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Co-expression network analysis
for identification of novel
biomarkers of
bronchopulmonary dysplasia
model
Xuefei Yu, Ziyun Liu, Yuqing Pan, Xuewei Cui, Xinyi Zhao,
Danni Li, Xindong Xue and Jianhua Fu*

Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China

Background: Bronchopulmonary dysplasia (BPD) is the most common
neonatal chronic lung disease. However, its exact molecular pathogenesis is
not understood. We aimed to identify relevant gene modules that may play
crucial roles in the occurrence and development of BPD by weighted gene
co-expression network analysis (WGCNA).
Methods: We used RNA-Seq data of BPD and healthy control rats from our
previous studies, wherein data from 30 samples was collected at days 1, 3, 7,
10, and 14. Data for preprocessing analysis included 17,613 differentially
expressed genes (DEGs) with false discovery rate <0.05.
Results: We grouped the highly correlated genes into 13 modules, and
constructed a network of mRNA gene associations, including the 150 most
associated mRNA genes in each module. Lgals8, Srpra, Prtfdc1, and Thap11
were identified as the key hub genes. Enrichment analyses revealed Golgi
vesicle transport, coated vesicle, actin-dependent ATPase activity and
endoplasmic reticulum pathways associated with these genes involved in the
pathological process of BPD in module.
Conclusions: This is a study to analyze data obtained from BPD animal model
at different time-points using WGCNA, to elucidate BPD-related susceptibility
modules and disease-related genes.
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Introduction

Bronchopulmonary dysplasia (BPD), a chronic respiratory disease with distinctive

pathological features and clinical outcomes, is common in premature infants (1).

Preterm birth affects about 11% of newborns worldwide. However, due to differences

in gestational age measurements, preterm birth definitions, and data collection and

reporting, the incidence varies (2–4). Although the pathogenesis of BPD is not fully

understood, the pathological features of alveolar dysplasia have been elucidated long-

term immaturity of the alveolar structure and a reduced number of pulmonary blood
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vessels (5–7). Therefore, an in-depth investigation of the

biomarkers and molecular mechanisms (8) involved in BPD

development is required to unravel the links affecting lung

development and to explore effective intervention methods.

The WGCNA algorithm is a systems biology algorithm for

constructing gene co-expression networks. The algorithm is

based on high-throughput gene messenger RNA (mRNA)

expression data and is widely used in the international

biomedical field (9). In recent years, as high-throughput

biotechnology is widely used in the basic research and clinical

treatment of BPD (10–12), a modular analysis tool that

performs tissue/cellular networks weighted gene co-expression

network analysis (WGCNA) is increasingly being used (13).

First, the WGCNA algorithm assumes that the gene network

obeys a scale-free distribution and defines the gene co-

expression correlation matrix and the adjacency function

formed by the gene network (13, 14). Second, it calculates the

dissimilarity coefficients of different nodes and builds a

hierarchical clustering tree accordingly (15). Different

branches of the clustering tree represent different gene

modules. The genes within the same modules have a high co-

expression degree, while those with different scores have a low

co-expression degree (16). Finally, WGCNA reveals the

relationship between the modules and specific phenotypes or

diseases to identify target genes and gene networks (9); the

analysis provides system-level insight and high sensitivity for

genes with low abundance or small folding changes, without

any information loss (17, 18).

In this study, through comprehensive bioinformatics

analysis, we analyzed the RNA-Seq data from our previous

study to identify differentially expressed genes (DEGs)

between BPD and control rat models to elucidate the

mechanism behind BPD pathogenesis. Therefore, in this study

we elucidated genes that they may be used as diagnostic

indicators and therapeutic markers for BPD.
Materials and methods

Animal model

According to previous research methods, long-term

hyperoxia exposure after newborn has been considered to be a

relatively complete method in animal models that can delay

alveolar development in previous studies (6, 19, 20). Newborn

Sprague–Dawley rats were randomly and double-blindly

divided into a control group and a model group. Following

previous method (20–22), confounding factors such as birth

weight, sex, gestational age, and temperature were excluded by

random assignment. The light/dark cycle was 12 h, and the

rat had free access to food and water. The control group was

fed in the air (FiO2= 0.21), and the model group was placed

in a hyperoxia box to maintain the oxygen concentration in
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the box (FiO2= 0.85). Lime soda was placed in oxygen box to

absorb CO2 less than 0.5%. Silica gel was used to remove the

water vapor in the oxygen tank so that the humidity in the

box was maintained at 60%–70%, and the temperature of the

two groups was maintained at 25–26 °C. The dams were fed

neonatal rats and were shuffled between different cages every

24 h to reduce the effect of differences in lactation ability. The

cages were opened for 30 min daily, and the rats were

provided with clean drinking water and food. On days 1, 3, 7,

10, and 14 after birth, the neonatal pups were randomly

selected from each group. After administration of anesthesia

(isoflurane via inhalation), the thoracic cavity of the rat was

opened, the lung tissue was lavaged with 18 cm H2O pressure

normal saline, and the blood in the lung was perfused. The

lung lobes of were separated and placed in tubes. After quick

freezing in liquid nitrogen, the lung samples were stored at

−80 °C for RNA-Seq. The procedures and design of the

experiments involving animals complied with the guidelines

for animal care and use. This study was approved by the

Ethics Committee of China Medical University (ethics code:

2020PS764K).
Data preprocessing

The RNA-seq data of this study is uploaded into the GEO

database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi).

The Gene Expression Omnibus (GEO) accession number is

GSE 212098. We also obtained the BPD-related

transcriptomic dataset GSE156028 from GEO. They analyzed

tracheal aspirates (TAs) from 53 neonates receiving invasive

mechanical ventilation. 26 infants were diagnosed with

extremely preterm birth without lung disease, and 27 term

infants received invasive mechanical ventilation for elective

surgery. The “affy” package in R was used for normalization

and background correction of the data. The probe-level data

were then converted to gene expression values. For multiple

probes corresponding to a gene, the average expression value

was taken as the gene expression value in this study. We

observed the distribution patterns of disease and control

samples (before and after cluster analysis and outlier removal)

using principal component analysis (PCA).
Identification of DEGs

The “limma” package in R was used to identify DEGs

between the expression data of BPD and healthy control

samples. We performed a significance analysis on the

transcriptomic mRNA profiles data and set the selection

criteria as false discovery rate (FDR) values <0.05 and |log2
Fold change| > 0 for network construction.
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Construction of co-expression network

We analyzed the connectivity of eigengenes. Eigengenes can

provide information about the relationship between pairs of

gene co-expression modules. The “WGCNA” package in R

was used to construct co-expression networks based on the

expression data profiles. We constructed a network of mRNA

gene associations, including the 150 most associated mRNA

genes in each module, using the STRING database and

Cytoscape software to construct a protein-protein interaction

(PPI) network. Transcriptomic mRNA profiles data quality

was checked by the “impute” package in R, which detects

genes for missing values and ensures that they are good

samples. We performed sample clustering to draw sample

trees, and detect and remove outliers. We then constructed a

Pearson correlation matrix for paired genes and found a soft

threshold power β value by using the pickSoftThreshold

function of the “WGCNA” package.
Identification of hub genes

We defined hub genes in the co-expression network as

genes that satisfy two conditions: the absolute value of

Pearson correlation for module membership (MM) > 0.8 and

the absolute value of Pearson correlation for gene-trait (GS)

relationship > 0.2, representing high modular connectivity and

high clinical significance. The true central genes were

subsequently obtained by obtaining the intersection of the

central genes and significant DEGs in a co-expression

network visualized by Cytoscape 3.7.1.
Enrichment analysis

Based on the results in the previous section, we focused on

modules that were differentially expressed consistently across

developmental time. We performed GO and KEGG pathway

enrichment annotations for candidate genes in up-regulated

brown modules and down-regulated purple modules at all

time points in the BPD model. The online software DAVID

(Database for Annotation, Visualization, and Integrated

Discovery v6.8; https://david.ncifcrf.gov/) was used to

investigate gene-related biological processes and pathways. GO

biological processes and KEGG pathways with P < 0.05 and/or

FDR < 0.05 were defined as significant terms. GO terms are

divided into biological process (BP), cellular component (CC),

and molecular function (MF). Statistical significance was

considered at P-value < 0.05.
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Results

Construction of WGCNA and selection of
soft threshold

We used RNA-Seq data of normal controls (n = 30, 3

repetitions per set from postnatal days 1, 3, 7, 10, and 14)

and BPD rat models (n = 30, 3 repetitions per set from

postnatal days 1, 3, 7, 10, and 14) for analysis. We examined

genes and samples with several missing values, but all genes

passed the cutoff threshold. Next, we calculated the

correlation coefficient (Pearson Coefficient) between any two

genes of a sample and used the weighted value of the

correlation coefficient to make the connection between the

genes in the network obey scale-free networks. In this study,

the weight parameter β was 3. Since the scale independence

reached 0.8, the data had a relatively high average

connectivity (Figure 1).
Module hierarchical clustering and
correlation analysis

First, the distance between samples was calculated using an

algorithm describing the community’s composition and

structure, i.e., hierarchical clustering analysis was performed

according to the beta diversity distance matrix, and 13 gene

co-expression modules were finally constructed. The

topological overlap matrix (TOM) between all genes included

in the analysis is depicted by a heatmap. Light colors indicate

low overlap, and progressively darker reds indicate high

overlap. The results showed strong gene expression

connectivity between modules (Figure 2). The results revealed

that the 13 modules could be grouped into two clusters in

each sample at different time points. (Figure 3), and four

combinations (module brown and yellow, module black and

magenta, module tan and turquoise, and module green and

red) were highly interactive. We associated modules with

features and searched for the most significant associations.

The results showed that module red had the most significant

positive correlation with BPD model at day 1; the module

brown and yellow had the most significant positive correlation

with BPD model at day 14, and the module purple had the

most significant negative correlation with BPD model at day

14 (Figure 3).
Gene expression patterns of each module

Both in the green module and yellow module, the

expression pattern of the BPD group was up-regulated at days

10 and 14. Rassf5 etc. were the most related hub genes of this
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FIGURE 2

(A) Module hierarchical clustering tree. The upper part of the tree diagram, the vertical distance represents the distance between two nodes (genes).
(B) Heatmap representing the clustering of all modules (Maps represent the relationship between the identified modules). The heat map depicts the
topological overlap matrix (TOM) between all genes included in the analysis. Light colors indicate low overlap, and progressively darker red indicates
high overlap.

FIGURE 1

Network topology analysis of soft threshold power. (A) The x-axis reflects soft threshold capability, and the y-axis reflects the scale-free topological
model fit index. (B) The x-axis reflects the soft threshold capability, and the y-axis reflects the average connectivity (degrees).

Yu et al. 10.3389/fped.2022.946747
module. In the black module, the expression pattern of the BPD

group was up-regulated at day 1 and significantly down-

regulated at days 10 and 14. In the yellow module, the

expression pattern of the BPD group was down-regulated at

day 1, and significantly up-regulated at days 10 and 14; PPI

network revealed Prickle4 and Sod2 as the most significant

hub genes in this module. In the magenta module, the
Frontiers in Pediatrics 04
expression pattern of the BPD group was down-regulated at

days 10 and 14; PPI network analysis revealed Fgfr4, Jak3,

and Tcf7 as the most significant hub genes in this module. In

the red module, the expression pattern of the BPD model

group was up-regulated at day 1; PPI network analysis

revealed Dusp4, Golm1, and Kif16b as the most significant

hub genes in this module. In the turquoise module, the
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FIGURE 3

(A) Heatmap of the correlation between modules from the gene dendrogram and the self-gene adjacency graph (the upper part clusters the modules
according to the eigengenes of the modules. The ordinate represents the degree of dissimilarity of the nodes; each row in the lower part of the
graph. The sum column represents a module). (B) Module-feature associations (Each row corresponds to a module, and each column
corresponds to a sample. Each cell contains the corresponding correlation and P-value. The table is color-coded by correlation according to the
color legend).

Yu et al. 10.3389/fped.2022.946747
expression pattern of the BPD model group was up-regulated at

days 1 and 7, and down-regulated at day 14; PPI network

analysis revealed Dctn4, Cox4i1, and Ppib as the most

significant hub genes for this module (see Figures in

Supplementary Materials). In the brown module, the

expression pattern of the BPD group was up-regulated at days
Frontiers in Pediatrics 05
1, 3, 7, 10, and 14; PPI network analysis revealed Lgals8 and

Srpra as the hub genes of this module. In the purple module,

the expression pattern of the BPD model group was down-

regulated at days 1, 3, 7, 10, and 14; PPI network analysis

revealed Prtfdc1 and Thap11 as the hub genes of this module

(Figure 4).
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FIGURE 4

Gene expression pattern of each module (the left part exhibits the gene expression pattern, and the right part shows the hub-gene expression
network).
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Functional annotation of hub genes in
candidate modules

We performed GO and KEGG pathway enrichment

annotations for candidate genes in brown modules that

were up-regulated and in purple modules that were down-

regulated at all time-points in the BPD model. The up-

regulated genes of the brown module were mainly enriched

in the following GO terms: Golgi vesicle transport (BP),
Frontiers in Pediatrics 06
coated vesicle (CC), and actin-dependent ATPase activity

(MF) pathways; KEGG enrichment analysis revealed that

they were mainly enriched in the protein processing in

endoplasmic reticulum pathway. The down-regulated genes

of the purple module were mainly enriched in the following

GO terms: T cell chemotaxis (BP), axon cytoplasm (CC),

and magnesium ion binding pathways; KEGG enrichment

analysis revealed that they were mainly enriched in the

lysosome pathway (Figure 5).
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FIGURE 5

KEGG and GO pathway annotations of candidate module genes (A) GO enrichment of brown module; (B) KEGG enrichment of brown module; (C)
GO enrichment of purple module; (D) KEGG enrichment of purple module.
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Differential expressions were verified in
clinical patients samples

Finally, we validated the differentially expressed

differentially identified genes of interest with RNA-Seq data

from clinical patient samples from the Gene Expression

Omnibus (GEO) database. GSE156028 was selected as tracheal

aspirate samples from normal controls and patients with BPD

(n = 38). The results showed that the expression of Lgals8,

Srpra, Prtfdc1, and Thap11 were up-regulated in BPD, and

the difference of Lgals8 and Srpra was statistically significant

(Figure 6). The diagnostic effect was judged according to the

sensitivity, specificity and area under the receiver operating

characteristic (ROC) curve. The AUC value was 0.6875, which

has certain diagnostic significance. It is expected to continue to

be verified in the expanded clinical database samples in the future.
Frontiers in Pediatrics 07
Discussion

BPD is amultifactorial disease that remains amajor therapeutic

challenge in neonatal care (23, 24). According to a study conducted

by the Neonatal Research Network of the National Institutes of

Child Health and Human Development, the overall incidence of

BPD in infants born at less than 28 weeks of gestation is

estimated to be between 48% and 68% (4). In this study, we used

the complete RNA-Seq data of our research group to determine

the key features of the BPD rat model at different time-points by

constructing WGCNA modules, using data from lung tissue of

rat BPD model, and comparing the data from model group with

those from the control group. Key genes, including Lgals8, Srpra,

Prtfdc1, Thap11, were identified.

In the brown module, the expression pattern of the BPD

group was up-regulated at days 1, 3, 7, 10, and 14; PPI
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FIGURE 6

(A–D) Validation of expression levels of Lgals8, Srpra, Prtfdc1, and Thap1 in tracheal aspirate samples from normal controls and BPD patients (n= 38)
from GSE156028 in the gene expression omnibus (GEO) database. (E) Receiver operating characteristic curve for diagnosis of BPD patients using
expression levels of these four RNAs in GSE156028. Data are shown as the mean ± SEM. *P < 0.05.
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network analysis revealed Lgals8 and Srpra as the hub genes of

this module. Lgals8 (Lectin, galactoside-binding soluble 8)

codes for a member of the galactose family. Galectins are

galactoside-binding animal lectins with a conserved

carbohydrate recognition domain. Galectins have important

functions in development, differentiation, cell adhesion, cell-

matrix interactions, growth regulation, apoptosis, and RNA

splicing (25). The gene is widely expressed in tumor tissues

and is involved in integrin-like cell interactions. Additionally,

spliced transcript variants of the gene encoding different
Frontiers in Pediatrics 08
isoforms have been identified. It is also commonly expressed in

27 tissues including the spleen, skin, and lung (26–28). Srpra

(SRP receptor subunit alpha) is a subunit of the endoplasmic

reticulum signal-recognition granule receptor, which, together

with the signal-recognition granule, is involved in the targeting

and translocation of secreted and membrane proteins marked

by the endoplasmic reticulum signal sequence. Alternative

splicing results in multiple transcript variants (29–32).

Therefore, it may play an important role in the process of lung

development and the pathological process of BPD.
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In the purple module, the expression pattern of the BPDmodel

group was down-regulated at days 1, 3, 7, 10, and 14; PPI network

analysis revealed Prtfdc1 and Thap11 as the hub genes of this

module. Prtfdc1 (phosphoribosyl transferase domain containing 1)

is a hypoxanthine-guanine phosphoribosyltransferase (PRT)

homolog of unknown function that catalyzes the conversion of

hypoxanthine and guanine to their respective monophosphate-

enabled proteins homodimerization activity, and is involved in

purine ribonucleoside rescue (33, 34). Thap11 (Thanatos-

associated protein domain containing protein 11) is a

ubiquitously-expressed member of the transcription factor family

with a highly conserved DNA-binding and protein-interacting

region (35), involved in various cellular regulations such as

apoptosis, proliferation and differentiation (36–38). Relevant

studies of the above genes in BPD are lacking, and their role in

BPD models deserve further research.

Functional enrichment analysis revealed that the hub genes of

the brownmoduleweremainly enriched inGolgi vesicle transport

(BP), coated vesicle (CC), and actin-dependent ATPase activity

(MF) pathways. KEGG enrichment analysis revealed that these

genes were mainly enriched in protein processing in

endoplasmic reticulum pathway. These results are in accordance

with those from our previous study on the pathogenesis of BPD,

which suggested that cellular lipid membrane activities, such as

those of the endoplasmic reticulum, were involved in the

pathological process of BPD (39), and many studies also

confirmed that pathways, such as YAP/TAZ mediate actin-

dependent ATPase and endoplasmic reticulum function

pathways (40–42), which are involved in the functional changes

of alveolar epithelial cells. These studies confirmed that these

pathways were involved in BPD pathogenesis. The GO

enrichment analysis of the down-regulated hub genes of the

purple module revealed that the following terms were enriched:

T cell chemotaxis (BP), axon cytoplasm (CC) and magnesium

ion binding pathways. KEGG enrichment analysis revealed that

the genes were mainly enriched in pathways such as the

lysosome pathway. Concurrently, previous studies also showed

that T cell receptors are reduced in BPD (43) and may be a risk

factor for infection (44). Finally, the tracheal aspirate samples of

BPD patients in the GEO database were used to verify Lgals8,

Srpra, Prtfdc1, and Thap11 expression, and the results showed

that the above genes were up-regulated in BPD.

Significant impairment of lung development results in

persistent airway and pulmonary vascular disease, which affects

adult lung function (45–48). Clinical and translational research

that improve phenotypic classification of BPD and enable early

identification of at-risk preterm infants should improve trial

design and individualized care, which can improve outcomes for

preterm infants (49). In this study, we cited the results of Oji

Mmuo et al. (50), they analyzed the transcriptome characteristics

of tracheal aspirates in extremely preterm infants with BPD and

term infants without BPD. BPD is a complex disease with

multiple contributing factors, including genetic predisposition,
Frontiers in Pediatrics 09
epigenetic factors, arrest of lung development, chronic

inflammation, mechanical ventilation, and oxygen toxicity. In this

study, we focused on the simplified lung structure of premature

infants caused by long-term hyperoxia exposure and the normal

premature infant model from different time points. We explored

the transcriptome characteristics in the development of BPD. Oji-

Mmuo et al. (51) also analyzed miRNA and mRNA profiles in

tracheal aspirates, and due to the small number of clinical

samples, the expression of further large-scale clinical studies

deserves attention. It is believed that in the near future, the

research on BPD markers will have important progress.
Conclusion

This study revealed the potential biological targets and

enrichment pathways of BPD through the WGCNA analysis

method, which paves the way for future BPD research and early

clinical diagnosis and treatment of BPD. This is the first study

that integrates data obtained from animal models of BPD at

different time-points to construct co-expression networks using

the WGCNA approach to explore BPD-related susceptibility

modules and disease-related genes. Our findings reveal

abnormal modules and several key genes that enhance our

fundamental understanding of the molecular mechanisms of BPD.
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