685 0.687 0.686

DaTa-ML (ω=5)† 0.709† 0.709† 0.709† 0.709†

DaTa-ML (ω=7) 0.696 0.698 0.696 0.697
†, the best results under the 5-way, 1-shot experiment. MAML, model-agnostic meta-learning; Da-ML, difficulty-aware based meta-learning; 
Ta-ML, task-augmentation based on meta-learning; DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning.
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Table 3 Experiment results of 5-way, 5-shot

Settings Models Accuracy Macro_Precision Macro_Recall Macro_F1

5-shot (0.25%) MAML (baseline) 0.516 0.520 0.516 0.518

Da-ML (ω=3) 0.564 0.564 0.564 0.564

Da-ML (ω=5) 0.588 0.588 0.588 0.588

Da-ML (ω=7) 0.576 0.575 0.576 0.575

Ta-ML 0.645 0.647 0.645 0.646

DaTa-ML (ω=3) 0.759 0.759 0.759 0.759

DaTa-ML (ω=5)† 0.775† 0.775† 0.775† 0.775†

DaTa-ML (ω=7) 0.766 0.767 0.766 0.766
†, the best results under the 5-way, 5-shot experiment. MAML, model-agnostic meta-learning; Da-ML, difficulty-aware based meta-learning; 
Ta-ML, task-augmentation based on meta-learning; DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning.

Table 4 Experiment results of 5-way, 10-shot

Settings Models Accuracy Macro_Precision Macro_Recall Macro_F1

10-shot (0.5%) MAML (baseline) 0.569 0.569 0.569 0.569

Da-ML (ω=3) 0.636 0.636 0.636 0.636

Da-ML (ω=5) 0.657 0.657 0.657 0.657

Da-ML (ω=7) 0.648 0.649 0.648 0.648

Ta-ML 0.709 0.709 0.709 0.709

DaTa-ML (ω=3) 0.811 0.811 0.811 0.811

DaTa-ML (ω=5)† 0.832† 0.834† 0.832† 0.833†

DaTa-ML (ω=7) 0.819 0.820 0.819 0.819
†, the best results under the 5-way, 10-shot experiment. MAML, model-agnostic meta-learning; Da-ML, difficulty-aware based meta-learning; 
Ta-ML, task-augmentation based on meta-learning; DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning.

Table 5 Experiment results of 5-way 20-shot

Settings Models Accuracy Macro_Precision Macro_Recall Macro_F1

20-shot (1%) MAML (baseline) 0.605 0.605 0.605 0.605

Da-ML (ω=3) 0.682 0.681 0.682 0.681

Da-ML (ω=5) 0.701 0.701 0.701 0.701

Da-ML (ω=7) 0.691 0.691 0.691 0.691

Ta-ML 0.773 0.776 0.773 0.774

DaTa-ML (ω=3) 0.875 0.876 0.875 0.875

DaTa-ML (ω=5)† 0.896† 0.896† 0.896† 0.896†

DaTa-ML (ω=7) 0.883 0.883 0.883 0.883
†, the best results under the 5-way, 20-shot experiment. MAML, model-agnostic meta-learning; Da-ML, difficulty-aware based meta-learning; 
Ta-ML, task-augmentation based on meta-learning; DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning.
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1.7%. More importantly, the DaTa-ML model achieved 
better performance with only 0.47% of the parameters 
of ResNet50. The DaTa-ML model also outperformed 
SqueezeNet with an accuracy increment of 7.3%, even 
though SqueezeNet had fewer parameters than the 
comparison methods.

Table 7 compares the performance of the DaTa-ML 
model and the scratch-built deep-learning models. The 
DaTa-ML (5-shot) model had an accuracy of 0.775, 
outperforming ResNet50 by 4.7%. As the training 
samples increased, the accuracy of the DaTa-ML model 

also increased, with the DaTa-ML (20-shot) model 
outperforming the ResNet50 by an increment of 16.8%.

The confusion matrix for DR classification of the 
different models is shown in Figure 7. Non-DR, moderate 
NPDR, severe NPDR, and PDR were easier to classify than 
mild NPDR. The mild NPDR, moderate NPDR, severe 
NPDR and PDR of the DaTa-ML (1-shot) model and the 
DaTa-ML (5-shot) model had lower classification accuracy. 
In addition to the DaTa-ML (20-shot) model, all the other 
models had poor classification accuracy for mild NPDR, 
and the confusion matrix of the DaTa-ML (20-shot) model 

Table 6 Performance comparisons between the DaTa-ML model and different pre-trained deep-learning models

Models Accuracy Macro_Precision Macro_Recall Macro_F1 Params (×106)

AlexNet 0.863 0.863 0.863 0.863 60.96

VGG16 0.868 0.868 0.868 0.868 138.36

VGG19 0.874 0.874 0.874 0.874 143.68

ResNet50† 0.879† 0.879† 0.879† 0.879† 25.64

GoogLeNet 0.870 0.870 0.870 0.870 6.80

SqueezeNet 0.823 0.821 0.823 0.822 1.25†

DaTa-ML (1-shot) 0.709 0.709 0.709 0.709 0.12

DaTa-ML (5-shot) 0.775 0.775 0.775 0.775 0.12

DaTa-ML (10-shot) 0.832 0.834 0.832 0.833 0.12

DaTa-ML (20-shot)‡ 0.896‡ 0.896‡ 0.896‡ 0.896‡ 0.12‡

†, the best results from different pre-trained deep-learning models; ‡, the best results from the methods overall. DaTa-ML, difficulty-aware 
and task-augmentation method based on meta-learning; VGG, Visual Geometry Group; ResNet, residual neural network.

Table 7 Performance comparisons between the DaTa-ML model and different scratch-built deep-learning models

Models Accuracy Macro_Precision Macro_Recall Macro_F1 Params (×106)

AlexNet 0.710 0.710 0.710 0.710 60.96

VGG16 0.716 0.716 0.716 0.716 138.36

VGG19 0.723 0.724 0.723 0.723 143.68

ResNet50† 0.728† 0.729† 0.728† 0.728† 25.64

GoogLeNet 0.720 0.720 0.720 0.720 6.80

SqueezeNet 0.674 0.677 0.674 0.675 1.25†

DaTa-ML (1-shot) 0.709 0.709 0.709 0.709 0.12

DaTa-ML (5-shot) 0.775 0.775 0.775 0.775 0.12

DaTa-ML (10-shot) 0.832 0.834 0.832 0.833 0.12

DaTa-ML (20-shot)‡ 0.896‡ 0.896‡ 0.896‡ 0.896‡ 0.12‡

†, the best results from different scratch-built deep-learning models; ‡, the best results from the methods overall. DaTa-ML, difficulty-aware 
and task-augmentation method based on meta-learning; VGG, Visual Geometry Group; ResNet, residual neural network.
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Figure 7 A confusion matrix comparing different the classification models is presented. Higher values are indicated by colors such as yellow 
and yellow-green. The correctness of the predictions increases as the values increase in the confusion matrix. DR, diabetic retinopathy; 
NPDR, non-proliferative DR; PDR, proliferative DR; VGG, Visual Geometry Group; ResNet, residual neural network; DaTa-ML, 
difficulty-aware and task-augmentation method based on meta-learning.

outperformed those of the other models.
Figure 8 shows the receiver operating characteristic 

(ROC) curve of the DaTa-ML 20-shot model, where 
labels 0–4 represent the five categories of DR. The areas 
under the ROC curve for non-DR, mild NPDR, moderate 

NPDR, severe NPDR, and PDR were 0.93, 0.87, 0.89, 0.90, 
and 0.91, respectively, demonstrating the effectiveness of 
the DaTa-ML model.

Visualization using t-distributed stochastic neighbor 
embedding (t-SNE)

The t-SNE was developed to reduce the dimensionality 
of high-dimensional data to two-dimensional and three-
dimensional space for display purposes (48). Figure 9 
presents the t-SNE analysis results of the DR test data and 
compares the DaTa-ML with other models. All the models 
in the t-SNE diagram aim to divide the learned features 
into five clusters. We observed that the t-SNE embedding 
generated by the DaTa-ML (20-shot) model could clearly 
separate the five groups. Thus, the DaTa-ML model was 
better able to learn identifiable features compared to other 
methods when there were only 20 training samples for each 
category, which made the classification more accurate.

Discussion

In this article, we presented an effective few-shot 
classification model for DR called the DaTa-ML model, 
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Figure 8 The ROC curve of the results of the DR classification. 
The value of the area indicates the AUC value. The ROC curves 
are labeled 0–4 (0= non-DR, 1= mild NPDR, 2= moderate 
NPDR, 3= severe NPDR, and 4= PDR). ROC, receiver operating 
characteristic; DR, diabetic retinopathy; AUC, area under the 
curve; NPDR, non-proliferative DR; PDR, proliferative DR.
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which outperformed other state-of-the-art classification 
models. The proposed DaTa-ML model has a number 
of advantages. First, the DaTa-ML model can acquire 
strong learning ability by learning multiple classification 
tasks and realize the classification of unseen tasks with 
only a few samples. Notably, both the Da and Ta methods 
contributed to the improvement of the model’s classification 
performance. In addition, the DaTa-ML model effectively 
alleviates the negative effects caused by limited data.

The DaTa-ML model outperformed the MAML model, 
with an accuracy improvement of 27.8% when there were 
only 20 training data per category. The improved accuracy 
indicates the effectiveness of the Da and Ta methods for DR 
classification. As Figure 5 shows, the DaTa-ML model can 
extract discriminative features. Ablation studies have shown 
that the Da and Ta methods are mutually reinforcing, and 
our proposed DaTa-ML model improved the performance 
of few-shot DR classification. As Figure 6 shows, the 
accuracy of the DaTa-ML model significantly increased 
after a gradient update, which further demonstrated the fast 
adaptation ability of the DaTa-ML model.

The confusion matrix showed that the DaTa-ML model 
showed better classification performance with a small 
number of samples (20-shot), but the classification accuracy 
of mild NPDR was lower than that of other classes. The 
features are difficult to extract because microaneurysms with 
mild NPDR are very small and similar in color and shape to 
hemorrhages. As a result, mild NPDR may be misclassified 

as non-DR or moderate NPDR. This phenomenon is also 
very common in the clinic among ophthalmologists.

The t-SNE results showed that the categories were not 
easily distinguishable in the case of 1-shot and that the 
more DR shots are taken, the better the classification of the 
categories. Notably, the t-SNE embedding (20-shot) clearly 
showed that these five components were separated.

The deep learning-based model achieved excellent 
generalization performance with a large amount of labeled 
training data. The DaTa-ML model used the Da and Ta 
methods to optimize the meta-learning process and obtain 
the optimal initialization parameters to achieve rapid 
adaptation on unseen tasks with only a few samples. It 
outperformed the other deep learning-based models.

We drew comparisons with two similar pieces of research 
to illustrate the unique aspects of our work. First, diabetes 
retinopathy network (DRNet) (41) is a prototype network 
for DR detection and grading. This network constructs a 
meta-classifier between basic classifiers using the attention 
mechanism. DRNet achieved a precision of 99.73% on 
the APTOS 2019 data set compared to our DaTa-ML 
model that attained an accuracy of 89.6% employing 
only 1% of the training data (5-way, 20-shot) with merely 
one updating step. While DRNet’s accuracy was visibly 
higher, our approach still demonstrated noteworthy 
performance under stringent restrictions on training data. 
The variation in results could likely be attributed to the 
attention mechanisms employed by DRNet. FEDI (49), a 

Figure 9 The t-SNE visualization of the features generated from the last layer using the DaTa-ML model and the different methods. The 
embeddings from the DaTa-ML (20-shot) model are better clustered. VGG, Visual Geometry Group; ResNet, residual neural network; 
DaTa-ML, difficulty-aware and task-augmentation method based on meta-learning; DR, diabetic retinopathy; NPDR, non-proliferative 
DR; PDR, proliferative DR; t-SNE, t-distributed stochastic neighbor embedding.
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few-shot learning model based on Earth Mover’s Distance 
algorithm equipped with a deep residual network for the 
diagnosis of DR, performed classifications on 39 categories 
in a 1,000-sample fundus image data set. Th FEDI model 
achieved a precision rate of 93.5667% on the 3-way, 10-
shot task. The accuracy of the FEDI model was higher than 
that of the DaTa-ML model; however, the FEDI model 
needs the construction of numerous classification tasks 
and training deep networks that could possibly require 
substantial computation resources and time. Conversely, 
by dynamically adjusting the emphasis on more demanding 
tasks and improving feature-extraction ability via task 
augmentation, the DaTa-ML model, significantly boosted 
the model training efficiency, achieving an accuracy of 
89.6% with merely 0.47% of the ResNet50 training 
parameters.

In relation to the limitations of our study, our approach 
needs to explore ways to enhance model performance 
even with sparse data, especially when we use a training 
set smaller than 1% of the current one. Further validation 
is also needed to assess its generalization capabilities 
over a broader range and diverse input data conditions. 
The richness and distribution of the training data could 
have significantly affected our study results, and this is 
an aspect of our research that has not yet been explored. 
Through comparison with other methodologies, our work 
not only uncovered the potential of the DaTa-ML model 
in addressing challenging DR classification tasks but also 
offered avenues for further performance enhancement. 
This could be achieved, for instance, by adding an attention 
mechanism or by optimizing our Da and Ta methods. Our 
approach may also offer valuable insights for researchers 
working on DR classification research with sparse labeled 
data.

In the future, we plan to introduce different meta-
learner structures or attention mechanisms to achieve 
the five classifications of DR and further improve the 
performance of the proposed model, especially for fine-
grained classification tasks where subtle differences between 
classes need to be captured. Additionally, we will continue 
to explore the potential applications of meta-learning in the 
field of medical image processing.

Conclusions

We presented a DaTa-ML model that combines Da and 
Ta methods within a meta-learning framework to improve 
few-shot DR classification. The Da method dynamically 

adjusts the cross-entropy loss function to focus on 
difficult tasks automatically. The Ta method increases the 
number of meta-training tasks by rotating images and 
improves feature-extraction capability. Ablation studies 
have demonstrated that Da and Ta methods complement 
each other. Compared to existing deep-learning models, 
the DaTa-ML model achieved satisfactory results with a 
small number of samples. Thus, this model could be used 
to provide a second opinion to ophthalmologists as to the 
severity of DR.
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