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Abstract: Background: The occurrence of androgen-dependent prostate cancer mainly depends on
prostate cancer stem cells. To reduce the risk of androgen-dependent prostate cancer, the direct
elimination of prostate cancer stem cells is important, but an elimination strategy has not yet been
established. A previous study showed that natural killer (NK) cells can preferentially target cancer
stem cells in several solid tumors except prostate cancer. In this context, this study was undertaken to
investigate if NK cells can selectively attack androgen-dependent prostate cancer stem cells. Methods:
Prostate cancer stem-like cells were separated from an androgen-dependent prostate cancer cell line
(LNCaP) using a three-dimensional culture system. LNCaP stem-like cells or LNCaP cells were
co-cultured with human NK cells (KHYG-1) for 24–72 h, and cell viability was determined using
the WST-8 method. The expression of each protein in the cell membrane was evaluated through
FACS analysis, and mRNA levels were determined using real-time PCR. Results: KHYG-1 cells had
more potent cytotoxicity against LNCaP stem-like cells than LNCaP cells, and the potency of the
cytotoxicity was strongly related to the TRAIL/DR5 cell death pathway. Conclusion: NK cells can
preferentially target prostate cancer stem-like cells via the TRAIL/DR5 pathway.

Keywords: androgen-dependent prostate cancer; stem cells; NK cells; cytotoxicity; TRAIL/DR5
signal pathway

1. Introduction

Among male-specific diseases, prostate cancer represents a major health risk world-
wide. Cancer statistics for the USA in 2018 estimated the number of cases and subsequent
deaths from prostate cancer to be 164,900 and 29,430, respectively [1]. During the early
stages of disease, prostate cancer cells grow and survive in an androgen-dependent man-
ner, so androgen deprivation therapy is initially effective [2]. However, the efficacy of the
therapy is short, and, ultimately, prostate cancer cells become androgen-independent and
have several malignant phenotypes, such as castration-resistant prostate cancer (CRPC) [3].
Since androgen-independent prostate cancers remain incurable because of their resistance
to androgen deprivation therapy [4], an effective preventive approach that can suppress
the appearance of CPRC is urgently required to improve prostate cancer survival rates.

Cancer stem-like cells are minor and undifferentiated cell populations in cancer tissues
and have been proposed to be the primary mediators of tumor initiation, progression,
recurrence, metastasis, and resistance to treatment [5,6]. Moreover, prostate cancer stem-
like cells may be responsible for the occurrence and recurrence of prostate cancer and the
appearance of the androgen-independent and incurable phenotype [7,8]. To reduce the
occurrence of androgen-dependent prostate cancer and the development of the androgen-
independent phenotype after androgen deprivation therapy, the complete and effective
eradication of androgen-dependent prostate cancer stem-like cells is required.
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Natural killer (NK) cells are a subset of lymphocytes that play a central role in the
innate immune response to tumors and infections. They have the ability to kill virally
infected or transformed cells via the directed release of lytic granules or by inducing death
receptor-mediated apoptosis via the expression of Fas ligand or tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL) [9]. Furthermore, NK cell-mediated cytotoxic
activity is closely associated with the occurrence of cancer, and decreased NK cell activity
contributes to an increased risk of cancer [10]. As mentioned, the complete eradication of
androgen-dependent prostate cancer stem-like cells could lead to an effective reduction
in the risk of prostate cancer occurrence. Taken together, it seems possible that activated
NK cells could reduce the occurrence risk of prostate cancer via the effective elimination of
androgen-dependent prostate cancer stem-like cells. In fact, it has been reported that NK
cells preferentially induce cytotoxicity against cancer stem cells within a non-cancer stem
cell population [11]. In this context, the present study was undertaken to clarify if NK cells
can preferentially eradicate prostate cancer stem-like cells and, if so, to determine which
pathways contribute to NK cell-mediated cytotoxicity against cancer stem-like cells.

2. Materials and Methods
2.1. Reagents

All reagents were purchased from Nakarai Tesque (Kyoto, Japan), Wako Chemi-
cals (Osaka, Japan), and Pepro Tech (Cranbury, NJ, USA), unless otherwise indicated.
Fetal bovine serum (FBS) was purchased from Bio West (Nuaillé, France). Phycoery-
thrin (PE)-conjugated antibodies for flow cytometry (FACS) were PE-IgG1 isotype Ctrl,
PE-anti-human CD262 (DR5, TRAIL-R2), PE-anti-human CD261 (DR4, TRAIL-R1), PE-anti-
human DR3 (TRAMP), PE-anti-human DcR1 (TRAIL-R3, CD263), PE-anti-human DcR2
(CCR6), PE-anti-human MICA/MICB, PE-anti-human CD335 (NKp46), and PE-anti-human
CD337 (NKp30) from Bio Legend (San Diego, CA, USA); PE-anti-hULBP-1 and PE-anti-
hULBP-2/5/6 from R & D Systems (Minneapolis, MN, USA); and PE-anti-human NKG2D
(activating) from eBioscience (San Diego, CA, USA). PerCP/cy5.5-conjugated antibodies
for FACS were PerCP/cy5.5 Mouse IgG1 isotype Ctrl, PerCP/cy5.5 anti-human CD56
(NCAM), PerCP/cy5.5 anti-human CD96 (TACTILE), and PerCP/Cyanine5.5 anti-human
CD3 from Bio Legend. PCR primers were obtained from Nihon Gene Research Laboratories
(Miyagi, Japan).

2.2. Cell Culture and Preparation of Prostate Cancer Stem-like Cells

LNCaP cells (American Type Culture Collection, Manassas, VA, USA) were used as a
typical human androgen-dependent prostate cancer cell line [12], and KHYG-1 cells (JCRB
Cell Bank, Osaka, Japan), which have a similar phenotype to human NK cells [13], were
utilized as a representative NK cell line. The cells were routinely grown in RPMI-1640
supplemented with 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ◦C
in a humidified atmosphere with 5% CO2. To stimulate the growth of KHYG-1 cells,
recombinant human IL-2 (50 ng/mL) was added to the culture medium. To isolate LNCaP
stem-like (LN-stem) cells from LNCaP parental (LN) cells, we utilized the tumorsphere-
forming capacity of the cells in a three-dimensional (3D) culture system using a low
attachment culture plate (Sumitomo Bakelite Co., Ltd., Tokyo, Japan) [14]. In the study,
we checked the mRNA and protein levels of some cancer stem cell markers (CD24, CD44,
CD133, SOX2, Oct3/4) and the tumorsphere-forming capacity of the 3D culture to confirm
stemness of the cells from tumorsphere [14]. Moreover, every time we prepared the cells
from tumorspheres in this study, we checked the mRNA levels of some cancer stem cell
markers to validate the stemness of the cells. As the spheroid-forming capacity of LN-stem
cells in a two-dimensional (2D) culture using 2% FBS DMEM/F12 medium was retained
for four passages, the cells from four passages were used. In the co-culture experiment, LN
cells or LN-stem cells were cultured in the 2D culture system for 24 h before culturing with
KHYG-1 cells.
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2.3. Cell Viability Assay

To evaluate the effects of KHYG-1 cells and recombinant human (rh) TRAIL on
the viability of LN cells and LN-stem cells, a WST-8 assay was carried out. LN cells
and LN-stem cells were seeded in a 96-well plate (5 × 103 cells/well), cultured for 24 h,
and subsequently co-cultured with KHYG-1 cells or treated with rf TRAIL for 24–72 h
(cell numbers and doses are indicated in their respective figure legends). After each
treatment, 10 µL of WST-8 solution was applied to each well containing 100 µL of cell
suspension and incubated for a further 30 min at 37 ◦C in 5% CO2. Color development
was monitored at 450 nm using a multi-well plate reader (SUNRISE Rainbow RC-R, Tecan
Japan, Kanagawa, Japan). For the co-culture experiment, the KHYG-1 cell-containing
supernatant was removed after culturing, the well was washed with phosphate-buffered
saline (PBS) twice, and the WST-8 solution was added.

2.4. Crystal Violet Staining

To further confirm the difference between the KHYG-1 cell-induced cytotoxicity on LN
cells and LN-stem cells, crystal violet (CV) staining was carried out. LN cells and LN-stem
cells were seeded in a 24-well plate (5× 104 cells/well), cultured for 24 h, and subsequently
co-cultured with KHYG-1 cells for 24 h. After the co-culture, the culture supernatant was
discarded, and 300 µL of 4% paraformaldehyde solution was applied to each well and
fixed for 15 min. After the fixed cells were washed three times with phosphate-buffered
saline, 300 µL of 4% CV solution was added to each well. CV staining was carried out at
37 ◦C in a humidified atmosphere with 5% CO2 for 12 h, and photos were taken of the cells
stained with CV at 20×magnification.

2.5. Isolation of mRNA and Real-Time Quantitative PCR (qPCR)

Total RNA was isolated from the cells using the Tissue Total RNA Extraction Mini Kit
(Favorgen Biotech Corp., Ping-Tung, Taiwan). Total RNA (300 ng for each sample) was
used for cDNA synthesis using the ReverTra Ace qPCR RT Kit (Toyobo, Osaka, Japan).
cDNA templates were analyzed by real-time PCR using the Thermal Cycler Dice Real Time
System Lite (TAKARA BIO INC., Shiga, Japan) and THUNDER-BIRD™ SYBR qPCR Mix
(Toyobo, Osaka, Japan), with the following program: 10 s at 95 ◦C followed by 40 cycles of
15 s at 95 ◦C and 1 min at 60 ◦C. Primer sets are shown in Table 1. Gene expression data
were normalized to the expression of the reference gene ribosomal protein L32 (RPL32).

Table 1. List of PCR primers.

Gene Primer Sequence (5′–3′)

NKG2D Forward primer TGAGAGTAAAAACTGGTATGAGAGCCA
Reverse primer TGCATGCAGATGTATGTATTTGGAG

MICA Forward primer AGACTTGACAGGGAACGGAAAG
Reverse primer TCCAGGTTTTGGGAGAGGAA

MICB Forward primer ACCTTGGCTATGAACGTCACA
Reverse primer CCCTCTGAGACCTCGC

DR5 Forward primer GTCGTTGTGAGCTTCTGTCC
Reverse primer GCCTCTCCCTGTTCTCTCTC

RPL32 Forward primer AACCCTGTTGTCAATGCCTC
Reverse primer CATCTCCTTCTCGGCATCA

2.6. Flow Cytometry Analysis

The following antibodies were used: anti-CD3-PerCP-Cy5.5, anti-CD56-PerCP-Cy5.5,
anti-CD96-PerCP-Cy5.5, anti-NKG2D-PE, anti-NKp30-PE, anti-NKp46-PE, anti-MICA/B-
PE, anti-ULBP-1-PE, anti-ULBP-2/5/6-PE, anti-DcR1-PE, anti-DcR2-PE, anti-DR3-PE, anti-
DR4-PE, and anti-DR5-PE. Cells (1 × 105 cells/mL) were incubated with the indicated
antibodies for 60 min on ice and washed twice with PBS with 2% FCS. Flow cytometry
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analysis was performed using FACS Calibur (BD Immunocytometry Systems, Franklin
Lakes, NJ, USA), and data were analyzed by Cell Quest software.

2.7. Statistical Analysis

Differences among groups were analyzed by one-way ANOVA followed by the Tukey–
Kramer test, and differences between two groups were analyzed by one-way ANOVA
followed by the Student’s t-test. All statistical analyses were performed using Ekuseru-
Toukei software (Social Survey Research Information Co., Ltd., Tokyo, Japan). Differences
with p-values of 0.05 or less were considered statistically significant. All experiments were
conducted with a minimum of three samples from three independent experiments, and the
data are expressed as the means ± SEM. The number of samples for each experiment is
shown in the respective figure legends.

3. Results
3.1. Comparison between the Sensitivity of LN-Stem Cells and LN Cells to NK Cell-Mediated
Cytotoxicity

As KHYG-1 cells have been shown to possess strong cytotoxicity against cancer
cells [15], we evaluated the expression patterns of cytotoxicity-related activating receptors
on the surfaces of the NK cells. As shown in Figure 1A, the KHYG-1 cells expressed the
activating receptors NKG2D, NKp30, and NKp46 on their surfaces. Next, we compared
the sensitivity of LN-stem cells and LN cells to NK cell-mediated cytotoxicity. LN-stem
cells showed a significantly greater sensitivity than LN cells to KHYG-1 cell-mediated
cytotoxicity after co-culture for 24–72 h (Figure 1B). Similarly, CV staining clearly showed
that KHYG-1 cell-mediated cytotoxicity against LN-stem cells was much higher than that
against LN cells (Figure 1C).
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Figure 1. KHYG-1 cells preferentially target LN-stem cells over LN cells. (A) Analysis of the expression of each activation
receptor on the surfaces of KHYG-1 cells by FACS compared with a matched isotype control (black line). (B) Co-culture of
KHYG-1 cells with LN-stem cells (filled column) or LN cells (open column) was performed for 24, 48, and 72 h, and cell
viability was determined by the WST-8 assay. Cell viability of LN-stem cells or LN cells without KHYG-1 cells is expressed
as 100%, and values for the other groups are expressed as percentages of the control. Data are the means ± SEM from six
samples. * p < 0.05 and ** p < 0.01 when compared with LN cells in each group. E/T: the ratio of KHYG-1 cells to LN-stem
cells or LN cells. (C) Co-culture of KHYG-1 cells with LN-stem cells (LNCaP CSC) or LN cells (LNCaP Con) was performed
for 24 h, and CV staining was carried out. This result is representative of one of three independent experiments. E/T: the
ratio of KHYG-1 cells to LN-stem cells or LN cells. Con: control (without KHYG-1 cells). Magnification ×20.

3.2. Relationship between KHYG-1 Cell-Mediated Cytotoxicity against LN-Stem Cells and
Activation Receptor NKG2D and Its Ligands

A previous study demonstrated that the main activation receptor on the surfaces of
KHYG-1 cells is NKG2D [15], and, as shown in Figure 1A, we also observed the clear
expression of NKG2D on the surfaces of the KHYG-1 cells. We then sought to establish
which activation receptor-bound ligands are likely to be expressed on the surfaces of LN-
stem cells. As shown in Figure 2A, FACS analysis showed that, of the NKG2D-bound
ligands, MICA/B ligands were present at much higher levels in LN-stem cells than in LN
cells (MICA/B-positive cells: LN-stem cells, 59.7%; LN cells, 1.7%). On the other hand,
two other ligands bound to NKG2D, ULBP-1 and ULBP-2/5/6, had similar expression
levels in LN-stem cells and LN cells (Figure 2A). In agreement with this result, the mRNA
levels of MICA and MICB in LN-stem cells were significantly higher than in LN cells
(Figure 2B). However, neutralization of the NKG2D function by the anti-NKG2D antibody
treatment did not affect KHYG-1-dependent cytotoxicity against LN-stem cells or LN cells
(Figure 2C).
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(A) Comparison of cell surface expression levels on NKG2D ligands (MICA/B, ULBP-1, and ULBP-2/5/6) between LN-stem
cells and LN cells using FACS. Black, blue, and red lines indicate the matched isotype control, LN cells, and LN-stem cells,
respectively. Values in the blue and red boxes indicate MICA/B-positive cell percentages for LN cells and LN-stem cells,
respectively. (B) mRNA levels of MICA and MICB in LN cells and LN-stem cells. Each column indicates the mean, and
vertical lines indicate SEM (n = 3). Values for LN cells are expressed as 1, and values for LN-stem cells are expressed as
ratios relative to LN cells. ** p < 0.01 when compared with LN cells. (C) The effect of anti-NKG2D antibodies (treatment
concentration 10 µg/mL) on KHYG-1-induced cytotoxicity against LN-stem cells or LN cells when co-cultured for 72 h. Cell
viability was determined by the WST-8 assay. Values for the control are expressed as 100%, and values for the other groups
are expressed as percentages of the control. Data are means ± SEM from six samples. E/T: the ratio of KHYG-1 cells to
LN-stem cells or LN cells.
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3.3. Relationship between KHYG-1 Cell-Mediated Cytotoxicity against LN-Stem Cells and the
Death Receptor Pathway

CD133-positive human liver cancer stem-like cells have high expression levels of DR5
and are sensitive to TRAIL treatment [16]. Based on this, we estimated the expression
patterns of five death receptors and decoy receptors related to TRAIL found on the surfaces
of LN-stem cells and LN cells. FACS analysis indicated that the percentages of DR5-positive
cells in LN-stem cells and LN cells were 97.6% and 19.5%, respectively (Figure 3A). This
observation was supported by the significantly higher levels of DR5 mRNA expression
in LN-stem cells than in LN cells (Figure 3B). However, there were no differences in the
expression levels of other death and decoy receptors (DR3, DR4, and DcR1/2) on the
surfaces of LN-stem cells and LN cells (Figure 3A). Furthermore, rhTRAIL treatment for
24–48 h significantly inhibited the viability of LN-stem cells in a dose-dependent manner
when compared with LN cells (Figure 3C), suggesting that KHYG-1 may preferentially
induce cytotoxicity against LN-stem cells via the TRAIL/DR5 death receptor pathway.
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Figure 3. Relationship between TRAIL-DR5 signaling and KHYG-1 cell-induced cytotoxicity against LN-stem cells.
(A) Comparison of cell-surface expression levels on TRAIL-related receptors (DcR1, DcR2, DR3, DR4, and DR5) between
LN-stem cells and LN cells by FACS. Black line, blue line, and red line indicate matched isotype control, LN cells, and
LN-stem cells, respectively. Values in the blue and red boxes indicate DR5-positive cell percentages for LN cells and LN-stem
cells, respectively. (B) mRNA levels of DR5 in LN cells and LN-stem cells. Each column indicates the mean, and vertical
lines indicate SEM (n = 3). Values for LN cells are expressed as 1, and values for LN-stem cells are expressed as ratios
relative to LN cells. * p < 0.05 when compared with LN cells. (C) The effect of rhTRAIL on the viability of LN-stem cells and
LN cells when co-cultured for 72 h. Cell viability was determined by the WST-8 assay. Values for the control are expressed
as 100%, and values for the other groups are expressed as percentages of the control. Data are the means ± SEM from six
samples. * p < 0.05 and ** p < 0.01 when compared with LN cells for each treatment dose.

4. Discussion

Cancer stem cells constitute a small subpopulation of cancer cells capable of self-
renewal and unlimited replication, which initiates tumor formation [17]. Cancer stem
cells are also the primary causes of tumor resistance to conventional treatments and may
survive initial therapies, leading to the recurrence, progression, and metastasis of prostate
and several other cancer types after therapy [18–21]. Thus, it has been hypothesized that
complete regulation of the development of prostate cancer stem-like cells may lead to
the establishment of effective preventive measures against prostate cancer. Of previously
reported methods of cancer stem cell regulation, we focused on the NK cell-dependent
eradication of cancer stem cells because it has been reported that NK cells can specifically
target cancer stem-like cells and inhibit the occurrence of cancer [22,23]. This study in-
vestigated whether NK cells can preferentially target prostate cancer stem-like cells and
effectively induce cytotoxicity in these cells.

A previous study has clearly showed that the potent cytotoxic activity of KHYG-1 cells
depends on the degranulation pathway being regulated by perforin and granzyme [15]. In
this study, we also observed that a main activation receptor of NK cells, NKG2D, is essential
for initiating the degranulation pathway. Additionally, with respect to the expression of
NKG2D ligands, it is known that the induction of such ligands within cells can be caused by
factors that stress the genome, such as phenotypes of cancer stemness [24], infection, and
carcinogenesis [25]. Through the interaction of NKG2D and its ligands, the receptor can act
as a main recognition receptor to sense and eliminate transformed and infected cells [24].
In this study, we showed that the ratio of MICA/B- (NKG2D ligands) positive cells and
associated mRNA levels was much higher in LN-stem cells than in LN cells. These data
suggest that KHYG-1 cells preferentially target LN-stem cells via the interaction of NKG2D
and MICA/B, inducing cytotoxicity. However, anti-NKG2D antibody treatment did not
attenuate KHYG-1 cell-mediated cytotoxicity against LN-stem cells, indicating that the
degranulation pathway regulated by NKG2D-MICA/B is not involved in cytotoxicity. This
observation is discordant with the observation of higher levels of MICA/B in LN-stem cells,
and we are currently unable to explain this discrepancy. However, it has been reported
that MICA/B proteins in breast cancer stem-like cells easily detach from cell surfaces [26],
so our data may be explained by the detachment of these ligands from the surfaces of
LN-stem cells. In order to resolve these conflicting data, further studies will be needed.
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In addition to the degranulation pathway, the death receptor pathway with TRAIL as
the death receptor ligand is known to be one of the NK cell-mediated cytotoxic pathways,
and this death receptor pathway is representative of extrinsic apoptotic pathways [27]. After
TRAIL binds to death receptors DR4/DR5, downstream molecules are activated, which
induces apoptosis via the activation of the caspase cascade [28]. In this study, LN-stem cells
were shown to have elevated DR5 mRNA and cell-surface protein levels compared with
LN cells, which is in agreement with a previous report that found DR5 expression in liver
cancer stem-like cells to be high [16]. Our study also shows that other TRAIL receptors, DR3
and DR4, and its decoy receptor, DcR1/2, are not expressed on the surfaces of LN-stem cells,
so we speculate that KHYG-1 cells may preferentially induce cytotoxicity in LN-stem cells
via the activation of the TRAIL/DR5 death receptor pathway. This speculation is supported
by our observation that rhTRAIL cytotoxicity was more potent against LN-stem cells than
LN cells. Furthermore, it seems to be possible that KHYG1-induced cytotoxicity against
LN-stem cells mainly depends on apoptosis based on previous reports [29,30] and our
preliminary observations. One study suggested that the expression and function of caspase-
8 are central to TRAIL-mediated cell death, and that the activation of caspase-8 initiates a
caspase cascade, ultimately leading to apoptosis [29]; the other study demonstrated that NK
cell-induced activation of TRAIL/caspase-8 signaling is clearly associated with apoptosis,
showing typically apoptotic features such as cell condensation and membrane blebbing [30].
Additionally, we observed that caspase-8 activation was induced in co-culture of KHYG-1
cells with LN-stem cells in our preliminary experiment.

CD73 has been implicated as an important factor in the induction of the high expres-
sion of DR5 in LN-stem cells. In a preliminary experiment, we observed the expression of
CD73 in LN-stem cells to be higher than in LN cells. CD73 acts as an immune-suppressor by
stimulating the expression of DR5 via AMP-activated protein kinase, resulting in elevated
immune-suppressive adenosine production in cancer stem cells and subsequent inhibition
of the mammalian target of rapamycin [31–33]. Thus, it seems plausible that the high
expression of CD73 in LN-stem cells leads to the up-regulation of DR5. If the findings in
this study can be shown to be true for human NK cells, the targeted eradication of prostate
cancer stem cells by NK cells may become a feasible preventive strategy for prostate cancer.
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