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A rtificial intelligence (AI) has begun to permeate and
reform the field of medicine and cardiovascular

medicine. Impacting about 100 million patients in the United
States, the burden of cardiovascular disease is felt in a
diverse array of demographics.1,2 Meanwhile, routine medi-
ums such as multimodality images, electronic health records
(EHR), and mobile health devices store troves of underutilized
data for each patient. AI has the potential to improve and
influence the status quo, with capacity to learn from these
massive data and apply knowledge from them to distinct
circumstances.3,4 With considerable information in each heart
beat, cardiovascular medicine will definitely be one of the
fields that embrace AI to move toward personalized and
precise care.5

AI has already been woven into the fabric of everyday life.
From an internet search engine, email spam and malware
filtering, to uncovering fraudulent credit card purchases, AI
addresses an individual’s needs in the realms of business,
entertainment, and technology. Unfortunately, medicine,
including cardiology, has not fully embraced this revolution,
with only a limited number of AI-based clinical applications
being available. Nevertheless, there is promise towards
routine implementation; machine learning and deep learning
have seen an exponential surge of cardiovascular publications
in the past decade.6,7 These methods have proven beneficial
in a variety of complex areas including echocardiogram
interpretation and diastolic dysfunction grade stratification.8,9

The US Food and Drug Administration has already approved
several devices that utilize AI features.10 Imagine coming to
work finding that your system has analyzed all your patients
while you were sleeping: their laboratory data, imaging

results, symptoms, and mobile device data to calculate their
risk of cardiovascular events, death, hospitalization, whether
medications should be adjusted/added/removed, or whether
they should be referred for an examination. The system
presents you with the reasons for its recommendations, and
you are confident that they are as good as those given by the
most experienced physicians. This may allow you to spend
time in shared decision making with your patients, both
objectively and compassionately. Although there are currently
several barriers/challenges to adoption of AI in clinical
practice, undoubtedly, AI will drive current healthcare practice
towards a more individualized and precision-based approach
over the next several years. Therefore, general understanding
of AI techniques by clinicians and researchers in cardiovas-
cular medicine is paramount. In this review article, we
describe the fundamentals of AI that clinicians and research-
ers should understand, its definition and principles, how to
interpret and apply AI in cardiovascular research, limitations,
and future perspectives.

Basic Knowledge of AI

Terminologies
Currently, the term “AI” is glamorous in the medical field;
however, there are confusion and misunderstanding of the
terms and techniques. AI is a broad and ambiguous term that
describes any computational programs that simulate and
mimic human intelligence such as problem solving and
learning. AI can indicate general-purpose AI (general AI), in
which the system is self-sufficient and possesses cognition
comparable to that of humans. Yet, such general AI has not
appeared and an applied AI (specific AI), for a specialized and
dedicated purpose, is the AI that is currently available.11

“Machine learning” is 1 subfield of an applied AI, which
automatically discovers patterns of data without using explicit
instructions.12 In machine learning, the machine learns from
the data and performs tasks based on the learned model,
whereas simple computer programs perform tasks according
to the preset rules that are created based on human
experience and knowledge. An applied AI and machine
learning have been used interchangeably in the medical
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research context, since machine learning accommodates
most AI technologies in the medical research setting. It
includes various algorithms for prediction and classification
tasks that perform well on complex big data. “Deep learning”
is a subfield of such machine learning algorithms that use
deep (=multiple layered) neural networks originally inspired by
the structure of the human brain.13 The neural networks
designed currently, however, work substantially differently
from how the human neuron functions. In the past decade,
deep learning has been increasingly used and shown to
outperform other machine learning techniques in various
fields, such as image recognition, voice recognition, and game
playing. In a competition of image classification, the emer-
gence of modern deep learning, the convolutional neural
network (CNN) in 2012 had a big impact on the scene. Among
traditional machine learning methods showing error rates of
�26%, which were reasonably good at the time, CNN showed
an outstanding error rate of 15.3%.14 Image classification
using CNN has been improving and the current error rate is
�3%, which surpasses the abilities of the human eye.15 Its
successes are attributed to its capability to extract important
features from enormous data through iterative data process-
ing. In contrast to traditional machine learning where
algorithms require some degree of arbitration from the
analysts (eg, feature selection, or feature engineering: the
process of selecting and creating features, or variables, which
make algorithms perform better), deep learning is generally
more self-directed once implemented. For example, in order
to deal with chest x-ray images with traditional machine
learning, analysts must first collect the measurements and
parameters such as the size of the heart and presence of the
congestion into a spreadsheet. This process of categorization
loses information and is time consuming. Instead, deep
learning can feed raw image information and extract key
patterns of images by itself.

Supervised, unsupervised, and reinforcement learning is
another group of terms that describe the way a machine
learns from data (Figure 1). In supervised learning, algorithms
learn from the data with information on the outcome, or
ground truth to develop a prediction model. Typical tasks
handled by supervised learning are classification and regres-
sion. Classification is a task for predicting a categorized
outcome, such as 1-year mortality (yes or no) and disease
diagnosis3,16 using given parameters, while regression pre-
dicts the value (eg, predicting echocardiographic early
diastolic left ventricular relaxation velocity value from ECG
information). On the contrary, unsupervised learning does not
require ground truth and explores the data to find hidden
patterns and associations.8 The most common tasks in
unsupervised learning are clustering and dimensionality
reduction. Clustering is a task to divide objects into groups
with similar characteristics. Dimensionality reduction, which

can also be performed in a supervised manner, is a task to
reduce the dimensionality (=the number of variables) of data
with keeping principal variables that explain the data. These
tasks aim to identify phenotypes by inferring the patterns
from the data set without known labeled outcome. Reinforce-
ment learning is a technique in which an algorithm is trained
to learn an action that gains maximum reward in the situation.
This technique is widely used for decision-making in gaming
programs. AlphaGo, the first program that beat professional
Go player, also used reinforcement learning to learn the best
actions in the game of Go.17

Big Data and Machine Power to Deal With It
The concept and methodologies of AI techniques themselves
are not brand-new; however, the sudden prosperity of AI in
the past decade occurred with the emergence of big data and
evolution of computing power as well as the development of
deep learning techniques. Previously, the lack of data that are
big enough to train AI was one of the bottlenecks of AI
development. However, this limitation disappeared as big data
became available because of the popularization of the
internet. The digital information stored by smart devices with
internet connection that can transfer data over a network
without requiring human interaction further increased the
influx of usable data. Analyzing such big data using AI requires
a huge amount of computational power. Graphic Processing
Units were originally invented to perform specialized tasks in
gaming graphics, but its fast and parallel computing power
fitted well in deep learning tasks.13 In recent years, Graphic
Processing Units have become affordable while the computing
power continued to grow exponentially. Currently, researchers
can also appreciate cloud-based Infrastructure as a Service, or
more recently called Machine Learning as a Service such as
Amazon Web Services, Microsoft Azure ML, and Google Cloud
ML. They provide power of Graphic Processing Units with
various AI applications and limitless data storage on the cloud
platform. Furthermore, some Machine Learning as a Service
provide automated machine learning systems, such as Google
Cloud Auto ML and BigML, where various machine learning
algorithms that require none-to-minimal coding are available.
These systems can be used with simple graphic user
interfaces and may be a better choice for researchers who
are novices at machine learning. Thus, resources for AI
research have become available for general clinicians and
researchers.

Difference Between AI and Traditional Statistics
Statistics has been the standard method for medical research
for the purpose of showing the benefit of new therapies,
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predicting prognoses, identifying risk factors, and revealing
disease mechanisms. Interestingly, there are significant
overlaps in techniques and methodologies in the domain of
traditional statistics and AI. For example, logistic and linear
regression models, which most medical researchers are
familiar with, are also techniques in machine learning.
Perhaps the fundamental difference is in their philosophies;
statistics is a science that estimates and explains data,
whereas AI, or machine learning, aims to achieve practical
prediction from data at hand. For example, in linear regression
models, the most important parameters of interest in
statistics are coefficients (weights) of each term and the
goodness-of-fit, both of which explain the data. On the other
hand, AI focuses on prediction of unknown data. Accordingly,
the primary concern of AI research is model performance in a
test set, which is not used in the process of model training,
and it is presented with different terms from statistics, such
as recall (=sensitivity), F-measure (a harmony of sensitivity
and positive predicted value), and confusion matrix (a type of
cross-tabulation table). In fact, the calculation process is of
less interest in AI, and some complex AI models do not even
provide coefficient or other metrics for interpretability.
Therefore, usually AI requires fewer assumptions of data
and often uses very complex nonparametric models, which
requires much more data than simple parametric models that
are frequently used in traditional statistics. While traditional
statistics perform well for a certain hypothesis with suitable-
sized data set, AI generally outperforms statistical methods
for prediction in large and complex data.

Another important consideration, especially important for
medicine, is that AI techniques, unlike some sophisticated
statistical analysis, have been suggested not to provide causal
inferences. Actually, there is renewed enthusiasm in using
machine learning for this very purpose. This evolving
paradigm, however, should be verified cautiously with the
existing domain knowledge about pathophysiology and dis-
ease mechanisms to support the results of AI analysis.
Capability for working on various data structures is also an
important strength of AI compared with traditional research,
as discussed below. Figure 2 summarizes differences
between traditional medical research with statistics and
research using AI.

Representative Algorithms of AI
Machine learning and deep learning consist of a multitude of
algorithms. Table 1 summarizes brief descriptions of basic
machine learning algorithms used in different tasks. Currently,
ensemble learning and deep learning can be described as the
mainstay of algorithms of AI. Ensemble learning is a machine
learning method that combines multiple “weak” learners
(algorithms) such as decision tree and logistic regression
(Table 1) to obtain a good prediction. Boosting, bagging, and
stacking are the 3 main methods of ensemble learning.18 In
boosting, multiple weak learners are combined in series and
trained subsequently with considering errors of preceding
algorithms to reduced bias. Bagging is a method in which
multiple weak learners are trained in parallel, and the results

Figure 1. Supervised, unsupervised, and reinforcement learning. Machine learning tasks are categorized into supervised, unsupervised, or
reinforcement learning. Supervised learning is used for prediction (classification or regression), whereas unsupervised learning aims to reveal
hidden patterns in data. Reinforcement learning is another way of learning where an algorithm learns the best action based on its consequences,
and is well suited for game theory and control theory. However, it has not had a significant role in clinical research because it requires simulating
many “wrong actions” to learn. *Dimensionality reduction can also be performed in a supervised manner.
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of each algorithm are combined to make a final output with
small variance. Stacking is the other method in which the
results of weak learners are used as input of another machine
learning algorithm (meta learner). These ensemble learning
methods work very well by combining various types of simple
algorithms and generally outperform any single machine
learning algorithm.

Deep learning outperforms other traditional machine
learning methods in analyzing complex data such as images,
texts, and other unstructured data. In general, deep learning
consists of an input layer, hidden layers, and an output layer,
where input and output layers indicate original data and
output of the algorithm, respectively. Through multiple hidden
layers, raw input is gradually converted into more abstract and
essential features that represent the original data (Figure 3).
In image recognition, the input layer indicates raw pixels of

the image, then first layers identify simple features of the
image such as edges and lines. Succeeding layers identify
somewhat more complex features such as ears, eyes, and
tails. Finally, last layers recognize features of cats and dogs.
As such, deep learning extracts key features from raw
unstructured data and returns outputs as classification or
regression.

Examples of AI on Cardiovascular Data

Structured Data
Examples of the AI studies in various data sources are
summarized in Table 2. Currently, most medical research is
done using structured data, which are labeled properly and
organized into formatted fields in tabular form.

Figure 2. Pipelines of medical research using traditional statistics and AI. Traditional medical research
formulates a hypothesis first, and tests it using statistical analysis. Medical research using AI can be
hypothesis-free and data-driven. Compared with traditional statistics, AI can deal with various types of data,
including unstructured data such as images, signals, and EHR. In contrast to traditional medical research
that focuses on validation of hypotheses and understanding causality and mechanisms, the main goal of
research using AI is to predict new data and identify a hidden pattern in the data. AI indicates artificial
intelligence; EHR, electronic health record.
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Motwani and colleagues16 investigated the predictive
ability of machine learning algorithms on structured data to
predict 5-year mortality in a large population of 10 030
patients with coronary artery disease enrolled in the
CONFIRM (Coronary CT Angiography Evaluation for Clinical
Outcome) study. They used ensemble learning to analyze 69
parameters in the data set. Using 10-fold cross-validation
(explained later), they trained the machine learning algorithm
to predict mortality (=supervised learning) in each training set
and tested the predictive ability using each validation set.
Features were selected in each fold using information gain.
They found that the area under the receiver-operating-
characteristic curves for prediction of 5-year mortality was
significantly better with the machine learning algorithm (0.79)
than other traditional risk scores (0.61–0.64).

Structured data can also be applied in the unsupervised
machine learning algorithm effortlessly and efficiently.
Recently, our group19 applied a novel data analytics technique
called topological data analysis to build a patient–patient
similarity network that utilized the underpinning of mathemat-
ics and an underlying unsupervised machine learning. Topolog-
ical data analysis is a framework for machine learning; it
borrows and amalgamates various machine learning algorithms
to understand the fundamental properties and the shape of
complex data. The study applied the technique to understand
the phenotypic representation of the pattern of left ventricular
responses in the progression of aortic stenosis. Topological
data analysis, along with dimensionality reduction, formed a
loop segregating mild and severe disease in opposite ends,
while linking them through moderate disease over the routes of
preserved and reduced left ventricular ejection fraction

(Figure 4). Interestingly, upon supplementing the data with
the follow-up succeeding the aortic valve replacement therapy,
the patients were accurately captured to have traversed from
severe to mild or moderate aortic stenosis. A similar model was
then applied on a murine model as a reverse-translational study
that showed a similar distribution separating mice with high
peak aortic velocities in 1 end to low velocities in the other,
connecting via moderately severe peak aortic velocities in the
top and the bottom of the loop.

However, machine learning is not always superior to
traditional statistics. Frizzell et al20 studied 56 477 patients
who were admitted to hospitals and were older than 65 years
of age. The data set included about 100 candidate variables,
and the performance for prediction of 30-day rehospitalization
rate was compared among several machine learning methods
including ensemble models. Despite the large data set, a
logistic regression model achieved better performance than
other complex machine learning models. Importantly, even
the performance of this logistic model was modest (C
statistics 0.624), suggesting that there are many unmea-
sured/unknown important variables that contribute to the
outcome. As such, complex machine learning models can fail
to outperform simple models in the absence of several
contributing variables.

Unstructured Data
Unstructured data are the data stored without a well-
organized structure that is applied on traditional statistical
and tabular databases. In the medical field, textual informa-
tion in EHR, medical images, and audio and visual clips are

Table 1. Representative Machine Learning Algorithms

Algorithm Description Use

Logistic regression An algorithm that estimates probability of dichotomized outcome from multiple covariates
using logistic function.

Classification

Decision tree A flow chart–like algorithm that divides data into branches by considering information gain.
The final branches represent output of the algorithm (class or value).

Classification/regression

(simple) Neural network An algorithm inspired by human brain architecture. Layers consisting of nodes are connected
to one another with edges weighted as per training results.

Classification/regression

K nearest neighbor A simple algorithm that classifies observations by comparing k examples that exist in the
nearest locations (=examples with the most similar features).

Classification/regression

Support vector machine Support vector machine draws a boundary line that maximizes margins from each class. New
observations are classified using this line.

Classification/regression

K means A clustering method that makes k clusters in which each observation belongs to the cluster
that has its mean in the nearest locations from the observation.

Clustering

Hierarchical clustering A type of cluster analysis that builds a dendrogram with a hierarchy of clusters. Pairs of
clusters are merged to form clusters as they move up the hierarchy (agglomerative
approach).

Clustering

Principal component analysis An algorithm that converts high dimensional data into lower dimensional data with keeping
important information as much as possible by orthogonal transformation

Dimensionality reduction
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examples of data that are considered unstructured. The
emergence of machine learning has opened avenues to
effectively analyze such data, which are thought to contain
80% to 90% of all potentially usable information21 and to be a
huge resource for medical research.

Medical Images

Traditionally, it was difficult for computers to automatically
deal with medical images, as they have enormous varieties of
disease patterns. Physicians have had to exclusively read,
interpret, and analyze a variety of medical images. These
processes are time-consuming and can be one of the
bottlenecks of clinical practice. Deep learning, especially
CNN and other derivative neural networks, are becoming a
game changer in the process of medical image analysis, with
its capability to learn features from pixels and classify and
segment objects in images. 22,23

Zhang et al24 used a CNN to develop a pipeline for
automation of the following echocardiographic tasks: (1) view
classification, (2) image segmentation, (3) measurements of
cardiac structure and function, and (4) discrimination of
diseases. In the study, this deep learning algorithm was
trained in a supervised manner to classify images into 1 of 23
types of views (normal parasternal long axis, remote paraster-
nal long axis, etc.) using �70 000 preprocessed still images
generated from 277 echocardiograms. In a 5-fold cross-
validation, the algorithm could excellently distinguish broad
subclasses from one another with an overall classification
accuracy of 84%. For image segmentation, another algorithm
was trained to segment cardiac chambers in 5 views (apical 2-
, 3-, and 4-chambers and parasternal long- and short-axis
views), respectively. After supervised learning using 124 to
214 images per single view, the algorithms were able to
segment areas of individual cardiac chambers with excellent

overlap to human-annotated areas of chambers. Using these
auto-annotated chambers, they calculated chamber volumes,
left ventricular ejection fraction, and left ventricular mass,
which agreed with manually measured values (median abso-
lute deviations were 15–17%). Finally, they trained algorithms
for disease classification of hypertrophic cardiomyopathy
(n=260) from matched normal controls (n=2064), cardiac
amyloidosis (n=81) from controls (n=771), and pulmonary
artery hypertension (n=104) from controls (n=2180). The
trained algorithms showed excellent discrimination of the
diseases (area under the receiver-operating-characteristic
curves 0.93, 0.87, and 0.85, respectively). In the article, the
authors implied the possibility of auto-analysis and direct
diagnosis from echocardiographic images using deep learning.

Signal Data Including ECG and Phonocardiograms

Signal modalities include ECG, sound, phonocardiograms,
oscillometric devices, and some wearable devices. An ECG
signal is one of the best-studied signals in cardiovascular
medicine. Deep learning techniques have also pervaded this
field. Recently, Hannun and colleagues25 developed a deep
learning algorithm that classifies single-lead ECG into 12
classes of rhythms, such as sinus rhythm, junctional rhythm,
atrioventricular block, and atrial fibrillation. They used 30-
second-long raw ECG signals from single lead of 91 232
ambulatory ECGs, which were labeled by certified ECG
technicians (supervised learning) to train the algorithm. After
training, the algorithm identified arrhythmias in 328 test sets
with better accuracy (F-measure 0.84) than cardiologists
achieved (averaged F-measure 0.78).

Another signal of interest in cardiovascular medicine is
the phonocardiogram (ie, the heart sound information).
PhysioNet Resources, a research resource established for
the purpose of studies on biomedical and physiologic signals,

Figure 3. Structure of deep learning. Deep learning consists of input layers, hidden layers, and output
layers. Through multiple hidden layers, raw input is gradually converted into more abstract and essential
features that represent the original data. In image recognition, the input layer indicates raw pixels of the
image, then first layers identify simple features of the image such as edges and lines. Succeeding layers
identify somewhat more complex features such as ears, eyes, and tails. Finally, last layers recognize
features of cats and dogs. As such, deep learning extracts key features from raw unstructured data and
returns outputs as classification or regression.
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holds yearly competitions in cooperation with Computing in
Cardiology. In 2016, their challenge was to distinguish
normal heart sound recorded from healthy subjects and
abnormal ones from patients with heart disease.26 They
provided 4430 recordings including 233 512 heartbeats
taken from 1072 subjects, among which 3153 recordings
were annotated with labels. The training set included 18.1%
and 8.8% of abnormal and unclear (poor quality recording)
data, respectively. In total, 348 open-source entries by 48
teams were submitted to the challenge and the top score
team reached 94.2% sensitivity and 77.8% specificity.27

Interestingly, the top 5 teams all used different kinds of
machine learning algorithms. This type of competition is also
held by other societies such as Kaggle and MICCAI (The
Medical Image Computing and Computer Assisted Interven-
tion Society), where researchers contend for high perfor-
mance of prediction using provided data.

EHR and Other Unstructured Text Data

EHR, the largest resource where most clinical information is
stored, is generally not well structured, which has been a
major burden for clinicians and researchers who have to read
unstructured texts and manually extract information. Mallya
et al28 from Amazon conducted a nested case–control study

using 21 405 patients with heart failure and 194 989
controls in a cohort of >600 000 patients’ data. They
extracted 1840 parameters per single patient over a 12-
month time period and predicted the onset of heart failure
15 months in advance by analyzing the data using long short-
term memory, a deep learning algorithm that considers time-
series, with an area under the receiver-operating-character-
istic curve of 0.91.

Natural language processing is a subfield of AI that is
concerned with understanding and analysis of human (natural)
languages by computer, and is one of the best tools to extract
information from raw and unstructured text data stored in
EHR. Diller et al29 developed deep learning algorithms to
automatically yield diagnosis and prognosis of 10 019
patients with adult congenital heart disease. The data during
an 18-year period including 63 326 medical letters written in
natural language were separated into training (80%) and test
set (20%). After training and validation, deep learning
algorithms (combination of CNN and long short-term memory)
automatically extracted a diagnosis from the test set with an
accuracy of 91.1%, and New York Heart Association class with
an accuracy of 90.6%. Furthermore, an algorithm trained to
predict all-cause mortality showed significant value after it
was adjusted by ECG, laboratory, and exercise data.

Figure 4. Topological data analysis in patients with AS. Topological data analysis enables integration of multidimensional complex data and
visualization of hidden patterns in the data. Each node represents 1 or more patients with similar echocardiographic parameters of AS, and
nodes including similar patients are connected by edges. Each panel is colored by 1 parameter written on the top right and color of the nodes
represents the mean value of the parameter in the nodes. Although the network was created only from the parameters of aortic stenosis,
preserved and reduced LV function (systolic and diastolic) were segregated in different regions. AS indicates aortic stenosis; AV, aortic valve; LV,
left ventricle. Reprinted from Casaclang-Verzosa et al19 with permission. Copyright ©2019, Elsevier.
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Cautions and Limitations
As described so far, AI has tremendous possibilities in
cardiovascular medicine. Yet, these techniques are not a
panacea and there are several situations where AI does not
work well, or even causes misleading results. First, AI can
easily overfit the data set because it uses complex models
with several parameters, although there are techniques to
avoid overfitting in many algorithms as discussed before. An
overfitted model shows very high performance in the training
data set but fails to generalize in the new data set because
the model also captures noise that interferes with identifying
a true pattern in the data (Figure 5). Testing an established
model in a test data that is completely new to the model
is, therefore, mandatory for AI research and there are
several techniques to overcome overfitting (Figure 6). Cross-
validation is one of the preferred methods to reduce the
variance in prediction error and maximize the use of data
compared with a simple holdout method.30 In a typical cross-
validation (k-fold cross-validation), the data set is partitioned
into several (k) bins of the data set where 1 bin is used for

evaluation while the remaining bins are used for training the
model. The iterative learning experiment is run k times.

As mentioned above, causal inference is one of the
limitations of the current AI approach. In other words, most
current AI approaches do not consider confounders. Results
should be interpreted carefully in a sense of medical
knowledge, when they are applied to clinical practice,
especially to interventions beyond simple prediction.

Quality of data is another key important aspect of AI
training. Incorrect data selection and inaccurate measure-
ments may cause incorrect results and predictions. In 2014,
Amazon developed an automated algorithm that reviewed job
applications and scored candidates. The algorithm was
trained using data from the previous decade, where the
majority of hired personnel were male. Then, the algorithm
started penalizing applications including the word “women”
and ended up being scrapped later.31 Too noisy data or data
without important variables will not work either.

With these cautions and limitations, standardization of
conducting and reporting AI research in medicine is manda-
tory. Since inaccurate analysis and insufficient reporting

Figure 5. Underfitting, optimal fitting, and overfitting. The upper row shows regression models created in sample data (=training data), and
new data from the same population were added in the bottom row. A simple linear model on the left panel was underfitted to the data, with low
variance (ie, fluctuations in predicted value) but high bias (ie, difference between predicted and true value). In contrast, a complex model on the
right panel was overfitted with low bias but high variance, because it also modeled random noise in the sample data. As a model becomes more
complex, goodness-of-fit increases and bias decreases. However, overfitted models do not capture real association in data and cannot work well
for new data.
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contribute to the impediment in reliable assessment and
causes misleading interpretation, guidelines and recommen-
dation statements should be required for reporting consistent
and reproducible results.

Challenges to Implementation
The number of research and clinical applications using AI will
further increase paralleled by continuous evolution of com-
puting power and prevailing AI platforms. Clinicians and
researchers will be more likely to be involved. Thus, learning
terminologies and understanding their possibilities and limi-
tations will be more important. Cardiovascular disease is one
of the fields that AI can effectively contribute to, because of
its complex and multifactorial nature. Current barriers to
adoption of AI involve several issues regarding infrastructures
rather than AI techniques. First, with privacy issues, open data
availability is limited compared with other fields. Scientific
organizations and companies will need to establish data
infrastructure with sufficient privacy policy. In addition, data
are usually stored in multiple servers and sometimes in an
analogue paper format. Even if AI establishes excellent
prognostic models, it may be worthless if the hundreds of
parameters for prediction are scattered in several systems
and require manual input. Development of seamless data
structures will be necessary. Regularization for legal and
ethical issues is also important. Since AI devices can change
by learning from real-world data even after deployment, the

traditional paradigm of medical device regularization is not
sufficient. In addition, in cases where AI devices lead to
adverse clinical outcomes, current laws may not clarify the
responsibility.

However, technologies and systems are continuously
improving. The US Food and Drug Administration has already
issued a statement on a new, tailored review framework for
AI devices, which includes modifications of devices after
deployment.32 Also, leading researchers and business lead-
ers have already signed the Asilomar AI statement of 23
cautionary principles. The French radiology community
published a white paper that better defines the clinical
provider’s role in AI research and its ethical implementation
in their field.33 Furthermore, multiple guidelines are now
being established for the standardization of medical AI
research. Survey data have shown that there is a willingness
to embrace these changes, especially in younger physicians.
A recent study showed that almost 95% of radiology
residents would attend AI information courses if offered
and 70% stated they would like advanced training in the
field.34 Hopefully, in the coming decades, a number of well-
designed studies on synthesized big data will usher in a new
paradigm in medicine.

Future Direction
AI contributes to the development of innovative areas
including computational modeling, generation of synthetic

Figure 6. Development and evaluation of machine learning model. Since machine learning aims to predict
new data in supervised learning, the test set is always preserved during when the machine learning model is
built in order to guarantee generalizability. Ordinarily, the remaining data are further split into the training
set, which is used to build models (calculate weights), and the validation set, which is used to validate the
generated models and to tune hyperparameters. This training-validation process is performed using a cross-
validation or holdout method. Finally, performance of the created model is evaluated using a test set that is
not used in the model-building process. MAE indicates mean absolute error; RMSE, root mean square error.
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data and patients, and mobile health technologies. Compu-
tational modeling in medicine uses computers to simulate and
study the behavior of the human body. It enables simulation of
a personalized heart by integrating multiple diagnostic data
obtained from clinical modalities and provides a platform for
virtual evaluation and optimization of a therapy.35 Although
computer modeling is grounded on theories rather than data-
driven patterns, and is usually deterministic, the concept that
predicting unknown results using data at hand is common to
both computer modeling and machine learning. Recent
studies have reported the usefulness of implementing com-
putational modeling using machine learning techniques such
as fluid dynamic simulations36 and adverse drug reaction.37

Synthetic patients and data are artificially manufactured,
allowing the ability to track a disease course. These are
realistic, but not real, data created by analyzing existing data
using machine learning techniques.38,39 Since there is no
concern regarding privacy and costs for using synthetic data,
it will be a powerful tool for clinical studies that require a large
number of patients and also can be an effective alternative to
prepare training data for machine learning algorithms. These
areas will be further enriched by AI in the near future and will
contribute to realization of personalized precision medicine.

Mobile health, telemedicine, and other smart devices with
internet connection are becoming another choice for collect-
ing enormous amounts of individual-level information.40,41

Advancement of technologies has enabled ubiquitous
computers including smartphones, wearable devices, and
miniaturized healthcare devices such as handheld echocar-
diography. These devices allow gathering of an individual’s
healthcare information at small clinics and even at a patient’s
home. The data from these devices are going to be huge, and
by integrating such enormous data using AI, more detailed
phenotyping of disease and more personalized medicine will
be realistic.

Conclusions
AI has emerged as a promising tool in cardiovascular
medicine. With the popularization of big data and machine
power, the fundamentals of healthcare practice and research
are bound to change. Traditional statistics remain highly
effective in a simple data set and in assessing causal
relationship; however, many areas in clinical practice and
research will be led by powerful prediction and exploration of
big data using AI. Particularly, the capability of AI to analyze
unstructured data expands the field of cardiovascular
research. In addition, AI will further increase its contribution
to mobile health, computational modeling, and synthetic data
generation, with new regularizations for its legal and ethical
issues. In this paradigm shift, deep understanding of

physiology and disease mechanisms remains paramount to
interpret the results of AI. Meanwhile, AI literacy will become
essential to understand the latest medical knowledge and to
use novel medical devices.
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