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Abstract

In a time-series, memory is a statistical feature that lasts for a period of time and distinguishes the time-series from a
random, or memory-less, process. In the present study, the concept of ‘‘memory length’’ was used to define the time period,
or scale over which rare events within a physiological time-series do not appear randomly. The method is based on inverse
statistical analysis and provides empiric evidence that rare fluctuations in cardio-respiratory time-series are ‘forgotten’
quickly in healthy subjects while the memory for such events is significantly prolonged in pathological conditions such as
asthma (respiratory time-series) and liver cirrhosis (heart-beat time-series). The memory length was significantly higher in
patients with uncontrolled asthma compared to healthy volunteers. Likewise, it was significantly higher in patients with
decompensated cirrhosis compared to those with compensated cirrhosis and healthy volunteers. We also observed that the
cardio-respiratory system has simple low order dynamics and short memory around its average, and high order dynamics
around rare fluctuations.
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Introduction

The study of physiological rhythms (e.g. respiration, cardiac

cycles) and their regulation using reductionistic methods has

provided a comprehensive body of knowledge on physiological

systems after different types of interventions. However, the

limitation of this approach is that the original system needs to

be disrupted. Thus, instead of describing the original system, we

study a perturbed system that may or may not display the features

of the original system. Thus, there is a need to characterize the

complexity of physiological regulation without intervention on or

isolation of its different components [1,2].

Physiological mechanisms underlying cardio-respiratory varia-

tions include ‘‘deterministic’’ multiple feedback loops regulating

the cardio-respiratory system, as well as ‘‘stochastic’’ processes at

the cellular and molecular levels (e.g. ion channels, neurotrans-

mitter release etc) [3]. The stochastic nature of real systems

precludes the use of deterministic models to describe physiological

variations. Thus, stochastic methods may provide useful informa-

tion on the complexity of physiological rhythms, and uncover

mechanisms which are associated with complex pathologies such

as cardiac arrhythmia and asthma.

One way to approach complexity by stochastic methods is

looking for the presence of Markov property, which can be

detected in natural systems above a certain time or length scale

[4,5]. Intuitively, the physical interpretation of a Markov process is

that it is a process that ‘forgets its past’. In other words, the ability

to predict its value at any given time is not enhanced by knowing

its values in steps prior the most recent one [4]. In real complex

systems (e.g. biological rhythms) it is difficult to find absolute

Markov processes but Markov properties may be expected to hold

for a time scale (Markov length) that is the time scale over which

the process can be thought of as a Markov process [4]. The

Markov length of a time-series shows how many steps in the time-

series we need to go forward to reach a point at which the present

state of the system does not depend on its past [4–8]. In this

context, the calculation of such time scale gives us information on

the memory of a complex time-series about its past. Recent studies

have shown that these calculations provide useful results for such

diverse fields as turbulence, seismic wave analysis and finance

[4,6–8]. Their use in physiological time-series may also provide

novel insights (e.g. memory) that have not been described using

classical, reductionistic methods.

Although short-term memory has been addressed in cognitive

neuroscience, this concept has not adequately been explored

within the context of autonomic physiological rhythms, such as

cardio-respiratory fluctuations. Ghasemi et al. calculated Markov

time scale in cardiac inter-beat interval fluctuations from 8-hour
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electrocardiogram (ECG) in healthy subjects and patients with

congestive heart failure, and showed that Markov length is

significantly lower in healthy people compared to patients with

heart failure [9]. This indicates that each heartbeat keeps a longer

memory of previous heartbeats in patients with heart failure

compared to healthy individuals, a phenomenon which may be a

disadvantage in terms of responding to an ever-changing, complex

environment. Although several methods have been proposed for

detecting Markov properties in time-series (e.g. Chapman-

Kolmogrov method) [4], they usually require long time-series,

which are not always available for purposes of physiological and

clinical investigations.

We have recently applied a method called ‘‘inverse statistics’’ to

study heart rate dynamics in both health and disease [10]. Inverse

statistics has extensively been used to study turbulence and

financial markets, and uncovers the most likely waiting time

needed to reach a certain change in a time-series [11–15]. In the

heartbeat time-series, it is used to study the distribution of waiting

times needed to reach a rare event in heart rate [10]. This analysis

also showed that inverse statistical analysis can distinguish between

the ECG taken from healthy volunteers and patients with

congestive heart failure. Moreover, the inverse statistical analysis

suggested that it is more likely that a rare event (e.g. bradycardia

or tachycardia) is followed by further rare events in pathological

situations, such as congestive heart failure [10]. This type of

dynamics has qualitatively been reported in many pathologic

conditions, such as ventricular tachycardia and air trapping during

asthma attacks [16–18]. However, there is a need to develop a

method to evaluate such dynamics quantitatively. In this paper, we

describe inverse statistics as a method for analyzing non-stationary

physiological data that provides information on memory in cardio-

respiratory time-series. We also show the application of this

method to the analysis of respiratory and heart rate fluctuations in

patients with asthma and liver cirrhosis, respectively.

Methods

A. Theory
Time-series are a collection of observations gathered over time.

For example, suppose {B1, B2, B3, … } are inter-beat intervals of

consecutive cardiac cycles recorded from an individual. Such set of

data can be plotted against time as shown in figure 1. Physiological

time-series often exhibit a complex dynamics and the interest of

time-series analysis is to see what these consecutive data can tell us

about the underlying dynamics of the system. Inverse statistical

approach deals with the probability to observe a jump in a time-

series [10–14]. A jump at a predefined level (r) means finding the

points in a time-series that the inter-beat interval becomes r
second slower (or faster) than expected. In order to describe this

approach we firstly need to define ‘‘exit time’’ in a time-series

(definitions of the technical terms are given in appendix I). Exit

time is defined as the waiting time (t) needed to achieve a

predefined difference in a time-series. Inverse statistics is a

technique which is based on exit time distribution of a stochastic

process [10–14]. The method was originally developed for the

analysis of turbulence [11] and after that, it has been used in time-

series analysis in various disciplines [10,12–15].

Given a time-series Bt, the exit time t is the minimum time

needed to see the jump Bt+Dt2Bt = DB = r (figure 1). Using this

criteria, we can construct a new time-series t and all statistical

variables measured in the new time-series give ‘‘inverse’’

information compared to classical statistical parameters. A well-

known measure in this context is the distribution of the new time-

series, which means the distribution of exit times in the original

time-series. Although it seems that the original time-series and the

inverted one are related to each other, it has already been shown

that they are independent [11]. This guarantees that inverse

statistics provide novel insight into the physiological time-series

compared to conventional analytical methods.

One of the most prominent results of this technique is

comparing the exit time distribution of the main process and its

shuffled version [10]. As the shuffling process disrupts the order of

data, it tends to keep the probability distribution function but it

destroys any time correlation within the series. Shuffling of a time-

series should be performed in return (derivative) of data which are

in a stationary space [10]. After that we should make a profile

(integration) of the data to return to the non-stationary form.

Following this algorithm, we keep one-step joint probabilities –

which define Markov process – of the time-series and delete all

longer joint probabilities [10].

Now we have two time-series, the original one and the shuffled

one (figure 1). We then calculate the exit time distribution in these

two time-series in relation to a defined jump (r). The resulting

probability distribution curves show the probability to observe an

event which is r second slower (when DB$r) or faster (when

DB#2r) than a given point in the time-series. Through this

report, we define such events as ‘‘rare’’. The level of ‘rarity’ clearly

depends on the definition of r and it is convenient to set this level

in relation to the standard deviation of the data set (s), allowing

measurements on data sets with different levels of variability to be

compared.

Figure 1 shows the probability distribution curves of the exit

times in both the original and shuffled time-series. Comparing

these two distributions reveals deviation from a shuffled process in

observing a rare event at different time scales (t). It can be

observed that the difference between the two distributions occurs

only within small t regions, and afterwards the two distributions

merge. We call this interval t = tm ‘maximum joint probability

length’ because all longer joint probabilities can be produced by

the product of other, shorter joint probabilities (see appendix II).

Figure 1 shows a sample of these two distributions with an

overlap after some t = 5. The probability of this point can be

calculated from the two graphs separately. In the shuffled

distribution, one can multiply the probability of transitions in

each step, regardless of their temporal positions. As overlap is

continued for larger t times, all of the larger joint probabilities can

be written as the product of shorter joint probabilities (for more

description see appendix II). Thus, the shortest joint probability

which is reducible to one step probability is of the order of 5.

Hence, the dynamic equation of the system keeps all joint

probabilities which have order ,5. This means there is some

coupling between data points within 5 steps. This length can be

interpreted as the ‘‘memory length’’ of the system, which shows

how many previous data affect the present data point. If we

compile it to differential equation literature, it implies that the

biggest derivative of the system and the order of its dynamical

equation is 5.

As described above, finding the last non-overlapping point in

these two distributions – main exit times and shuffled exit times –

is an approximation of the order of its dynamical equation. Hence,

due to control theory, the larger the interval is, the harder it will be

to ‘control’ the system. Indeed, this depends on the threshold (r)

which we set to define the rare event. This concept is comparable

to Markov length, or the minimum scale (step) at which there is a

transition from a non-Markov to a Markov process [4]. The main

difference in our approach is level-dependency, which carries the

information of system dynamics behavior in relation to a pre-

defined level for the observation of a rare event. The Markov

Memory in Complex Physiological Time-Series
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length calculated based on the Chapman-Kolmogrov formula,

averages over all levels of fluctuation. In contrast, with our

technique, the information on how the system responds within

different level of fluctuation (r) in the time-series is also available.

By determining this, we can study the transitions of the system in

relation to the degree of its variations, and make a simple schema

of the system dynamics behavior.

Another advantage of this method is that one can look at the

joint probability of decelerating events (e.g. bradycardia, brady-

pnea) and accelerating events (e.g. tachycardia, tachypnea)

separately [10]. If the exit time is defined as the time t so that

Bt+t –Bt$r, the joint probability of decelerating rare events is

studied. If the exit time is defined as the time t so that Bt+t –

Bt#2r, one can look at the joint probability of accelerating rare

events. In this paper, we provide one example by looking at

accelerating rare events in inter-breath intervals in healthy

volunteers and patients with different types of asthma. We also

used inverse statistics approach for cardiac cycle time-series

analysis in healthy people and patients with liver cirrhosis.

B. Data collection
Ethics statement. All data were recorded according to the

recommendations and approval of the Ethics Committees of the

Tarbiat Modares University and the University of Padova. The

review board or ethics committee of both mentioned universities

approved the study and written informed consents were obtained

from all patients and healthy volunteers.

Respiratory time-series study. Asthma is a major respira-

tory disease worldwide and is classified as atopic (extrinsic) or non-

atopic (intrinsic), based on whether symptoms are precipitated by

allergens (atopic) or not (non-atopic). Very little is known about the

pathophysiology of non-atopic asthma, and it is usually difficult to

prevent or control this type of asthma with standard remedies.

Forty age-matched men including 10 healthy volunteers, 10

patients with controlled atopic asthma, 10 patients with uncon-

trolled atopic asthma, and 10 patients with uncontrolled non-

atopic asthma, ages 21 to 39 years, referred to the outpatient clinic

of Masih Daneshvari Lung Hospital (Tehran, Iran) were enrolled

in this study and written informed consents were obtained. Asthma

was categorized as controlled and uncontrolled based on the

Figure 1. Schematic view of the algorithm used to obtain the probability distribution of the exit times (t) needed to observe
accelerating or decelerating events for a defined threshold (r) in the original as well as the shuffled time-series (Bt).
doi:10.1371/journal.pone.0072854.g001
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National Asthma Education and Prevention Program (NAEPP)

guidelines [19]. Atopic asthma was diagnosed based on the results

of skin tests and clinical symptoms. Subjects laid supine for about

70 min while continuous respiration signals were collected, using a

respiratory inductive plethysmography. Two pneumotrace bands

(AD-Instruments, Australia) were fastened at the level of umbilicus

and fourth intercostal interspace, for monitoring of rib cage and

abdomen movements. The signals from the pneumotrace bands

were digitized at a 1 KHz sampling rate (Powerlab, AD-

Instruments, Australia). The plethysmography signals were cali-

brated using an artificial neural network system, as previously

described [20]. The inter-breath intervals were then calculated for

60 min using an ad hoc computer program (Chart 5, AD-

Instrument, Australia).

Cardiac time-series study. Liver cirrhosis is associated with

cardiovascular complications such as cardiomyopathy and hyper-

dynamic circulation, which impinge on the pathophysiology of the

disease, particularly in patients with decompensated cirrhosis

[21,22]. In order to compare the inverse statistical properties and

memory length of the cardiac inter-beat interval time-series in

healthy subjects and patients with cirrhosis were studied. Ninety-

three patients with cirrhosis referred to the outpatient clinics of the

Department of Medicine of the University of Padova (Italy) and no

significant co-morbidity were enrolled. The functional severity of

the liver injury was assessed by using Pugh’s modification of the

Child’s grading system [23]. Patients with Pugh scores .7 (Child

B and C) were qualified as having decompensated cirrhosis. The

reference population comprised 41 age- and sex-matched healthy

volunteers from the Padova area. None had a history, clinical or

laboratory evidence of liver or heart disease. A 10-min, single

channel ECG was recorded by placing a silver-silver chloride

electrode on each wrist. The ECG data were digitized at a

sampling rate of 256 Hz. The R peaks were detected and the R-R

interval series generated by using an ad hoc computer program

(Chart 5, AD-Instrument, Australia). The R-R interval series was

visually inspected and 8-min, artifact-free continuous R-R interval

sections were selected for analysis.

Statistical analysis. In order to allow comparisons of data

sets with different degrees of variability, all time-series were

normalized to have s= 1. We used the terminology and notation

of Ebadi et al. [10] in describing techniques for inverse statistical

analysis of physiological time-series. Inverse statistical analysis was

performed using MATLAB (version 7.8.0), as described above. To

compare the mean values, we used two-way ANOVA to test the

difference between exit times of patients and healthy volunteers

over all t times. When two-way ANOVA gave significant

outcome, Bonferroni post-hoc test was used to find out which

group(s) differed from the rest.

Results

Inverse statistical approach applied to the breathing
time-series in patients with asthma

The inverse statistical properties of the inter-breath interval

time-series in healthy subjects and patients with asthma were

investigated. In the present study, inverse statistics were applied to

four groups of aged-matched subjects: 10 healthy volunteers, 10

subjects with controlled atopic asthma (CAA), 10 subjects with

uncontrolled atopic asthma (UCAA) and 10 subjects with

uncontrolled non-atopic asthma (UNAA).

Figure 2 shows the exit times distribution for the levels of

r= 0.5s (s is the standard deviation of the inter-breath interval

time-series) in healthy volunteers and asthmatic patients, and the

corresponding shuffled data when DB#2r. Within this context,

r= 0.5s means finding the points that the inter-breath interval

becomes r seconds faster than expected. Such curves indicate the

probability distribution of times to observe respiratory cycles r
seconds faster than expected. As shown in this figure, in the

healthy volunteers, the probability curve soon overlaps with the

shuffled data curve. In contrast, in patients with asthma there is

considerably more difference between the original and shuffled

sets [curves in figures 2(a) with (b), (c) and (d)]. In addition, the

difference is even more profound in patients with uncontrolled

asthma (UCAA and UNAA).

In healthy volunteers, the exit time distribution curve has a

tendency to overlap with the shuffled curve. This indicates that

rare fluctuations in respiratory rate tend to appear randomly in

healthy subjects. In contrast, asthmatic patients show a significant

deviation from their corresponding shuffled curves. This means

that at any given exit time, it is less likely to observe a defined

accelerating event compared to the shuffled data. More intuitively,

this shows that it is more likely that a rare event (e.g. tachypnea) is

followed by further, similar rare events in patients with asthma

compared to healthy volunteers.

Effect of asthma on tm in breathing time-series
In figure 2, we can observe that in both patients and healthy

volunteers, the difference between the two distributions occurs

only in small t regions, and after that, the two distributions merge.

We call this interval tm, which can be interpreted as memory

length. As shown in this figure, the value of tm is larger in

asthmatic patients compared to healthy volunteers. Likewise,

UNAA patients exhibit longer tm than UCAA and CAA groups. In

order to show this difference quantitatively, tm values were

computed for different r levels (r= 0.25s, 0.5s, 0.75s and s). As

shown in figure 3, there is a significant difference in tm between

experimental groups (Fgroup = 35.0, P,0.001, two-way ANOVA).

Moreover, patients with uncontrolled asthma (UCAA and UNAA)

show significantly higher tm than patients with controlled asthma

or healthy volunteers. Statistical analysis also shows that tm

increases (regardless of the groups) when r is set for rarer events

(Fr = 44.1, P,0.001, two-way ANOVA). The level of ‘rarity’ of

the jump in a time-series clearly depends on the definition of r and

figure 3 shows the memory length as the function of rarity of the

jump. This finding indicates that the system has simple low order

dynamics and short memory around its average (e.g. r= 0.25s),

but has more complex high order dynamical behavior (and longer

memory length) around more infrequent fluctuations (e.g. r=s).

Inverse statistical approach in heartbeat time-series in
patients with cirrhosis

In order to compare the inverse statistical properties and

memory length of the cardiac inter-beat interval time-series in

healthy subjects and patients with cirrhosis, 41 healthy volunteers

and 93 patients were studied. Figures 4 shows the exit time

distribution for the levels of r=s in healthy volunteers and

cirrhotic patients. These curves show the probability distribution

of the time needed to observe heartbeat r seconds slower (DB$r).

As shown in this figure, the original heartbeat time-series is more

similar to the shuffled time-series in healthy volunteers compared

to cirrhotic patients. This suggests that at any given exit time, it is

less likely to observe a defined decelerating event in comparison

with the shuffled data set in patients with cirrhosis. In other words,

it is more likely that a decelerating event (e.g. bradycardia) is

followed by further, similar events in patients compared to healthy

volunteers.

Memory in Complex Physiological Time-Series
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Effect of cirrhosis on tm in heartbeat time-series
We categorized cirrhotic patients into two groups based on the

degree of hepatic impairment (26 patients with compensated

cirrhosis and 67 with decompensated cirrhosis). We then

calculated tm values for different r levels (r= 0.5s, s, 1.5s and

2s). The average tm is higher in cirrhotic patients compared to

healthy volunteers (figure 5). In addition, cirrhotic patients with

decompensated liver disease exhibited longer tm length than

patients with compensated disease. Two-way ANOVA showed

that there was a significant difference in tm between the study

groups (Fgroup = 22.7, P,0.001) and tm increased (regardless of the

groups) when r was set higher (Fr = 120.7, P,0.001). Based on

these results, it would appear that there is a longer memory length

in the patients’ heartbeat time-series. This may suggest that

sudden decelerating events could potentially affect the heart

rhythm of cirrhotic patients for longer than healthy volunteers.

Similarly to breathing dynamics, our heartbeat rhythm data

indicate that the system has a short memory around its average

region, but a longer memory length following more scarce

fluctuation; a phenomenon which is more prominent in patients

with decompensated cirrhosis.

Discussion

The analysis of the behavior of a complex natural system is

usually based on the assessment of the nonlinear interactions, as

well as the determination of the characteristics of the fluctuating

forces. This immediately leads to the problem of retrieving a

stochastic dynamical system from the original data. A basic

ingredient for such analysis can be the detection of a Markov

property that can be observed in real systems above a certain

length scale [4]. In the present study, we used an inverse statistical

approach and computed the memory length (tm), which gives an

estimate for a transition from a Markov to a non-Markov process

over relatively short physiological time-series (8 min ECG, 1 h

respiratory cycle). As discussed above, this method might give

information on memory and ‘controllability’ of physiological

systems. Although the concept of memory and controllability has

widely been used in engineering and physical sciences, it has not

been widely investigated in autonomic physiological systems such

as cardio-respiratory cycles. In the present study we provided

examples of two medical conditions (asthma and cirrhosis) which

are associated with alterations in the complexity of cardio-

respiratory fluctuations [22,24]. We observed that inverse time-

series in healthy subjects are closer to shuffled time-series, and

provided empiric evidence to show that there is a longer memory

length in pathological conditions for both cardiac and respiratory

time-series.

Asthma is still a major health problem for all age groups. For

most patients, control of asthma can be achieved with the available

drugs. However, in a small group of patients, asthma cannot be

controlled and may cause death. Recent studies have shown that a

systemic approach to respiratory dynamics may give novel insight

Figure 2. The probability distribution of the normalized exit times (t) needed to observe an accelerating event that is r = 0.5s
second faster than a given point (t) within the time-series (DB = Bt+t2Bt#20.5s). Respiratory inter-breath interval time-series were obtained
from (a) 10 healthy volunteers, (b) 10 patients with controlled atopic asthma (CAA), (c) 10 patients with uncontrolled atopic asthma (UCAA) and (d) 10
patients with uncontrolled non-atopic asthma (UNAA). Blue solid lines represent probability distribution of t of the original time-series and red dash-
dot lines correspond to their shuffled time-series. Data are presented as mean 6 standard error of mean.
doi:10.1371/journal.pone.0072854.g002
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into the pathophysiology of asthma attacks and respiratory failure

[24]. Frey et al. analyzed the time-series of peak expiratory flows in

patients with asthma and showed that the inter-breath interval

time-series exhibits long-range correlations that change signifi-

cantly with disease severity [24]. The physiological origins of these

correlations are currently unknown, and the association between

disease severity and respiratory cycle dynamics remains to be

understood. The use of inverse statistical analysis has the

advantage of translating the complexity of physiological rhythms

into a probability of observing joint rare events. For instance, our

results show that it is more likely that an accelerating rare event is

followed by further, accelerating rare events in pathological

situations such as uncontrolled asthma. The pathophysiological

feature of life-threatening asthma is air trapping (dynamic

hyperinflation), which impairs gas exchange and alveolar ventila-

tion [16]. Air trapping mainly arises following episodes of

continuous rapid respiratory rate during increased resistance to

expiratory gas flow [25]. It is also known to clinicians that

increased expiratory times are beneficial in the management of

patients with severe asthma attacks [25]. Our data show that

patients with uncontrolled asthma exhibit longer tm compared to

Figure 3. Comparison of the memory length (tm) for observing
accelerating events with varying thresholds (r = 0.25s, 0.5s,
0.75s and s, DB#2r) between healthy volunteers and patients
with different types of asthma. Respiratory inter-breath interval
time-series were obtained from 10 healthy volunteers, 10 patients with
controlled atopic asthma (CAA), 10 patients with uncontrolled atopic
asthma (UCAA) and 10 patients with uncontrolled non-atopic asthma
(UNAA). Data are presented as mean 6 standard error of mean.
*P,0.05, **P,0.01 in comparison with healthy subjects, CAA and
UCAA. +P,0.05, ++P,0.01 in comparison with healthy volunteers
(Bonferroni post-hoc test).
doi:10.1371/journal.pone.0072854.g003

Figure 4. The probability distribution of the normalized exit times (t) needed to observe a decelerating event that is r = s second
slower than a given point (t) within the time-series (DB = Bt+t2Bt $s). Cardiac inter-beat interval time-series were obtained from (a) 41
healthy volunteers and (b) 93 patients with liver cirrhosis. Blue solid lines represent probability distribution of t of original time-series and red dash-
dot lines correspond to their shuffled time-series. Data are presented as mean 6 standard error of mean.
doi:10.1371/journal.pone.0072854.g004

Figure 5. Comparison of the memory length (tm) for observing
decelerating events with varying thresholds (r = 0.5s, s, 1.5s
and 2s, DB$r) between healthy volunteers and patients with
different degree of hepatic failure. Cardiac inter-beat interval time-
series were obtained from 41 healthy volunteers, 26 patients with
compensated cirrhosis and 67 patients with decompensated cirrhosis.
Data are presented as mean 6 standard error of mean. *** P,0.001 in
comparison with healthy volunteers (at r= 1.5s and 2s) and patients
with compensated cirrhosis (at r= 2s).
doi:10.1371/journal.pone.0072854.g005

Memory in Complex Physiological Time-Series
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healthy subjects and patients with controlled atopic asthma.

Translating this concept into clinical medicine, a sudden

accelerating event could potentially affect the respiratory rhythm

of asthmatic patients for longer than healthy controls. In other

words, if a rare event (e.g. sudden acceleration of respiratory rate)

occurs in healthy subjects, they tend to ‘forget it’ earlier than

patients with asthma. Furthermore this memory is exaggerated in

patients with uncontrolled asthma (UCAA and UNAA), a

phenomenon which may make them more susceptible to develop

dynamic hyperinflation. Apart from the importance of breathing

dynamics in pathophysiology of asthma, respiratory rhythm

fluctuation analysis has the potential to be used for noninvasive

risk assessment for development of asthma episodes [26]. The

concept of memory has a direct implication in quantification of

controllability in physiological systems such as cardio-respiratory

system [10]. These concepts, however, have not been used for risk

assessment in patients with asthma. Future investigations may

evaluate the diagnostic or prognostic value of these novel concepts

in predication of acute exacerbation of asthma. In present study

we focused on development of a method for quantification of

memory in physiological time-series in health and disease. Our

report does not explore the mechanism of increased memory

length of respiratory time-series during asthma. Future studies

might look to understand the mechanism and implications of

present findings.

We also looked at cardiac inter-beat interval time-series in

patients with cirrhosis. Cirrhosis is associated with a functional

cardiomyopathy which is defined as cardiac chronotropic/

inotropic incompetence under conditions of physical or pharma-

cological stress [21]. Previous reports have shown that b-

adrenergic-dependent cardiac accelerating mechanisms are im-

paired in this patients’ population [21]. The exact prevalence of

cirrhotic cardiomyopathy remains unknown but it is believed that

the majority of patients with cirrhosis who have reached Child-

Pugh stages B or C (or decompensated cirrhosis) exhibit clinical

features of cirrhotic cardiomyopathy [21]. In the present study we

showed that there is a significant elevation of tm for decelerating

cardiac events in patients with decompensated liver cirrhosis

compared to healthy people and patients with compensated

cirrhosis. This may indicate that a sudden decelerating event could

potentially affect the cardiac rhythm of patients with advanced

cirrhosis for a longer duration than healthy subjects or patients

with compensated cirrhosis. Thus, if a decelerating cardiac event

occurs in a healthy person, it will be ‘forgotten’ earlier than in a

patient with advanced cirrhosis. Whether or not this phenomenon

is part of cirrhotic cardiomyopathy, continuous bradycardia

represents a clear disadvantage for a cirrhotic patient in unstable

circulatory conditions. We also looked at the memory length to

observe accelerating rare events in the heartbeat time-series of

healthy subjects and patients with cirrhosis. However we were

unable to find a significant difference between the two groups

when DB#2r (data not shown). Although this finding goes along

with impaired cardiac responsiveness to accelerating adrenergic

stimulation in cirrhosis [21,22], it also indicates that prolongation

of memory in cardiac rhythm in cirrhosis is not symmetric in terms

of observing both accelerating and decelerating rare events.

Liver cirrhosis is a complex disease and is associated with

peripheral vasodilatation, volume overload as well as cardiomy-

opathy [21,27]. Peripheral vasodilatation reduces cardiac afterload

that masks clinical sign and symptoms of cardiomyopathy in

patients with cirrhosis. Therefore, cirrhotic cardiomyopathy

remained an academic curiosity until recently, initially because it

appeared to have little clinical relevance [27]. However, the

widespread use of orthotopic liver transplantation and its

associated stresses on the cardiovascular system have highlighted

this type of cardiomyopathy [27,28]. Heart failure has emerged as

an important cause of morbidity and mortality in the liver

transplant recipient [27,28]. Due to lack of sensitive and

noninvasive diagnostic tests, recognition of cirrhotic cardiomyop-

athy is difficult prior to liver transplantation. Echocardiography

has been used for noninvasive diagnosis of cardiac dysfunction.

However, due to volume overload, most of the echocardiographic

cardiac indices cannot be used for the evaluation of systolic

function in cirrhotic patients. The diagnosis of cirrhotic cardio-

myopathy is still a challenge for clinicians, as it is mainly based on

exercise or pharmacological stress tests, which are not always

feasible. There is a hope that complexity science can pave the way

for development of novel noninvasive techniques for diagnosis of

cirrhotic cardiomyopathy based on mathematical analysis of

physiologic signals. To the best of our knowledge, our method of

observing memory in physiological time-series is novel and may be

applied to translational research as well as clinical medicine (i.e.

the diagnosis of cirrhotic cardiomyopathy). Future studies may

provide useful insight into the application of the concept of

‘‘memory in complex physiological rhythms’’ in clinical practice.

As described above tm indicates the minimum time interval over

which the data can be considered as a Markov process in the

prediction of observing a rare event. Thus tm is connected to the

limitations we face in predicting the future of a time-series. Increased

tm of cardio-respiratory time-series system in pathological conditions

shows that the future of the time-series might be more predictable in

disease. Although this is a disadvantage for an adaptive system in

response to an ever-changing environment, it explains why it is more

likely to observe predictable patterns in cardio-respiratory rhythm

during pathologic conditions (e.g. Cheyne-Stokes breathing in

patients with congestive heart failure) [29].

Memory is a concept that has been used in a variety of

disciplines. In the present study, the concept was ‘quantified’ by

determining the time scale over which rare fluctuations do not

appear randomly within a physiological time-series. We also

provided empiric data to show that rare fluctuations in both

cardiac and respiratory cycles are ‘forgotten’ quickly in healthy

subjects while their memory is kept for longer in pathological

conditions. This report corroborates the concept of ‘‘dynamical

diseases’’ [30] and the common experience that sometimes ‘it is

best to forget’!
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