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Phylogenies from unaligned 
proteomes using sequence 
environments of amino acid 
residues
Juan Carlos Aledo

Alignment-free methods for sequence comparison and phylogeny inference have attracted a great 
deal of attention in recent years. Several algorithms have been implemented in diverse software 
packages. Despite the great number of existing methods, most of them are based on word statistics. 
Although they propose different filtering and weighting strategies and explore different metrics, their 
performance may be limited by the phylogenetic signal preserved in these words. Herein, we present 
a different approach based on the species-specific amino acid neighborhood preferences. These 
differential preferences can be assessed in the context of vector spaces. In this way, a distance-based 
method to build phylogenies has been developed and implemented into an easy-to-use R package. 
Tests run on real-world datasets show that this method can reconstruct phylogenetic relationships 
with high accuracy, and often outperforms other alignment-free approaches. Furthermore, we present 
evidence that the new method can perform reliably on datasets formed by non-orthologous protein 
sequences, that is, the method not only does not require the identification of orthologous proteins, 
but also does not require their presence in the analyzed dataset. These results suggest that the 
neighborhood preference of amino acids conveys a phylogenetic signal that may be of great utility in 
phylogenomics.

It is a well-established fact that different genes from the same set of organisms often lead to different phylo-
genetic trees1. That happens even with mitochondrial-encoded genes2,3, despite the fact that such genes are 
inherited together without recombination, and the risk of confusing orthologous with paralogous sequences is 
non-existent. If, in addition, phenomena such as horizontal gene transfer, recombination, unrecognized paralogy, 
and highly variable rates of evolution are in place, the task of reconstructing accurate phylogenetic topologies 
can be seriously compromised. Not surprisingly, species phylogenies derived from comparison of single genes 
are seldom consistent with each other. To overcome this problem, two strategies are currently used when resolv-
ing phylogenies based on multiple alignments. In the so-called supermatrix approach, individual aligned genes 
or proteins are concatenated into a supermatrix, which is then subjected to phylogenetic analyses using either 
maximum likelihood or Bayesian inference4. In the alternative supertree method, gene or protein data sets are 
analyzed separately. Afterwards, the trees derived from these independent analyses are used to infer a single 
joined phylogeny5,6. Each of these alternatives has its own strengths and weaknesses, which has led to extensive 
discussions regarding the best strategy to conduct phylogenetic analyses of sequence data from multiple genes 
or proteins7–10. Nevertheless, both approaches have in common that they are time consuming, and they often 
require manual intervention. On the other hand, among the diverse sources of error in molecular phylogenies, 
incorrect sequence alignments rank high11,12. Therefore, those methods based on sequence alignments are prone 
to artefacts when used in phylogenomics13. Indeed, a number of previous studies have shown that the alignment 
method can have a considerable impact on tree topology14–18. Although attempts have been made to deal with 
multiple sequence alignment uncertainty during phylogeny reconstruction19, a satisfying and computationally 
tractable way to deal with alignment uncertainty is still lacking. Alignment artefacts have become even a bigger 
problem in the era of phylogenomics, where thousands of genes are automatically analyzed without accounting 
for alignment uncertainty14.

With the advent of modern genome sequencing techniques, it is now possible to consider phylogeny infer-
ence based on total genome sequences. However, given that most genomes contain millions of nucleotides, the 
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standard approach based on positional homology (where each column from a multiple sequence alignment 
is considered as a homologous character) represents a daunting challenge that becomes impractical. Conse-
quently, alternative approaches to compare whole genomes have been proposed. Thus, gene arrangement20, gene 
content21,22, protein domain-abundance23 and presence/absence of protein folds24, are all strategies tha have 
been explored to compare whole genomes. More recently, a wide number of alignment independent methods 
to compare sequences have been developed, and their utility in phylogenomics has been evaluated25. Thus, the 
so-called alignment-free approach include methods based on words-counting26,27, some of which implement 
diverse strategies to discriminate signal from noise28–33. Other published methods are based on matching statis-
tics (i.e., they compute the length of common substrings with or without allowing mismatches)34,35, information 
theory36,37, splits driven by common subsequences38, or even based on micro-alignments39,40.

In this study, we describe a new and fast method for generating molecular phylogenies using multiple pro-
teomes or protein-coding genomes. This method, which does not require sequence alignment or the identification 
of orthologous proteins, is based on a rationale previously unexplored in the context of phylogeny: the preference 
of each amino acid to be surrounded by other amino acids41–43. These species-specific preferences seem to posse 
a phylogenetic signal enough to reconstruct accurate tree topologies, even when the proteins analyzed from each 
species are functionally unrelated to the proteins selected from the other species.

Results
The new method, which is presented in detail in the Methods section, is briefly outlined in Fig. 1. As a proof 
of concept, the phylogenetic relationships of 11 species of bovids were addressed using their protein-coding 
mitogenomes and the new method described below, hereinafter referred to as Env-NJ. The topology of the 

Figure 1.   Encoding species as vectors. (A) For the sake of concreteness, we will focus on the sequence 
environment around methionine residues using a radius of 10 residues. Thus, a given proteome can be 
characterized by a matrix whose elements (mij) provide the absolute frequency of the amino acid i at the 
position j in the environment of methionine residues. For instance, in this example, the element m2,2 gives the 
number of arginines found 9 residues away (toward the N-terminal) from any methionine residue. (B) Now, 
considering not just methionine but the 20 proteinogenic amino acids, the protein-coding genome of a given 
species of interest can be characterized by a set of 20 square matrices of order 20 or, equivalently, by a vector, 
u ∈ U8000 , of dimension 8000. It should be noted that, when coding species as vectors, the dimension of these 
vectors will depend on the radius chosen. Thus, in general, u ∈ Un , where n = 800radius . (C) In this way, each 
vector is used to represent an organism (its protein-coding genome) within a set evolutionarily related species. 
(D) The direction, rather than the norm, of these vectors reflect the preference of the different amino acids at the 
different positions of the sequence environments. The work of encoding a set of genomes in a set of vectors is 
conveniently carried out by the function otu.space() from the R package accompanying the current paper.
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reconstructed tree is shown in Fig. 2. This topology fully matches that of the tree inferred using traditional 
alignment-based methods (reference tree), which reflect the accepted phylogeny for this groups of bovids. For 
comparative purposes, the same mitogenomes were employed with the following alignment-free tree-building 
packages: Feature Frequency Profile (FFP)26, alfpy (a stand-alone Phyton application that implements different 
approaches as well as different metrics to assess vectors distances)27, CVTree32, ALFRED-G35, SANS-serif38 and 
Prot-SpaM39. In all cases, the resulting trees were compared to the reference tree. Table 1 shows the correspond-
ing normalized Robinson-Foulds distances (nRF).

We next challenged the Env-NJ method with a larger, more diverse, and more controversial dataset consisting 
in the mitogenomes of 34 mammalian species spanning 13 orders. The phylogenetic relationships between the 
organisms of this set were first analyzed by Reyes and coworkers using a maximum likelihood approach44. Fig-
ure 3A reproduces the topology of the tree obtained by these authors. Nevertheless, since alternative hypotheses 
for the phylogeny of this set of species have been proposed by different authors29,36, in order to adopt a reference 
tree we resorted to the community resource VerLife45 to draw the topology of the tree (Fig. 3B) that relates the 
species under study according to this source45. As shown in Fig. 3, the Env-NJ method yields a credible phylog-
eny where primates, carnivores, cetartiodactyls and perissodactyls are some of the well-established mammalian 
lineages that appear as uninterrupted groupings within the Env-NJ tree. In order to obtain a more quantitative 
comparison, we next built 14 trees using the same dataset and different alignment-free tree building approaches. 
Afterwards, the normalized Robinson-Foulds symmetric difference between these trees and the reference tree was 
computed (Table 2). As it can be observed in this table, the Env-NJ with the Jensen-Shannon metrics provided 
the best result, understood as the one that provided the lowest Robinson-Foulds distance to the reference tree.

At this point, we reason as follows. If the amino acid neighborhood preference in sequence environments is a 
species feature, then perhaps it may be possible to reconstruct phylogenetic relationships using non-orthologous 
proteins sets. To explore the potential of the Env-NJ method to provide such an achievement, we selected five 
species (three animals and two plants) whose phylogenetic relationships are well established. For each species 
a random set consisting of 180 proteins was selected, with the only restriction that no protein belonging to 
this set could be homologous to any of the proteins belonging to the remaining species. These random sets of 
non-orthologous protein sequences were used to generate the Env-NJ tree. To compare the performance of our 
method with that of previously proposed alignment-free approaches, the same dataset was subjected to 7 alterna-
tive methods, including Prot-SpaM39, W-metric27,33, FFP26, CVTree32, ALFRED-G35, normalized compression 
distances (NCD)27 and SANS-serfi38. As shown in Fig. 4, the new methodology yielded the correct tree topology 
even when non-orthologous proteins were employed, and under this specific conditions it seems to outperform 
other tree building methods.

Finally, all proteins encoded by the full genome of 11 plant species (Table 3) were used as input data to assess 
the performance of Env-NJ and other alignment-free alternative methods. The results are summarized in Table 4. 
As it can be observed in these tables, the Env-NJ approach was able to analyze 425,115 proteins accounting for 
169,094,374 amino acids in less than 1 min, providing a reliable phylogeny.

Figure 2.   Molecular phylogeny of bovids. The phylogenetic relationships of 11 species of bovids were addressed 
using their protein-coded mitogenomes and different tree building methods (including classical alignment-
based methods). Most methods produced the same tree topology shown in this figure.
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Discussion
Traditionally, the starting point to construct a molecular phylogeny has been identifying and gathering a set of 
evolutionary related (orthologous) sequences. However, before using these sequences to build a tree, it is impor-
tant to ensure that each nucleotide or amino acid in each sequence is compared only with the corresponding 
homologous nucleotide or amino acid in the other sequences, what is referred to as positional homology. This 
preliminary task, that is one of the trickiest parts of the whole phylogenetic reconstruction process, is performed 
by aligning the sequences to one another. It should be noted that none of the frequently used alignment pro-
grams is capable of consistently producing perfect alignments, even when moderately divergent sequences are 
employed46. For that reason, it is always important to check the alignment quality before continuing with the 
phylogenetic reconstruction procedure. Obviously, this protocol is not scalable to phylogenomics. Since most 
genomes contain millions of sequence characters, these traditional methods based on positional homology 
comparisons, carried out over ambiguously resolved large-scale alignments, are unbusinesslike14. Thus, it seems 
that the problem of phylogenomic reconstruction based on site-evolution has no solution in the near future. To 
overcome this problem, different approaches have been explored.

One of these approaches to whole genomes phylogenetic analysis has focused on the ordering of the genes 
along the chromosomes, others have resorted to the gene content as its primary data. Since proteins (gene 
products) are modular and many of them are mosaics of diverse domains47, phylogenomic strategies based on 
domain-abundance or the presence/absence of protein folds may performe even better than those focused on 
genes23,24. The use of gene-order and gene/fold-content data in the context of phylogeny is the subject of impor-
tant research efforts. However, there remain important challenges. Thus, mapping a full genome is a demanding 
task. Furthermore, the posterior analysis of the annotated genome is computationally expensive and time con-
suming because of the extreme mathematical complexity of gene orders. For instance, for a chromosome with 
n distinct single-copy genes, the number of possible states is 2n−1(n− 1)!48. This computational burden means 
that all reconstruction methods face a considerable challenge, even on small datasets consisting of only a few 
genomes. Furthermore, in these approaches the information contained into a genome is largely simplified, in 
the sense that point mutations are completely ignored, that is, these methods somehow make use of lossy data 
compression, so that relevant information contained in a genome is not used to infer its evolutionary history.

In this report, we describe a phylogenetic approach based on sequence environments, that may be valuable 
for the future development of new methods for generating phylogenies from whole genomes without resorting 
to lossy data compression. The protein-coding genomes of the set of organisms being analyzed are converted into 
a matrix, where each column vector represents a species. More concretely, these vectors represent the species-
specific amino acid neighborhood preferences (Fig. 1). During our previous investigations, we had observed that 
different species exhibited a differential preference for amino acids in the vicinity of their methionine residues, 
even though the relative frequencies of the proteinogenetic amino acids were very similar in the analyzed spe-
cies. This observation prompted us to explore the potential of sequence environments to accurately reconstruct 
phylogenies using genome/proteome datasets of unaligned sequence information.

Table 1.   Normalized Robison-Foulds distances between trees obtained using different alignment-independent 
methods with respect to the refence tree shown in Fig. 2. The whole protein-coding mitogenomes of a group 
of 11 species of bovids were analyzed. For details regarding the input parameters used for each method, please 
consult the given reference. Briefly, cos, jsd and cheb stand for cosine, Jensen-Shannon and Chebyshev metrics, 
respectively. The abbreviation f.p. stands for ‘further proccessing’. Thus (a) filters considering background 
words frequencies; (b) uses singular value decomposition, SVD, to analyze the 4-mer frequency data; (c) the 
matrix used for the W-metric analysis was Blosum62. (d) The parameters for the use of Prot-SpaM were weight 
of w = 6, with d = 40 (don’t-care positions) and m = 5 patterns. The parameter filter of SANS-serif was set to 
‘strict’. NCD is the acronym of normalized compression distance.

Approach Package Method Language nRF Reference

Seq. environment EnvNJ cos, r = 10 R 0 Herein

Seq. environment EnvNJ jsd, r = 10 R 0 Herein

Seq. environment EnvNJ cheb, r = 10 R 0.38 Herein

k-mer counts alfpy cos, k = 5 Python 0.18 25,27

k-mer counts alfpy jsd, k = 5 Python 0 25,27

k-mer counts alfpy cheb, k = 5 Python 0.75 25,27

k-mer counts FFP jsd, k = 5 C 0 26

k-mer + f.p aCVTree cos, k = 5 C++ 0 32

k-mer + f.p bEnvNJ SVD R 0 29

k-mer + f.p calfpy W-metric Python 0.75 25,27,33

Matching statistics ALFRED-G cos, k = 5 C++ 0.13 35

Splits/subseq SANS-serif strict, c = 2 C++ 0.75 38

Information theory alfpy NCD Python 0 25,27

Micro-alignments Prot-SpaM d(6, 40, 5) C++ 0.13 39
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Figure 3.   Comparison of phylogenetic tree topologies. The same mitogenomes of 34 mammalian species 
spanning 13 orders were employed with different tree-building methods. (A) Reproduces the topology of the 
tree obtained by Reyes et al. 2000 using a maximum likelihood approach based on multiple sequence alignments 
of nucleotides. (For protein genes, only first and second positions, P12, of the codons were considered. In 
addition, the ND6 gene encoded by the L-strand was also excluded). (B) The topology of the tree provided by 
VerLife45 for the relevant species is drawn. (C) The topology of the tree obtained using Env-NJ with a radius 
of 46 and the Jensen-Shannon metric is shown. (D) The topology of the tree constructed using singular value 
decomposition (SVD) to analyzed 4-mer string frequencies derived from unaligned sequences is also shown.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7497  | https://doi.org/10.1038/s41598-022-11370-x

www.nature.com/scientificreports/

As a first approach, we decided to carry out a pilot study using an optimal set of genomes, in the sense that the 
expected tree topology is widely accepted. To this end, we chose the protein-coding mitogenomes of 11 species of 
bovids. This dataset is small and simple, coding for only 143 proteins whose sequences are curated by the NCBI 
and are expected to be very accurate. Furthermore, the orthologous relationships among the proteins belonging 
to this set are obvious and undisputed. Moreover, mitochondrial sequences are often used to generate metazoan 
phylogenies, hence the tree generated by Env-NJ can be easily compared to those generated by other methods, 
either based on sequence alignments or alignment-independent. Given that the group of organisms was formed 

Table 2.   Normalized Robison-Foulds distances between trees obtained using different alignment-independent 
methods with respect to the refence tree shown in Fig. 3B. The whole protein-coding mitogenomes of a group 
of 34 mammalian species were analyzed. For details regarding the input parameters used for each method, 
please consult the given reference. Briefly, cos, jsd and cheb stand for cosine, Jensen-Shannon and Chebyshev 
metrics, respectively. The abbreviation f.p. stands for ‘further proccessing’. Thus (a) filters considering 
background words frequencies; (b) uses singular value decomposition, SVD, to analyze the 4-mer frequency 
data; (c) the matrix used for the W-metric analysis was Blosum62. (d) The parameters for the use of Prot-SpaM 
were weight of w = 6, with d = 40 (don’t-care positions) and m = 5 patterns. The parameter filter of SANS-serif 
was set to ‘strict’. NCD is the acronym of normalized compression distance.

Approach Package Method Language nRF Reference

Seq. environment EnvNJ cos, r = 46 R 0.39 Herein

Seq. environment EnvNJ jsd, r = 46 R 0.26 Herein

Seq. environment EnvNJ cheb, r = 46 R 0.61 Herein

k-mer counts alfpy cos, k = 5 Python 0.29 25,27

k-mer counts alfpy jsd, k = 5 Python 0.29 25,27

k-mer counts alfpy cheb, k = 5 Python 0.90 25,27

k-mer counts FFP jsd, k = 5 C 0.29 26

k-mer + f.p aCVTree cos, k = 5 C++ 0.29 32

k-mer + f.p bEnvNJ SVD R 0.29 29

k-mer + f.p calfpy W-metric Python 0.87 25,27,33

Matching statistics ALFRED-G cos, k = 5 C++ 0.29 35

Splits/subseq SANS-serif strict, c = 2 C++ 0.70 38

Information theory alfpy NCD Python 0.29 25,27

Micro-alignments Prot-SpaM d(6, 40, 5) C++ 0.35 39

Figure 4.   Alignment-free trees built using a dataset of non-orthologous protein sequences. For each species a 
random set consisting of 180 proteins was selected, with the only restriction that no protein belonging to this 
set could be homologous to any of the proteins belonging to the remaining species. These random sets of non-
orthologous protein sequences were used to generate the corresponding trees.
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by species closely related, and the optimal conditions discussed above, not surprisingly, most methods consist-
ently produced the same tree topology (Fig. 2 and Table 1).

Encouraged by this success, we next tested the Env-NJ method with a larger, more diverse and more contro-
versial dataset consisting in the mitogenomes of 34 mammalian species spanning 13 orders. This dataset, first 
analyzed by Reyes and coworkers using alignment-based methods44, has been used later by different authors 
employing different tree building methods. Thus, the same genome set has been analyzed by Stuart and cow-
orkers using the SVD-4-Gram method29 and also by Li and colleagues, using a method that also works on una-
ligned sequences, but in this case exploiting the Kolmogorov complexity concept to estimate distances between 
genomes36. In the R package EnvNJ accompanying the current paper (throughout the text we use the term 
Env-NJ to indicate the method, while EnvNJ refers to the software) we have implemented, in addition to the 
Env-NJ method, those utilities required to reproduce the trees reported by Reyes et al. (Fig. 3A) and Stuart and 
coworkers (Fig. 3D), which are shown herein for comparative purposes. The method based on the Kolmogorov 
complexity was not included in the comparison because, although it faithfully reproduced the tree obtained by 
Cao and coworkers for a smaller and less conflictive set of mammalian species3, it offered a rather poor phylogeny, 
showing polytomy, for the taxa we are addressing herein (see Fig. 2 from Li et al. 2001).

Figure 3 and Table 2 summarize the topologies comparison of the trees obtained with the different methods 
being compared. Overall, the Env-NJ tree seems to be a reasonably good approximation to the reference tree, 
at least as good as any of the trees obtained by alternative methods. This was also true when mitogenomes from 
other groups of vertebrates were analyzed (Fig. S1). To this respect, a group of 25 species of fish, which is widely 
used to benchmark alignment-independent phylogenetic methods25, was analyzed using different approaches. 
Again, the Env-NJ yielded excellent results, both in term of computation time as well as regarding tree-topology 
reliability.

Table 3.   Plant dataset used to benchmark Env-NJ and other alignment-free approaches. The FASTA files 
were downloaded from UniProtKB and used without further processing for establishing the phylogenetic 
relationship between the indicated species.

Species Proteome ID Number Proteins Number Residues

Arabidopsis lyrata UP000008694 32,113 11,683,288

Arabidopsis thaliana UP000006548 39,328 16,643,018

Brassica rapa UP000011750 40,809 15,960,268

Capsella rubella UP000029121 28,039 11,560,300

Citrus clementina UP000030687 31,273 12,651,335

Citrus sinensis UP000027120 44,003 16,339,056

Eucalyptus grandis UP000030711 44,150 16,844,312

Eutrema salsugineum UP000030689 28,349 11,549,942

Gossypium raimondii UP000032304 66,534 27,687,073

Theobroma cacao UP000026915 40,611 17,402,995

Vitis vinifera UP000009183 29,906 10,772,787

Table 4.   Normalized (nRF) and generalized Robison-Foulds (GRF) distances between trees obtained using 
different alignment-independent methods with respect to the reference tree for the 11 plant species indicated 
in Table 3, which was obtained from AFproject25. For details regarding the input parameters used for each 
method, please consult the given reference. Briefly, cos and jsd stand for cosine and Jensen-Shannon metrics, 
respectively. (a) The parameters for the use of Prot-SpaM were weight of w = 6, with d = 40 (don’t-care 
positions) and m = 5 patterns. The parameter filter of SANS-serif was set to ‘strict’. NCD is the acronym of 
normalized compression distance. Runtimes were obtained with an Intel(R) Core(TM) i5-8600 CPU 3.10 GHz 
processor. Prot-SpaM was run on a Linus machine (Intel(R) Core™ i7-10700KF CPU 3.80 GHz processor).

Package Method nRF GRF Time (secs) Reference

EnvNJ cos, r = 4 0.250 0.236 82 Herein

EnvNJ jsd, r = 1 0.250 0.236 54 Herein

alfpy cos, k = 5 0.625 0.475 126 25,27

alfpy jsd, k = 5 0.125 0.127 125 25,27

alfpy NCD 0.750 0.617 75 25,27

FFP jsd, k = 5 0.875 0.583 732 26

CVTree cos, k = 5 0.000 0.000 36 32

ALFRED-G cos, k = 5 0.250 0.206 59 35

SANS-serif strict, c = 2 1.000 1.000 8 38

Prot-SpaM a(6, 40, 5) 0.000 0.000 42 39
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In the current work, the accuracy of the different alignment-independent methods has been evaluated by a 
comparison of topology between the reconstructed tree using a given method and the corresponding reference 
tree. For this purpose, we computed the nRF distance between the trees, which is a straightforward to interpret 
metric (Fig. 5). Despite of being a metric widely used in the literature to quantify similarity between pairs of 
phylogenetic trees25,26,35,39,40,49,50, the nRF is known to present certain shortcomings such as rapid saturation and 
imprecise values51,52. Therefore, to rule out that these drawbacks could be biasing the results presented herein, we 
also computed a generalized RF metric (GRF) designed to avoid the limitations of the nRF53. Using two different 
datasets (Fig. S1 for the fish group, and Table 4 for the plant group) we found a good positive correlation between 
nRF and GRF (R-squared = 0.97, p-value = 2.4 10–9), and the conclusions obtained regarding the benchmark 
analyses are equally well supported regardless the metric employed.

We have extensively assessed the performance of the Env-NJ method on mitogenomes. In this context, the 
new method seems to be a valid alternative for phylogenomics since it has three valuable properties: (i) accuracy, 
(ii) speed and (iii) independence of positional homology. Indeed, Env-NJ does not rest on positional homology, 
and it does not require to identify orthologous proteins to proceed with the computation. However, one thing 
is that the method does not require identification of orthologous proteins, and quite another is that the method 
does not require the presence of orthologous proteins in the dataset. The latter is guaranteed when working with 
mitogenomes, where the presence of one-to-one orthologous proteins is guaranteed. On the other hand, when 
all proteins encoded by the full genome of the analyzed species are used as input, the success of the Env-NJ 
approach (Table 4) could be due to the presence of a high proportion of orthologous proteins in the input dataset. 
Therefore, we next wondered whether the Env-NJ method would be able to reconstruct a phylogeny analyzing 
non-orthologous proteins? That is, when each species contributes a set of proteins completely unrelated to the 
protein sets contributed by the other species under analysis.

To address this issue, we chose a small set of species formed by three animals (human, chimp and gorilla) and 
two plants (Arabidopsis thaliana and A. lyrate). For each species we randomly sampled 180 protein sequences 
from its proteome. The selection process was random with the only restriction that there were no pairs of ortholo-
gous proteins among the 900 sequences that made up the dataset (both the script to sample the sequences and the 
sequences themselves can be obtained at https://​bitbu​cket.​org/​jcale​do/​envnj/​src/​master/​Ancil​laryC​ode/​Oma_​
Plant​Animal.R, and https://​bitbu​cket.​org/​jcale​do/​envnj/​src/​master/​Datas​ets/​oseq.​Rda, respectively). When this 
dataset was subjected to Env-NJ, the recovered tree was the expected one (Fig. 4), where human was closer to 
chimp than gorilla, and the two plants appeared as sister operational taxonomic units (OTUs). More interest-
ingly, under these challenging conditions, the strategy based on sequence environments was the only one that 
provided an acceptable result. Having a tree building method that does not require orthologs identification is a 
good thing, and Env-NJ is indeed such a method. Having a method that does not even require the presence of 
orthologs in the dataset, is even better and Env-NJ may fulfil this feature. A drawback of Env-NJ, as well as most 
alignment-free approaches, is that they are distance methods. That is, there is no evolutionary model behind 
them, which precludes the use of maximum likelihood techniques to explore tree spaces. Undoubtedly, further 
research effort will be required before we can witness a significant breakthrough in the field of phylogenomics.

Figure 5.   Summary of the performance of different programs with different data sets. Four sets of sequences 
were analyzed with the programs EnvNJ, alfpy, FFP, CVTree, ALFRED-G, SANS-serif and Prot-SpaM, using 
different parameters combinations. The perform of each method, in terms of nRF distances to the reference 
tree is given in Table 1 for the bovid group, Table 2 for the group of mammals, Table 4 for the plant species and 
Figure S1 for the fish species. This figure summarizes and shows the results that each program yielded with the 
optimal selection of parameters.

https://bitbucket.org/jcaledo/envnj/src/master/AncillaryCode/Oma_PlantAnimal.R
https://bitbucket.org/jcaledo/envnj/src/master/AncillaryCode/Oma_PlantAnimal.R
https://bitbucket.org/jcaledo/envnj/src/master/Datasets/oseq.Rda
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Conclusion
In the current report we describe a new tree-building method and its implementation into an R package (EnvNJ). 
This new method presents many advantages: (i) it does not resort to lossy data compression; (ii) it is computa-
tionally very fast, making it suitable for addressing whole genomes; (iii) because the method makes use of whole 
genomes/proteomes, there is no gene tree versus species tree problem; (iv) there is no need for multiple sequence 
alignment, which contributes to the speed of the method and avoids the impact of misalignments on the tree 
topology; (v) it does not require orthology identification, which further contributes to shortening computation 
times. Finally, the possibility that Env-NJ may perform well even with non-orthologous protein datasets, is a 
line of research that deserves further work in the future.

Material and methods
The species vector space.  It has been shown that every amino acid has a characteristic sequence environ-
ment in proteins41,54. In previous works, we have analyzed the sequence environment (10 residues on each side) 
around methionine residues in human proteins42,43,55. Thus, and just based on methionine residues, the human 
proteome can be characterized by a matrix, M, whose elements (mij) provide the absolute frequency of the 
amino acid i at the position j in the environment of methionine residues (Fig. 1A). Similarly, for each proteino-
genic amino acid, X ∈ {A,R,N ,D,C,Q,E,G,H , I , L,K ,M, F, P, S,T ,W ,Y ,V} , a matrix 

(

xij
)

∈ M20(N) can be 
computed. In this way, the protein-coding genome of a given species of interest can be characterized by a set of 
20 square matrices of order 20 or, equivalently, by a vector, u ∈ U8000 , of dimension 8000 (Fig. 1B). However, 
when coding species as vectors, the dimension of these vectors will depend on the radius chosen. Thus, in gen-
eral, u ∈ Un , where n = 20(2radius)20 = 800radius . In this way, each vector is used to represent an organism 
(its protein-coding genome). The components (coordinates) of the vector reflect the preference of the different 
amino acids at the different positions of the sequence environments.

A suitable metric for the species vector space.  Once species are encoded as high-dimensional vec-
tors, we can make use of the extensive mathematical tools of numerical linear algebra. Since we are interested in 
assessing distances between species, we must endow this vector space with a suitable metric for our purpose. To 
this end, we must look for functions, d, able to provide a distance between vectors.

In general, any function, d, to be considered a distance must satisfy the following 4 properties. (i) Posi-
tive definiteness: d

(

ui , uj
)

≥ 0∀ui , uj ∈ Un ; (ii) coincidence axiom: d
(

ui , uj
)

= 0 ⇔ ui = uj ; (iii) symmetry: 
d
(

ui , uj
)

= d
(

uj , ui
)

∀ui , uj ∈ Un ; and (iv) triangle inequality: d
(

ui , uj
)

≤ d(ui , uk)+ d
(

uk , uj
)

∀ui , uj , uk ∈ Un . 
A wide variety of metrics can be used to measure relatedness between vectors. The function vect2tree() from the 
EnvNJ package accompanying this paper, implements 29 different metrics previously described56,57. However, 
as illustrated in Fig. 1C,D, not all of them will be equally suitable for our purpose of establishing evolutionary 
relationships between species. Furthermore, the link between a given metric and its performance is not always 
obvious58. Nevertheless, for the sequence datasets we have used in the current study, we have noticed that the 
so-called Jensen-Shannon and cosine-based dissimilarities perform better than other metrics. Although many 
of the offered methods compute proper distances, that is not always the case. For instance, the ‘cosine’ method 
we described next, does not satisfy the coincidence axiom, so it cannot be considered a true distance. This fact, 
far from being a drawback, can be an advantage (as it will be argued below) for our phylogenetic purposes. In 
the context of latent semantic analysis, a common measure of similarity between two vectors is the cosine of the 
angle between them58,59. Since protein sequence data can be regarded as a complex written language, Stuart and 
coworkers have proposed the use of the cosine between two vectors as a suitable measure of vector similarity 
when the vectors being considered contain information related to protein sequences28,29. For instance, if we have 
the protein-coding genome of the species i and j (Fig. 1C), their similarity can be assessed by the expression:

where uTi uj is the dot product of the vectors ui  and uj , and ‖‖ is the Euclidean vector norm. It should be noted 
that the function f

(

ui , uj
)

= cosθij is not a distance properly speaking. For instance, suppose that two spe-
cies have identical genomes, in this case ui = uj and we would expect a null distance between them. However, 
f
(

ui , uj
)

= cosθij = cos0 = 1 . Nevertheless, pairwise cosine values can be converted into pairwise evolutionary 
distances using the following formula:

This formula converts a similarity measure into a distance measure28. It is important to note that this evolu-
tionary distance is not a proper distance metric as it violates the coincidence axiom. For instance, d

(

ui , 2uj
)

= 0 
but ui  = 2ui . However, this violation is very convenient for our goals. A concrete example will be useful to 
understand this assertion. Suppose that we have a population that splits into two species. Suppose, further, that 
one of this species undergoes a genome duplication event, but otherwise their proteomes are identical. In such 
a scenario, the computed species vectors would be uj = 2ui . Although both vectors have different lengths, since 
their directions are identical, we obtain d

(

ui , uj
)

= 0 , which conveniently reflects the fact that their proteomes 

d : UnxUn
→ R

cosθij =
uTi uj

�ui��uj�

d
(

ui , uj
)

= −ln
1+ cosθij

2
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are equal and therefore the neighborhood preferences of their sequence environments are the same in both 
species (Fig. 1D).

Environment‑based trees.  After encoding the genome of each species into a vector, as described above, 
these vectors are used to obtain a matrix of pairwise cosine values that are subsequently converted into a matrix 
of pairwise evolutionary distances using the formula given in the previous section. Alternatively, other metrics 
can be used to obtain a distance matrix. In the EnvNJ package accompanying this paper, we have implemented 
29 different metrics among which the user can choose. However, in our experience the cosine-based dissimilar-
ity and the Jensen-Shannon distance are among the best performing metrics for phylogenetic analyses using 
sequence environments. In any case, the obtained distance matrix can be used to produce a phylogenetic tree 
employing the neighbor joining algorithm60.

Implementation.  The Env-NJ tree building method has been implemented in an R package, EnvNJ. The 
package, which works on all major operating systems (Windows, MacOS and Linux) can be installed either 
from CRAN, install.packages(“EnvNJ”), or from its bitbucket repository, typing consecutively the following three 
commands in an R terminal: install.packages(“devtools”), library(devtools), install_bitbucket(“jcaledo/envnj”, sub-
dir = “REnvNJ”). Since the protein sequence datasets analyzed in the current work (see below) have also been 
included into the package, once it has been installed, the trees shown in Fig. 2 and 3C can be easily obtained with 
the commands envnj(bovids, r = 2) and envnj(reyes, r = 46), respectively. Further help can be obtained from the 
package documentation by introducing into the R terminal: ?envnj. A vignette about the use of the EnvNJ pack-
age can be found as Supplementary Material.

In addition to the Env-NJ method described in this paper, the package EnvNJ also implements the method 
based on the SVD-n-Gram approach, previously described by Stuart and coworkers28. The aim was to facilitate 
its use for comparative purposes (check the documentation, ?svdgram).

Mitogenome Datasets.  The mtDNA-encoded protein sequences were obtained from the NCBI genome 
database (https://​www.​ncbi.​nlm.​nih.​gov/​genome/​organ​elle). Two sets of mitogenomes have been analyzed in 
the current work. The first set is formed by 11 species of bovids including Bison bison, Bison bonasus, Bos grun-
niens, Bos indicus, Bos javanicus, Bos primigenius, Bos taurus, Bubalus bubalis, Bubalus depressicornis, Pseudoryx 
nghetinhensis, Syncerus caffer. An R dataframe containing these sequences can be loaded and examined by typ-
ing data(bovids) after having installed the R package EnvNJ.

A second set of mitogenomes analyzed in this study is the one formed by 34 mammalian species spanning 13 
orders, first used by Reyes and coworkers44, which includes the following species: Artibeus jamaicensis (Ajam), 
Balaenoptera musculus (Bmus), Balaenoptera physalus (Bphy), Bos taurus (Btau), Canis lupus (Clup), Cavia por-
cellus (Cpor), Ceratotherium simum (Csim), Dasypus novemcinctus (Dnov), Didelphis virginiana (Dvir), Equus 
asinus (Easi), Equus caballus (Ecab), Felis catus (Fcat), Glis glis (Ggli), Gorilla gorilla (Ggor), Halichoerus grypus 
(Hgry), Hippopotamus amphibius (Hamp), Homo sapiens (Hsap), Hylobates lar (Hlar), Loxodonta africana (Lafr), 
Macropus robustus (Mrob), Mus musculus (Mmus), Ornithorhynchus anatinus (Oana), Orycteropus afer (Oafe), 
Oryctolagus cuniculus (Ocun), Ovis aries (Oari), Pan paniscus (Ppan), Pan troglodytes (Ptro), Papio hamadryas 
(Pham), Phoca vitulina (Pvit), Pongo pygmaeus (Ppyg), Rattus norvegicus (Rnor), Rhinoceros unicornis (Runi), 
Sciurus vulgaris (Svul), Sus scrofa (Sscr). Again, this dataset can be obtained in a suitable format (as dataframe) 
by typing in the R terminal: data(reyes).

Env‑NJ trees using non‑orthologous protein datasets.  We chose three closely related primate spe-
cies (human, chimp and gorilla) and two Arabidopsis species (A. thaliana and A. lyrate). Since we wanted to 
make sure that no orthology could be established between any pair of proteins from the dataset subjected to 
analysis, we proceeded as described next. First, we started by identifying a set of 907 one-to-one orthologous 
proteins present in the five species. To achieve that, we took advantage of the REST API for the OMA orthology 
database61,62. Both, the dataset (oseq.Rda) and the script (Oma_PlantAnimal.R) used to obtain it, can be down-
loaded from https://​bitbu​cket.​org/​jcale​do/​envnj/​src/​master/​Datas​ets and https://​bitbu​cket.​org/​jcale​do/​envnj/​
src/​master/​Ancil​laryC​ode, respectively. In this way, the oseq.Rda object is a dataframe with five columns (one 
per species) and 907 rows (one per orthologous protein), and each entry contains the corresponding protein 
sequence. To form a dataset of non-orthologous proteins we proceeded as follows. For the first column (spe-
cies) we randomly chose 180 rows (proteins). Afterward, the randomly selected rows were discarded from the 
dataframe before proceeding with the next column (species). Among the remaining rows, again we randomly 
selected 180, and the corresponding proteins from the second species were selected before removing the ran-
domly selected rows from the dataframe. This operation was repeated until reaching the last species, at which 
point we had a collection of 900 non-orthologous proteins (180 per species). This randomly selected dataset 
formed by 900 non-orthologous proteins was then subjected to Env-NJ.

Plant proteomes.  AFproject (http://​afpro​ject.​org) is a publicly available web-based service for objective 
performance comparison of alignment-free sequence comparison tools on different datasets25. They provide a 
benchmark dataset formed by the full genome sequences for 14 plant species and the corresponding reference 
species tree. Since the Env-NJ approach uses protein sequences and to avoid pre-processing (identification of 
open reading frames and translation) we resorted to the UniProt Proteomes (https://​www.​unipr​ot.​org/​prote​
omes) to search for protein sequences belonging to this group of plant species. In this way, we managed to 
assemble a dataset formed by 425,115 proteins from 11 species accounting for around 170 million amino acids 
(Table 3). The three species for which we could not find enough data were pruned from the reference tree.

https://www.ncbi.nlm.nih.gov/genome/organelle
https://bitbucket.org/jcaledo/envnj/src/master/Datasets
https://bitbucket.org/jcaledo/envnj/src/master/AncillaryCode
https://bitbucket.org/jcaledo/envnj/src/master/AncillaryCode
http://afproject.org
https://www.uniprot.org/proteomes
https://www.uniprot.org/proteomes
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Robinson–Foulds distance.  As a measure of the accuracy attributable to each phylogeny, the normalized 
Robinson-Foulds (nRF) distances between the reconstructed trees and the reference trees were computed. The 
Robinson-Fould algorithm to compute distances between trees topologies63, as implemented in the R package 
phangorn64, was used for this purpose. Briefly, Let T1 and T2 be two sets formed by all the splits at internal edges 
for tree 1 and tree 2, respectively (the two trees whose topologies we want to compare), then the cardinal of the 
symmetric difference of these two sets provides the Robinson-Foulds distance.

In other words, the Robison-Foulds is the number of splits appearing in one tree but not the other. The 
normalized Robinson-Foulds distance, nRF, is obtained by dividing RF by the maximal possible distance, that is

Normalization forces this metric to take values between 0 and 1, which makes its interpretation straightfor-
ward: 0 indicating identical tree topologies and 1 pointing to the most dissimilar topologies.

Data availability
The Env-NJ method is implemented in the R package EnvNJ. Release versions are available via CRAN and work 
on all major operating systems. The development version is maintained at https://​bitbu​cket.​org/​jcale​do/​envnj/​
src/​master. The mtDNA-encoded protein sequences in the 11 species of bovids can be obtained from the EnvNJ 
package just typing, after loading the package, data(bovids). Similarly, the 442 protein sequences that make up 
the dataset referred to as Reyes, can be obtained typing data(reyes). Alternatively, all the data employed in the 
current work, together with their corresponding descriptions can be obtained from the Bitbucket repository at 
https://​bitbu​cket.​org/​jcale​do/​envnj/​src/​master/​Datas​ets.
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