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Summary

Background Plasma cell-free DNA (cfDNA) methylation has shown the potential in the detection and prognostic
testing in multiple cancers. Herein, we thoroughly investigate the performance of cfDNA methylation in the detec-
tion and prognosis of ovarian cancer (OC).

Methods The OC-specific differentially methylated regions (DMRs) were identified by sequencing ovarian tissue
samples from OC (n = 61), benign ovarian disease (BOD, n = 49) and healthy controls (HC, n = 37). Based on 1,272
DMRs, a fDNA OC detection model (OC-D model) was trained and validated in plasma samples from patients of
OC (n =104), BOD (n = 56) and HC (n = 56) and a prognostic testing model (OC-P model) was developed in plasma
samples in patients with high-grade serous OC (HG-SOC) in the training cohort and then tested the rationality of
this model with International Cancer Genome Consortium (ICGC) tissue methylation data. Mechanisms were inves-
tigated in the TCGA-OC cohort.

Findings In the validation cohort, the cfDNA OC-D model consisting of 18 DMRs achieved a sensitivity of 94.7%
(95% CI: 85.4%-98.9%) at a specificity of 88.7% (95% CI: 78.7%—-94.9%), which outperformed CA 125 (AUC:
0.967 vs 0.905, P = 0.03). Then the cfDNA OC-P model consisting of 15 DMRs was constructed and associated with
a better prognosis of HG-SOC in multivariable Cox regression analysis (HR: 0.29, 95% CI, 0.11-0.78, P = 0.01) in
the training cohort, which was also observed in the ICGC cohort using tissue methylation (HR: 0.56, 95% CI, 0.32—
0.98, P = 0.04). Investigation into mechanisms revealed that the low-risk group had higher homologous recombina-
tion deficiency and immune cell infiltration (P < o0.05).

Interpretation Our study demonstrated the potential utility of cfDNA methylation in the detection and prognostic
testing in OC. Future studies with a larger population are warranted.
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Research in context

Evidence before this study

Approximately 70% of ovarian cancer (OC) patients are
diagnosed with advanced stages. Currently, no standard
screening approach is recommended for ovarian cancer
(OC) and there are no effective methods to evaluate the
prognosis of OC. Although the cancer antigen 125
(CA125), a tumour protein biomarker, is the most used
marker for OC screening, the application is limited due
to its poor sensitivity and specificity, and failure to
improve survival in a large randomized controlled trial
for OC screening. Moreover, CA125 has also been inves-
tigated to evaluate chemotherapeutic efficacy and
prognosis but has poor accuracy. A few studies have
explored the rationality and accuracy of liquid biopsy
such as cfDNA methylation in detecting OC. However,
there is still room for the improvement of sensitivity in
detecting OC. Moreover, limited studies have focused
on the clinical utility of cfDNA methylation in the prog-
nostic stratification of OC.

Added value of this study

We built the ¢fDNA methylation models for the detec-
tion and prognostic stratification of OC patients, respec-
tively. An independent validation set was used to
ensure the robustness of the detection model. The OC
detection model exhibited excellent performance in
detecting OC, and outperformed CA125, which would
be meaningful in clinical application considering the
remarkably poor outcomes of advanced OC. Beyond
detection of OC, we also explored the possible clinical
utility of cfDNA methylation in the prognostic stratifica-
tion of OC. For prognostic markers, mechanisms investi-
gation into homologous recombination repair (HRR)
pathway and immune characteristics revealed higher
immunogenicity and immune cell infiltrations in the
low-risk group, respectively.

Implications of all the available evidence

This study demonstrated the potential utility of cfDNA
methylation markers in the detection and prognostic
testing in OC. Moreover, elucidating the mechanisms
underlying the prognosis of OC at molecular level is sig-
nificant to facilitate the treatment of ovarian cancer and
to improve the survival of patients.

Introduction
Ovarian cancer (OC) remains the most lethal gynaeco-
logical malignancy in women, and the number of newly

diagnosed cases is increasing worldwide." High-grade
serous ovarian cancer (HG-SOC) is the most common
histologic subtype of OC, accounting for 70%-80% of
OC.? OC is usually insidious onset and rapid intraperi-
toneal spread. Approximately 70% of OC patients are
diagnosed at advanced stages whose 5-year survival rate
is lower than those diagnosed at earlier stages.’ Given
the malignant properties of OC, detection and prognos-
tic estimation of OC are imperative for early interven-
tion, risk stratification, treatment determination and
management of patients. Screening strategies have
been widely studied for OC, such as transvaginal sonog-
raphy (TVS) and cancer antigen 125 (CA125).* However,
these methods had poor sensitivities (69.0%-93.8%)
and specificities (58.0%-94.6%)"° and failed to
improve survival in the randomized controlled trial for
OC screening.*” Therefore, no recommended screening
approach is available for OC nowadays.” Moreover,
CA12j5 has also been investigated to evaluate chemother-
apeutic efficacy and prognosis but has poor accuracy,
which may be due to inflammation-induced CAi2s
secretion.”

Circulating cell-free DNA (cfDNA) is extracellular
nucleic acid fragments shed into plasma via necrosis,
apoptosis, or active release of cells, which has shown
the potential to revolutionize the screening, diagnosis,
prognosis and treatment of multiple cancers.””"" The
genomic and epigenomic alterations in circulating
tumour DNA (ctDNA) can be detected by analysing
mutations, copy number variations, chromosomal rear-
rangements, and methylation alterations in plasma.”
Among them, methylation alteration stands out in the
detection and surveillance of cancers due to its early
occurrence during tumorigenesis and abundant signals
for analysis.”"* ¢fDNA methylation has been explored
in multiple types of cancers for detection including
OC." "9 A previous study reported that cfDNA methyla-
tion patterns could discriminate HG-SOC patients from
healthy controls and benign pelvic mass with a sensitiv-
ity of 41.4% at a specificity of 90.7%."® Another study
using 7 methylation markers separated epithelial OC
from benign pelvic masses with a sensitivity of 90.6%
at a specificity of 89.7%>°; however, the external valida-
tion to further prove the clinical utility was lacking.
Meanwhile, prognostic testing by cfDNA methylation is
seldom studied.

In this study, we aimed to evaluate the performance
of cfDNA methylation alteration in the detection and
prognostic testing of OC. We first identified differen-
tially methylated regions (DMRs) by comparing methyl-
ation profiles of ovarian tissues from patients who were
diagnosed with malignant and benign ovarian tumours
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and healthy individuals. Subsequently, we employed least
absolute shrinkage and selection operator (LASSO) regres-
sion analysis to develop cfDNA ovarian cancer detection
(OC-D) and prognostic (OC-P) testing models in plasma,
separately. The cfDNA OC-D model was further validated
in an independent validation cohort with plasma samples,
and the rationality of the OC-P model was tested in the
International Cancer Genome Consortium (ICGC) cohort.
Based on those candidate markers, mechanisms were
investigated in the TCGA-OC cohort, providing insight
into therapeutic implications of OC in future.

Methods

Study design and participants

This study aimed to build cfDNA detection and prog-
nostic models for OC through the following sections:
marker selection, detection model development and val-
idation, prognostic model development and validation,
and mechanistic investigation (Figure 1).

OC-specific methylation markers selection. A custom-
ized methylation panel of 161,984 CpG sites was used in
the present study, spanning ~2.7 Mb of the human
genome in 6 common cancer types including OC, lung
cancer, colorectal cancer, pancreatic cancer, liver cancer,
and oesophageal cancer. The panel was originally devel-
oped for the detection and tissue-of-origin of multi-type
cancers.”"**

Tissue samples from patients with OC and benign
ovarian diseases were collected from Cancer Hospital,
Chinese Academy of Medical Sciences Hospital. Benign
ovarian diseases were included but were not limited to
teratoma, ovarian serous cystadenoma, endometrial cyst
and fibroma of the ovary. Normal ovarian tissue sam-
ples were obtained from individuals who underwent
surgery for other non-gynecologic malignancies such as
patients with myoma of the uterus, fibroid who were
postmenopausal with hysterectomy with elective bilat-
eral salpingo-oophorectomy. The diagnosis of all forma-
lin-fixed and paraffin-embedded (FFPE) tissues was
confirmed by an independent pathologist before DNA
extraction. Tumour tissues that had tumor cells less
than 30% or failed the DNA quality control (QC) crite-
rion were excluded. The detailed methods for sample
collection, DNA extraction and methylation sequencing
are provided in Supplementary Methods.

OC-specific DMRs were selected by modified Wald-
test with an adjusted P-value <o.05 and absolute mean
difference >o0.2.

Detection model training and validation. In the train-
ing set, blood samples of patients with pathologically
diagnosed benign, and malignant ovarian tumours
were obtained from Xiangya Hospital Central South
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University from December 2017 to December 2019.
Blood samples for the above patients were all collected
prior to any treatment including local/regional therapy
and surgery. Healthy controls were recruited from
Chongqing University Cancer Hospital from November
2019 to December 2019 and defined as participants
who were free from a history of malignancy and critical
illnesses including hepatitis, liver cirrhosis, chronic
obstructive pulmonary disease, and colorectal disease.
The detailed inclusion and exclusion criteria are
described in Supplementary Methods.

In the validation set, blood samples from patients
with benign ovarian diseases, borderline and OC and
healthy controls were independently collected from the
National Cancer Center/Cancer Hospital, Chinese
Academy of Medical Sciences from December 2017 to
January 2020. The inclusion and exclusion criteria were
the same as the above.

Prognosis model training and validation. In the cfDNA
prognostic model development, blood samples from
patients with OC were obtained from the National Cancer
Center/Cancer Hospital, Chinese Academy of Medical Sci-
ences and used as the training cohort. The inclusion and
exclusion criteria are described in the Supplementary
methods. cfDNA from plasma was collected and
sequenced by ELSA-seq from the eligible participants.
Totally, 51 patients were pathologically diagnosed with
HGS-0OC, with methylome data and available survival data
were analysed (named National Cancer Center cohort
[NCC cohort]). All patients received 6-8 cycles of the plati-
num-based chemotherapy regimen. Progression-free sur-
vival (PFS) was defined as the time interval from diagnosis
to progression or death due to any cause. Resistance to plat-
inum-based chemotherapy was defined as progression/
relapse within 6 months.

A public cohort of 8o patients with HGS-OC who
had clinical survival data and tissue methylation profiles
generated by Inifinium HumanMehtylation 450K array
was obtained from the ICGC dataset (ICGC cohort)*?
and was analysed to validate the performance of the OC-
P model. The TCGA-OC cohort (n = 558) with clinical,
methylomic data sequenced by 277K array and transcrip-
tomic data was downloaded from https://xenabrowser.
net/datapages/?cohort and was used to investigate the
mechanism of the candidate methylation markers in
the prognostic model.

The patient-level data in our study including
sequencing data and diagnosis, of which readers may
contact the corresponding authors for the access for
non-commercial purposes.

Ethics approval and consent to participate
This study was approved by the Ethics Committees of
Cancer Hospital, Chinese Academy of Medical Sciences
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Figure 1. Flow diagram of study.
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Hospital (Approval No. 18-218/1796), Xiangya Hospital
Central South University (Approval No. 2017068222) and
Chongging University Cancer Hospital (Approval No.
2019167). All participants provided written informed con-
sent.

Enhanced linear-splinter amplification sequencing
(ELSA-seq)

The detailed description of ELSA-seq including
sequencing approach, data-processing pipeline, and co-
methylation region segregation and the calculation for-
mula of methylation region score was described in Sup-
plementary Methods and in our previous work.**

Construction of the OC-D and OC-P models

For the OC-D model, a five-cross-validation model with
binomial deviance minimization criteria was imple-
mented in the training set. The lambda with 1 standard
error (SE) was used for feature selection. Based on the
selected methylation markers, the predicted risk score
of each patient was calculated according to the methyl-
ated value, and the estimated regression coefficient of
the selected markers. The performance of the model
was further evaluated in the independent validation
cohort. Based on the OC-D model and CAr25 (cutoff = 35
[U/ml), a combined model was constructed by logistic
regression.

For the OC-P model, LASSO-penalized Cox regres-
sion analysis with binomial deviance minimization cri-
teria was performed to reduce the number of
methylation markers using three-fold cross-validation.
The minimum lambda was selected to screen the opti-
mal methylation markers. LASSO-penalized Cox regres-
sion analysis was used to select the candidate markers.
DMRs located within the 1 kb region upstream or down-
stream of the transcription start sites of functional
annotations genes were selected. The OC-P model was
constructed based on a linear combination of the regres-
sion coefficients (B) derived from the Cox proportional
hazards regression model multiplied by its methylation
level. Patients were divided into high- and low-risk
groups based on the median score of the prognostic sig-
nature. The prognostic markers were further validated
in the ICGC and TCGA-OC cohorts.

Statistical analysis

Continuous variables were described with median
(interquartile range [IQR]) and were compared by
Mann-Whitney U test. Categorical variables were
described with the number (percentages) and compared
by Chi-square test or Fisher’s exact test. Gene Ontology
(GO) enrichment analysis of genes with DMRs was per-
formed using Database for Annotation, Visualization
and Integrated Discovery (DAVID, https://david.ncifcrf.
gov/).** Single sample gene set enrichment analysis
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(ssGSEA) was performed to estimate the score of
immune signalling pathways defined by Puleo et al pre-
viously.** The infiltrations of 28 immune cells in the
TCGA cohort were quantified using the ssGSEA imple-
mentation R package “gsva” analysis.”® Receiver operat-
ing characteristic (ROC) analysis was performed using
the function “roc” in the R package pROC. The area
under the curve (AUC) and 95% confidence interval
(CI) were generated to evaluate the model performance.
The cut-off value for the detection model was deter-
mined by Youden’s index. The 95% Cls for sensitivity
and specificity were generated using the Clopper-Pear-
son method.>>° The comparisons of AUCs in different
groups were performed using the DeLong method.>**”
Survival curves were estimated by Kaplan-Meier (KM)
curves and compared by log-rank test with hazard ratio
determined by Cox regression. Variables with P < o.1in
the univariable Cox regression were included in the
multivariable Cox regression. A two-sided P value of
0.05 was set as the level of significance. The statistical
analyses were performed using R 3.4.2 and MedCalc

VIQ.3.1

Role of funders
Funders had no role in study design, data collection,
data analyses, interpretation, or writing of report.

Results

Patient characteristics
The demographics and clinical characteristics of all partici-
pants are summarized in Supplementary Table S1. In brief,
the methylation profiles of tissue samples were obtained
from 66 malignant OC, 49 benign ovarian disease (BOD)
and 37 healthy controls (HC) to identify OC-specific meth-
ylation markers. The age was relatively balanced between
OC and healthy/benign controls (median, 51 [IQR, 37-57]
years vs. 49 [IQR, 45-6o] years). Patients in stages I/II
account for 20.5% of all patients. HG-SOC was the main
histological type (87.9%).

The plasma samples of 47 OC patients, 25 BOD and
25 HC were used to train the cfDNA OC-D model. The
stage was relatively balanced with 21.3% stage I, 12.8%
stage II, 40.4% stage III and 25.5% stage IV. The inde-
pendent validation cohort included 57 OC plasma sam-
ples, 31 BOD and 31 HC, and 13 OC patients were in
stages I-II (26.6%). Most patients were HG-SOC
(78.9%), and the others were endometrioid cancer
(5-3%), clear cell cancer (5.3%), mucinous cancer (1.8%)
or mixed/unknown cancer (7.1%), which was consistent
with the training cohort.

Methylation markers selection
We first selected OC-specific methylation markers by
performing the targeted methylation sequencing in
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tissues from OC, BOD and HC. By comparing the
methylation signatures between OC and BOD/HC, we
identified 1,272 OC-specific DMRs (Figure 2a). Of these
DMRs, 629 (49.4%) showed higher methylation levels
in cancer tissues. GO enrichment analysis showed that
the genes with those DMRs were enriched in the path-
ways involved in transcriptional regulation, cellular fate,
and cell-cell adhesion via GO enrichment analysis
(Figure 2b), and the rest (50.6%) with lower methyla-
tion levels in tumour tissues, enriched in the pathways
related to cell adhesion, cell differentiation, cell develop-
ment, and regulation of GTPase activity (Figure 2b). As
shown in the Sankey plot (Figure 2c), the OC specific
DMRs exhibited a higher proportion of hypermethyla-
tion in CpG islands (54.9%) and CpG shores (4.8%)
and a higher proportion of hypomethylated DMRs in
introns (32.2%), and most of the DMRs were related
with protein-coding (76.2%), which was consistent with
a previous study.”

The methylation levels for the 1,272 OC-specific
DMRs are depicted in the heatmap (Figure 2d), exhibit-
ing different methylation patterns between OC and
BOD/HC. Moreover, the unsupervised clustering in OC
and BOD/HC was performed, and cancer samples
showed similar methylation patterns, which were differ-
ent from BOD/HC, suggesting these markers were can-
cer specific (Supplementary Figure 1a). The principal
component analysis further demonstrated the distinct
component between OC and BOD/HC (Supplementary
Figure 1b). Altogether, these results indicate a robust
discrimination between OC and BOD/HC based on
these selected DMRs. Hence, those DMRs were used to
develop models for detection and prognostic estimation
of OC using cfDNA methylation.

Development of the OC-D model

To develop a cfDNA detection model based on the OC-
specific DMRs, plasma samples from OC and BOD/HC
were sequenced and analysed (Figure 1). We identified
18 methylation markers in the cfDNA sequenced by
ELSA-seq and constructed an OC-D model by LASSO
regression (Figure 3a, b and Supplementary Table S2).
The methylation markers identified in the training set
are presented in Figure 3¢, showing the different meth-
ylation patterns between cases and controls. The coeffi-
cients, detail annotations and reference genes relating
to these markers are displayed in Supplementary Table
S2 and Supplementary Figure 2a. There was no linear
correlation among these markers (Spearman’s correla-
tion, P > 0.05) (Supplementary Figure 2b).

Using a best cutoff value (0.4226) as determined via
the Youden’s index, the OC-D model demonstrated a
sensitivity of 95.7% (95% CI: 85.5%—99.5%) and a spec-
ificity of 94.0% (95% CI: 83.5%—98.7%), respectively,
to discriminate OC from BOD/HC in the training set
(Supplementary Table S3). Compared with baseline

CA125 of the participants in the training cohort, the OC-
D model had a Dbetter detection performance
(AUC = 0.987, 95% CI: 0.971—1.00 vs. AUC = 0.940,
95% CI: 0.895—0.985; DelLong method, P = 0.028,
Figure 3d).

The predicted risk score of OC-D model increased
with tumor stage and was significantly higher in cancer
than in BOD and HC (Kruskal-Wallis’s test, P < o.001,
Figure 3e). The sensitivity of OC-D model was 80.0%
(95% CI: 44.4%—97.5%) in stage I, 100.0% (95% CI:
54.1%—100.0%) in stage II, 100.0% (95% CI:
82.4%—100.0%) in stage III, and 100% (95% CI:
73.5%—100.0%) in stage IV (Supplementary Table S3).
We further constructed a model combining of the OC-D
model and CA125. As a result, the combined model out-
performed CAr25 alone (AUC: 0.988, 95% CI:
0.971—1.00 vs. AUC: 0.940, 95% CI: 0.895—0.985,
DeLong method, P = o.015, Figure 3f), but not the OC-
D model (DeLong method, P = 0.62). The specificity
slightly increased to 98.0% (95% CI: 89.4%—100.0%),
compared with OC-D model (specificity: 94.0%, 95%
CI: 83.5%—98.7%), while the overall sensitivity
remained stable (sensitivity: 95.7%, 95% CI:
85.5%—99.55%, Figure 3g, h, Supplementary Table S3).

Independent validation of the OC-D model

To further validate the performance of the OC-D model,
we included an external independent validation cohort
with plasma samples. The methylation patterns of the
selected 18 DMRs were different between cases and con-
trols (Figure 4a). The sensitivity and specificity of the
OC-D model were 94.7% (85.4%—98.9%) and 88.7%
(78.7%—94.9%), respectively, for discriminating OC
from BOC/HC (Supplementary Table S3). The perfor-
mance of the OC-D model also outperformed CA125
(AUC: 0.967, 95% CI: 0.940—0.994 vs. AUC: 0.905,
95% CI: 0.841—0.969, DeLong method, P = o0.03;
Figure 4b). Consistently, the predicted risk score of the
OC-D model increased with tumour stage and was sig-
nificantly higher in cancer than in BOD and HC in the
validation cohort (Kruskal-Wallis’s test, P < o.001,
Figure 4c). The sensitivities of the OC-D model were
83.3% (95% CI: 35.90%—99.6%) in stage I, 85.7% (95%
CI: 42.1%—-99.6%) in stage II, 96.9% (95% CI:
83.8%-99.9%) in stage III, and 100% (95% CI:
39.8%—100.0%) in stage IV at a specificity of 88.7%
(95% CI: 78.7%—94.9%) (Figure 4d, Supplementary
Table S3).

We then performed subgroup analysis in the total set
including training and validation sets to demonstrate
the robustness of the OC-D model. The sensitivities
showed no significant differences stratified by age (Fish-
er's exact test, P = o0.50) or histology subtypes
(Fisher's exact test, P = 0.50) (Figure 4e, Supplementary
Table S4), indicating that the performance of the OC-D
model was not influenced by these clinical covariates.
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Figure 2. Selection of methylation markers. (a) Volcano plots illustrating the OC-specific hypo- and hyper-methylation regions. (b)
Gene ontology enrichment analyses of hypomethylated and hypermethylated genes. (c) Sankey plot of the OC-specific methylation
regions. (d) Heatmap illustrating the DMRs between OC tissues (n = 66) and healthy/benign controls (n = 86). Abbreviations: DMRs,

differentially methylated regions; OC, ovarian cancer.

The OC-D model also performed better in distinguish-
ing OC from HC/BOC than CAi25 (AUC: 0.983 vs.
0.939, DeLong method, P = o.001, Figure 4f). In addi-
tion, the OC-D model showed good discriminability in
the CArzj-negative OC (AUC: 0.881, 95% CI,
0.785—0.977). Conversely, CA125 performed inferior in
OC-D model-negative OC (AUC: o0.650, 95% CI:
0.369—0.931, DeLong method, P = o.12, Figure 4g).
Altogether, these results suggested that the perfor-
mance of the OC-D model was robust and better than
CAr2s.

Eight borderline OC were exploratively analyzed, and
all the borderline OCs were epithelial tumours (three
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serous, four mucinous, one endometrioid and one
mixed epithelial cell). Only one patient was positive in
the total set, which yielded a sensitivity of 12.5% (95%
CI: 0.32%—52.6%).

Prognostic model training and validation

In total, 51 patients with HG-SOC who underwent sur-
gery and had survival data were analysed in the NCC
cohort. The cfDNA from plasma was collected and
sequenced by ELSA-seq from the eligible participants.
The detailed characteristics of participants are depicted
in the Supplementary Table S5. Most patients were in
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stage III (72.5%). A majority of patients (74.7%) had no
residual tumour or minimal residual tumour (<o.5 cm)
after surgery. The median follow-up was 16.8 months
(range: 1 to 29.2 months).

We firstly investigated whether the OC-D model was
associated with survival in the HG-SOC. The OC-D
model rather than CA125 was a prognostic indicator for
HG-SOC (log-rank test, P = o0.013; HR, 0.35, 95% CI,
0.15-0.84, Supplementary Figure 3a-b), suggesting the
possible role of cfDNA methylation markers in prognos-
tic prediction. Since the OC-D model was constructed
for the detection of OC, we further constructed an OC-P
model based on the OC-specific DMRs to better predict
prognosis. The OC-P model was constructed by LASSO
Cox regression and included 15 methylation markers
(Supplementary Figure 3c-d). No linear correlation was
among these markers (Supplementary Figure 3e). The
coefficients, gene types and reference genes relating to
these markers are displayed in Supplementary Table
SG6. Patients were divided into high-risk and low-risk
groups according to the median value (1.10) of the risk
score of OC-P model. The median PFS in the high-risk
group was significantly shorter than that in the low-risk
group (log-rank test, P < o.0o1; HR: 0.03, 95% CI:
0.01—0.14, Figure 5a). The OC-P model yielded an AUC
of 0.949 (95% CI: 0.85—1.00) of 18-month PFS, which
outperformed CA125 (AUC: 0.659, 95% CI: 0.44-0.87,
DeLong method, P < o.05; Figure 5b). In subgroup
analysis, patients in the high-risk group had or tended
to have a shorter PFS irrespective of age, stage, and neo-
adjuvant treatment history, residual tumour etc.
(Figure s5¢). Specifically, the PFS of patients was shorter
in the high-risk group compared with in the low-risk
group in both stage II (log-rank test, P = 0.08,
Figure 5d) and stages III-IV (long-rank test, P < o.01,
Figure 5d).

Multivariable Cox regression analysis indicated that
the OC-P model was significantly associated with PFS
by adjusting clinical covariates and was an independent
prognostic factor (HR: 0.29, 95% CI: o.11—0.78, log-
rank test, P = 0.01, Table 1). Moreover, more patients in
the high-risk group were platinum-resistant than in the
low-risk group (Chi-square test, P < o.oo1, Figure se).
In addition, the risk score was significantly higher in

the platinum-resistant group compared with the plati-
num-sensitive group (Mann-Whitney test, P < o.03,
Supplementary Figure 3f).

We further tested the rationality of the OC-P model
in the tissue samples in the ICGC cohort since no
cfDNA methylation data is available. Eight of 15 genes
were matched in the ICGC cohort, and the CpG sites
closest to promoter region of these genes were selected
and validated using the same coefficient as in training
set (Supplementary Table SG). Similar results were
observed that patients in high-risk group had shorter
OS than those in low-risk group in both the univariable
(HR: 0.58, 95% CI: 0.35—0.96, Cox regression,
P = 0.034; Figure 5F) and multivariable Cox regression
(HR: 0.56, 95% CI: 0.32—0.98, Cox regression,
P = 0.04; Supplementary Table S7). Altogether, these
results suggest that OC-P can be an independent prog-
nostic factor of OC.

Mechanistic investigation based on the prognostic
methylation markers

The methylation markers identified in the prognostic
model and their implications in cancer development,
immune contexture, and homologous recombination
repair (HRR) signalling were investigated in the TCGA-
OC cohort with tissue methylome data. Eight of 15
genes were matched in the TCGA cohort, and the CpG
sites closest to promoter region of these genes were
selected (Supplementary Table SG6).

Consistent with the training results, patients in high-
risk group had shorter OS (log-rank test, P = o.o1; HR:
0.75, 95% CI: 0.60—0.93, Figure 6a) and PFS (log-rank
test, P = 0.045; HR: 0.82, 95% CI: 0.67—0.99,
Figure GOb) than those in low-risk group. Moreover, in
the TCGA cohort, the low-risk group was associated
with a higher homologous recombination deficiency
(HRD) score (median: 62 vs. 58; Mann-Whitney,
P = 0.04) and higher large-scale state transition (LST)
score (median: 22 vs. 19; Mann-Whitney, P = 0.03), but
no significant differences in the scores of loss of hetero-
zygosity (LOH: median: 16 vs. 14; NtAI: median: 24 vs.
24, Mann-Whitney, P > 0.05) or telomeric allelic imbal-
ance were observed between high and low-risk groups,

sequence. Vertical line was drawn at the value selected using five-fold cross-validation, where optimal 1 resulted in seven nonzero
coefficients. (c) Heatmap illustrating the DMRs between OC tissues (n = 47) and benign ovarian disease (n = 25) and healthy controls
(n = 25) including hypomethylated and hypermethylated genes in the training set. (d) Comparison of the ROC curves delineating
the association between the predictive probability of the OC-D model and CA125 and cancer (DeLong’s test, P = 0.028) in the train-
ing set (n = 97). (e) Predicted risk scores of healthy control (n = 25), benign diseases (n = 25), and OC (n = 47) with different clinical
stages generated from OC-D model, CA125, and combined model in the training set (n = 97) (Kruskal-Wallis test, P < 0.001). (f) Com-
parison of the ROC curves delineating the association between the predictive probability of the combined model and CA125 and
cancer (DeLong’s test, P = 0.015) in the training set (n = 97). (g) The sensitivity stratified by stages in the training set (n = 97). (h) The
specificity in benign (n = 25) and healthy controls (n = 25) in the training set. Abbreviations: DMR, differentially methylated regions;
OC, ovarian cancer; OC-D, ovarian cancer detection; LASSO, least absolute shrinkage and selection operator; ROC, Receiver operating

characteristic.
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Figure 4. OC-D model in the independent validation cohort. (a) Heatmap illustrating the DMRs between OC (n = 57) and benign
ovarian disease (n = 31) and healthy controls (n = 31) including hypomethylated and hypermethylated genes in the validation
cohort. Borderline OC (n = 8) was exploratory observation. (b) Comparison of the ROC curves delineating the association between
the predictive probability of OC-D model and CA125 and cancer (DeLong’s test, P = 0.03) in the validation cohort (n = 127). (c) Pre-
dicted risk scores of healthy control (n = 31), benign diseases (n = 31), and OC (n = 57) with different clinical stages generated from
OC-D model, CA125 and the combined model in the validation cohort (n = 127). (d) The sensitivity stratified by stages in the valida-
tion cohort (n = 127). (e) The sensitivity and specificity stratified by clinical covariates in the total cohort (n = 224). (f) Comparison of
ROC curves delineating the association between the predictive probability of the OC-D model and CA125 and cancer (DeLong’s
test, P < 0.001) in the total cohort (n = 224). (g) Comparison of ROC curves delineating the association between the predictive prob-
ability of the OC-D model and cancer in CA125-negative patients (<35 IU/ml) (n = 100) and the association between the predictive
probability of CA125 and cancer in the OC-D model-negative patients (n = 98) (DeLong’s test, P = 0.12). Abbreviation: OC, ovarian
cancer; ROC, Receiver operating characteristic.
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Figure 5. The training and validation of the prognostic model. (a) Kaplan-Meier survival curves comparing PFS between the
high-risk group (n = 26) and low-risk group (n = 25) in the training set (n = 51). (Log-rank test, P<0.001). (b) ROCs and corresponding
AUCs with 95% Cl for 18-month survival predicted by the prognostic model and CA125. (c) Subgroup analysis presenting the PFS for
low-risk group (n = 25) and high-risk group (n = 26) stratified by the clinical covariates. (d) Kaplan-Meier survival curves comparing
PFS between high-risk group (n = 26) and low-risk group (n = 25) stratified by stages in NCC cohort (n = 51). P values were compared
by log-rank test. (e) Histogram depicting the ratio of sensitive or resistant to platinum in the high-risk group (n = 26) and low-risk
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Progress free survival

Variable Univariable Cox Multivariable Cox

HR (95%Cl) P value HR (95%Cl) P value
Age (continuous) 1.03 (0.99-1.08) 0.13
Age (<60 vs. >60) 0.54 (0.23-1.23) 0.14
Stage (I-1l vs. 11I-IV) 0.31 (0.04-2.30) 0.25 2.68 (0.24-30.3) 0.43
Neoadjuvant (Yes vs. No) 1.36 (0.58-3.23) 0.48 2.96 (0.95-9.19) 0.06
PARPi (Yes vs. No) 0.51(0.15-1.72) 0.28 1.64 (0.32-8.48) 0.56
Tumor history (Yes vs. No) 0.91 (0.12-6.82) 0.93
Residual tumor (No vs. Yes) 0.52(0.21-1.27) 0.15 0.40 (0.13-1.23) 0.11
CA125 (continuous) 1.00 (0.99-1.00) 0.82
CA125 (<35 IU/ml vs. >35 IU/ml) 0 (0-Inf) 0.99
OC-P model (Low vs. High) 0.0 3(0.01-0.14) <0.0001 0.01 (0.00-0.09) <0.0001

Table 1: Univariable and multivariable cox regression analyses of progression-free survival in the NCC cohort.

indicating high levels of chromosomal instability in the
low-risk group (Figure 6c¢, d). However, the frequencies
of mutated genes in the HRR pathway including
BRCA1, BRCA2, ATM, PALB2, and RADj0/51 were rela-
tively balanced between the high-risk and low-risk
groups (BRCAz1: 5.18% vs. 4.25%, BRCA2: 6.37% vs.
3.00%, ATM: 4.38% vs. 4.25%, PALB2: 2.39% vs.
0.77%, RADj50: 1.20% vs. 2.32%, RADs51: 1.2% vs.
4.25%, Chi-square test, P > o.05; Figure 6¢), suggesting
that the variability of HRD may not be mediated by gene
mutation in HRR pathway. Further investigation into
immune characteristics in the low-risk group revealed a
lower MSIsensor Score (median: 0.7 vs. 0.91; Mann-
Whitney, P = 0.02) and a lower aneuploidy score
(median: 12 vs. 14; Mann-Whitney, P = 0.06; Figure 0c,
e), which represented higher immunogenicity and
decreased immune evasion, respectively. Moreover,
increased immune cell infiltrations were also observed
in the low-risk group, such as macrophage (Mann-Whit-
ney, P = 0.005), mast cell (Mann-Whitney, P = o.01),
natural killer cell (Mann-Whitney, P = 0.05), and type 1
T helper cell (Mann-Whitney, P = 0.03, Supplementary
Figure S4). Furthermore, individual mRNA expression
of key genes in the TCGA cohort that relate to corre-
sponding methylation sites, such as ANKRD33, IRF2,
PGCP, and SNHG18, were correlated with the pathway
score of diversity of B/T cell receptors (BCR/TCR, the
density of tumour-infiltrating immune cells (Supple-
mentary Figure Ssa, Supplementary Table S8), and the
activation of immune-related pathways Supplementary
Figure Ssb, Supplementary Table S8) than defined by

Puleo et al. previously.** The above results suggest that
the low-risk group was associated with higher HRD
scores a high immunogenicity, and immune cell infil-
trations. Core genes involving the mechanisms warrant
further study.

Discussion

In this study, we aimed to build cfDNA methylation
models for the detection and prognostic stratification of
OC patients. The ¢fDNA OC-D model could effectively
separate patients with OC from BOC/HC in the inde-
pendent validation cohort using plasma samples, and
outperformed CAi12s. Additionally, we developed an
OC-P model with 15-methylation markers using plasma
cfDNA, which could effectively stratify OC patients into
high-risk or low-risk groups and performed better than
CAi2s5. Altogether, our results provided the potential
utility of cfDNA methylation as detection and prognos-
tic markers in OC.

Currently, there is no standard screening paradigm
for OC. Although serum CAr12j is the most widely used
protein biomarker in OC clinically, it remains controver-
sial for its poor performance. In a meta-analysis by Fer-
raro et al.® the specificity of CA125 for detecting ovarian
cancer was only 78% (95% CI: 76%-80%), and the
unsatisfactory specificity was also observed in our study
(80.6%). A few studies have explored the rationality and
accuracy of cfDNA methylation in the detection of OC.
Compared with previous studies exploring cfDNA
methylation in OC,"™° the development of the OC-D

group (n = 25) (Fisher exact test, P<0.001). (f) Kaplan-Meier survival curves comparing OS between the high-risk group (n = 40) and
low-risk group (n = 40) in the ICGC cohort (log-rank test, P=0.03). Abbreviations: OC, ovarian cancer. LASSO, Least absolute shrinkage
and selection operator; PFS, progression-free survival; OS, overall survival.
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Figure 6. Mutational landscape in HRR signaling and HRD score in TCGA cohort. (a) Kaplan-Meier survival curves comparing OS
between the high-risk group (n = 279) and low-risk group (n = 279) in the TCGC-OC cohort (log-rank test, P = 0.009). (b) Kaplan-
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model was well designed, which has gone through
marker selection, model development, and validation to
ensure the robustness of the model. Our study included
an independent validation set, which may lower the pos-
sibility of overestimation of the performance. Compared
with CA125, the OC-D model exhibited excellent perfor-
mance in detecting early-stage OC (sensitivity: stage I,
83.3%, stage 11, 85.7%) at the specificity of 88.7% in the
external validation cohort, which would be meaningful
in clinical application considering the remarkably poor
outcomes of advanced OC. Moreover, the OC-D model
detected 62.5% (5 out of 8) OC in the CA125-negative
OC. However, considering the relatively low cost and
comparable early-stage sensitivity of CA125 testing.
cfDNA methylation may be a complement but not an
alternative to CA125 for the detection of OC.

Notably, our study was limited by a relatively small
size of patients with non-HG-SOC, such as clear cell,
endometrioid and mucinous ovarian cancer. Although
these histological subtypes are biologically distinct can-
cers,”® the DMRs identified in this study shared over-
lapped signatures in different subtypes. These shared
methylation signatures suggest that those candidate
DMRs were representatives of these pathological sub-
types. Borderline OC was also included for exploratory
analysis; however, its sensitivity was relatively low. In
the current study, all eight borderline OC were epithe-
lial tumours with no infiltrative growth pattern (three
serous, four mucinous, one endometrioid and one
mixed epithelial cell). Owning to the stromatic non-
invasiveness or microinvasiveness of borderline OC,
few ctDNA is released into the blood, which may be the
main reason to limit analytical sensitivity.*®

Beyond detection of OC, we also explored the possi-
ble clinical utility of cfDNA methylation in prognostic
stratification of OC. CA125 is a serum marker with a
persistent increase in many recurrent OC patients, but
it has been demonstrated to be an unideal surrogate to
predict recurrence and progression.’® Previous studies
have demonstrated that methylation markers in tissues
can predict the survival of patients with HG-SOC.>"**
However, these models heavily rely on the sequencing
of tissues. Since the methylation alteration can be
detected in cfDNA, we hypothesized that the cfDNA
methylation could also be used as prognostic stratifica-
tion. Our results showed that c¢fDNA methylation

markers could differentiate the prognosis of OC
patients and it was an independent risk factor for dis-
ease progression. Prognostic stratification analysis may
help identify patients who may benefit from aggressive
treatment and frequent surveillance. In our study, 13-
methylation-marker classifier could be utilized to evalu-
ate the risk of relapse/progression in patients with
HGS-OC, independent of clinical risk factors such as
stage and treatment and performed better than CA12s.

Since the prognostic markers are most likely associ-
ated with key signalling of cancer development and evo-
lution, which could provide insights for therapeutic
implications of OC in the future. The methylation
markers identified in the prognostic model and their
implications in cancer development, immune contex-
ture, and HRR signalling were investigated in the
TCGA-OC cohort. High levels of HRD score and chro-
mosomal instability were shown in the low-risk group,
and the variability of HRD may not be mediated by
gene mutations in the HRR pathway. It may partly
explain why patients in the low-risk group are more sen-
sitive to platinum-containing regimens. Further investi-
gation into immune characteristics revealed higher
immunogenicity and immune cell infiltrations in the
low-risk group, respectively. Indubitably, elucidating
the mechanisms underlying the prognosis of OC at the
molecular level is of significance to facilitate the treat-
ment of ovarian cancer and improve the survival of
patients. However, the treatment responsiveness
regarding target therapy or immunotherapy warrants
further investigation,

Several limitations of this study should not be
ignored. First, our study was limited by a relatively short
clinical follow-up (median follow-up time, 16.8
months), and further investigations with longer clinical
surveillance are needed to adequately assess the reliabil-
ity of this OC-P model in clinical decision-making for
patients. Second, the robustness of the OC-P model will
be further confirmed if more demographic data such as
ethnicity and comorbidities were included in the multi-
variable models. Third, the rationality of the OC-P
model was tested with methylome data from the ICGC
and TCGA cohort, which instead of cfDNA, is the meth-
ylation sequencing data of tissues. The patient cohort
with the identical sequence approach and methylation
sites is needed to validate the prognostic performance of

Meier survival curves comparing PFS between the high-risk group (n = 279) and low-risk group (n = 279) in the TCGC-OC cohort
(log-rank test, P = 0.045). (c) Heatmap depicting the differences of mutation spectrum, MSIsensor score, aneuploidy score, TMB,
purity, HRD score (sum of LST, LOH, NtAl) and mutational landscape regarding HRR signaling between the high-risk group (n = 279)
and low-risk group (n = 279) in the TCGC-OC cohort. The frequencies of gene mutations in HRR signaling were compared by fisher
exact test. P values were presented in the right side. (d) The difference of scores of HR signature, HRD, LST, LOH and NtAl in high-
risk group (n = 279) and low-risk group (n = 279). P values were compared by Mann-Whitney test. (e) The differences of aneuploidy
score between the high-risk group (n = 279) and low-risk group (n = 279) in the TCGC-OC cohort. P values were compared by
Mann-Whitney test. Abbreviations: TCGA-OC, ovarian cancer. HRD, HRR, homologous recombination repair; TMB, progress free sur-
vival; MSI, overall survival; LST, large-scale state transition; LOH, loss of heterozygosity; NtAl, telomeric allelic imbalance.
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the OC-P model in the future. Finally, whether the OC-
specific methylation markers could be utilized to moni-
tor the treatment responsiveness in tumor real-time
needs further investigation.

Collectively, our study demonstrated the rationality
and accuracy of cfDNA methylation markers for the
detection and prognostic prediction of OC. The valida-
tion in a larger population is warranted in the future.
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