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Breast cancer is the most common carcinoma in women worldwide. 0e present case-control study was aimed to examine the
association of BCL-2 (-938C> A), BAX (-248G > A), and HER2 (I655V i.e. A > G) polymorphisms with breast cancer risk in
Indian population.0is study enrolled 117 breast cancer cases and 104 controls. BCL-2 (-938C >A), BAX (-248G >A), and HER2
Ile655Val polymorphisms were screened by PCR-RFLP method. 0ere was no significance difference in the allelic and genotype
frequency of the BCL-2 (-938C > A) and BAX (-248G > A) polymorphisms between cases and controls. In relation to HER2
Ile655Val polymorphism, the statistical analysis of observed genotypic frequencies showed significant association (p-0.0059).
Compared to Ile/Ile (A/A) genotype, frequency of Ile/Val (A/G) genotype was significantly higher among cases than in control
group and observed to increase the breast cancer risk (OR, 2.43; 95%CI, 1.32–4.46; p-0.004). 0e frequency of Val (G) allele was
significantly higher in cases as compared to controls (6.83% vs 2.88%, resp.). Compared to Ile (A) allele, significant increase in the
risk of breast cancer was observed with Val (G) allele (OR, 2.21; 95% CI, 1.35–3.63; p-0.0016). We observed significant association
between HER2 Ile655Val polymorphism and breast cancer risk under the dominant (OR� 2.52; 95% CI: 1.41–4.51; p-0.001) and
codominant (OR, 2.24; 95% CI: 1.23–4.09; p-0.008) model. In our study, BCL-2 (-938C >A) and BAX (-248G >A) polymorphism
were not found to be associated with breast cancer risk. 0is present study for the first time shows significant association of HER2
Ile655Val polymorphism with risk of breast cancer in Indian population. 0erefore, we suggest that each population need to
evaluate its own genetic profile for breast cancer risk that may be helpful for better understanding the racial and geographic
differences reported for breast cancer incidence and mortality.

1. Introduction

Breast cancer is the leading cause of cancer-related deaths
and it is the most common type of cancer among women
worldwide [1]. In India, projected number of breast cancer
cases is 179,790 in the year 2020 and will comprise

approximately 10% of all cancers [2]. Various risk factors are
associated with the development, pathogenesis, and pro-
gression of breast cancer, including genetic, environmental,
biological, and lifestyle factors [3]. 0e relation between the
occurrence of a cancer and the existence of genetic alter-
ations is now well established [4]. For better understanding
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the etiology of breast cancer, recent approaches involve the
molecular markers identification, which may help in pre-
diction and prognosis of the disease [5, 6]. Apoptosis and
cellular proliferation have a significant role in normal de-
velopment and carcinogenesis of mammary gland [7].
Delicate homeostasis between apoptosis and proliferation in
normal tissues is maintained by variety of proteins of the
BCL-2 family. 0e BCL-2 family of proteins is divided into
two main classes, proapoptotic members like BAX (BCL-2-
associated X protein) and BAK, and antiapoptotic members
like BCL-2 (B-cell leukemia/lymphoma 2) and BCL-xL [8].
BCL-2 gene is located on chromosome 18q21.3 [9] and
comprises of three exons and two promoters (P1 and P2),
both having different functions. 0e BAX gene is mapped to
chromosome 19q13.3 q13.4 [10]. Dysregulation in the BCL-2
and BAX genes expression may cause disruption of cellular
homeostasis and origin of malignancy. 0e functional
promoter polymorphisms in BCL-2 and BAX genes were
found to change the protein expression or function that may
have an effect on the delicate balance in mechanisms which
regulate apoptosis.

Human epidermal growth factor receptor 2 (HER2/neu/
EGFR2/ERBB2/c-erbB-2) protooncogene encodes a 185 kDa
transmembrane glycoprotein [11, 12] which plays important
role in cell growth regulation, differentiation, and survival
[13]. To date, no study has ever been conducted to evaluate
the association of HER2 polymorphism with breast cancer
risk in Indian population. Although the role of BCL-2, BAX,
and HER2/neu is established in breast cancer pathogenesis,
the exact molecular mechanism is still not clear. 0erefore,
the aim of the present case-control study was to investigate
the association of BCL-2 (-938C>A), BAX (-248G>A), and
HER2 Ile655Val polymorphisms with breast carcinoma risk
in Indian population.

2. Materials and Methods

2.1. Study Subjects. In the current case-control retrospective
study, a total of 117 cases of primary breast cancer were
included, which fulfilled the relevant selection criteria, and a
total 104 nonmalignant lesions cases of the breast tissue were
taken as control after obtaining the ethical clearance from
Institute Ethics Committee (Proposal no. 27/07/2017/GKV/
IEC/2017). Inclusion criteria were that the required tissue
sample was retrieved from the paraffin blocks prepared from
primary breast tumor site only cases, which were diagnosed
as infiltrating ductal carcinoma, not otherwise specified
(IDC, NOS). Exclusion criteria were patients with history of
recurrence of breast tumor (only cases of primary breast
carcinoma were included in the study), history of prior
radiation exposure to the site (prior radiotherapy) and
history of neoadjuvant chemotherapy. 0e sample size was
estimated by using the following formula:
N� Z2P(1 − P)/d2 (where N is sample size, P is expected
prevalence, Z is the statistic corresponding to level of
confidence, and d is precision (corresponding to effect size)).
0e written informed consent was collected from all par-
ticipating subjects/individuals. 0e relevant clinical history
of all the cases of the study was collected and clinical history

was used for the selection of appropriate cases as per ex-
clusion/inclusion criteria of the study.0e mean age of cases
was 48.69 years and median age was 48 years. Cases had age
range between 18 and 73 years and age group of 45 to 60
years had a peak prevalence rate.

2.2. DNA Isolation and Genotyping. Genomic DNA was
isolated from paraffin embedded tumor tissue blocks by
phenol-chloroform method. Genotyping of the SNPs BCL-
2-938C>A, BAX-248G>A, and HER2 (I655V, i.e., A>G) was
performed by using the polymerase chain reaction-restric-
tion fragment length polymorphism (PCR-RFLP) assay.
PCR reactions were performed in a 25 µl reaction mixture
containing 1 µl genomic DNA, 10X PCR buffer 2.5 µl, 2.5 µl
dNTP, 0.5 µl of each primer, and 1 µl Taq DNA polymerase.
For BCL-2, PCR conditions include initial denaturation at
96°C for 5min followed by 35 cycles at 96°C–for 45 seconds,
at 56°C for 45 seconds, and at 72°C for 30 s and a final
extension step at 72°C for 10 minutes. For BAX, PCR
conditions include initial denaturation at 95°C for 5min
followed by 35 cycles at 95°C–48 seconds, at 54°C for 45
seconds, and at 72°C for 40 s and a final extension step at
72°C for 8 minutes. For HER2, PCR conditions include
initial denaturation at 94°C for 5min followed by 35 cycles at
94°C–30 s, at 62°C–45 seconds, and at 72°C for 30 s and a
final extension step at 72°C for 7 minutes.

After PCR reaction, 10 μl of each PCR product was
digested with different restriction enzymes as shown in
Table 1 at 37⁰C for overnight. In the case of BCL-2 poly-
morphism (-938C>A), after digestion wild-type allele (CC)
yielded two bands of 189 and 111 bp; wild-type/variant allele
(CA) yielded 111, 189, and 300 bp and the variant allele (AA)
yielded a single 300 bp band. For BAX polymorphism
(-248G>A), after digestion wild-type allele (GG) yielded two
bands (89 and 20 bp); wild-type/variant allele (GA) yielded
20, 89, and 109 bp, and the variant allele (AA) yielded a
single 109 bp band. In the case of HER2 polymorphism
(I655V, i.e., A>G), after digestion wild-type allele (AA)
produced one band (148 bp); wild-type/variant allele (AG)
produced 116, 32, and 148 bp, and the variant allele (GG)
produced two bands 116 and 32 bp band. 0e digested PCR
products were visualized on a 2% agarose gel containing
ethidium bromide. PCR primers, PCR product sizes, re-
striction enzymes, and enzyme digests are listed in Table 1
and Figures 1(a)–1(c).

2.3. Statistical Analysis. Chi-square test was applied for
comparing genotype and allele frequencies for statistical
significance between breast cancer patients and controls.
Observed and expected genotype frequencies of BCL-2,
BAX, and HER2 gene polymorphism in controls showed no
deviation from Hardy-Weinberg equilibrium. Chi-square
test showed that there was no significant deviation from
Hardy-Weinberg equilibrium for BCL-2, BAX, and HER2
SNP genotypes (p> 0.05). Odds ratios (ORs) with corre-
sponding 95% confidence intervals (CIs) were determined to
assess the strength of association of BCL-2 (-938C>A) and
BAX (-248G>A) and HER2 Ile655Val polymorphism with
breast cancer risk. Statistical significance was set at p< 0.05.
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3. Results

3.1. Association of BCL-2 (-938C>A) Polymorphism with
BreastCancer. 0e genotype and allele frequencies of BCL-2
(-938C>A) polymorphism in cases and control are sum-
marized in Table 2. 0e frequencies of CC, AC, and AA
genotypes were 29.05%, 47.86%, and 23.07% in cases and
28.84%, 49.03%, and 22.11% in controls, respectively. 0e
statistical analysis of observed genotypic frequencies did not
show significant association (p-0.980). Similarly, there was
no significant difference in allele frequencies between cases
and control (p-0.937). Also, we did not find any significant
association between BCL-2(-938C>A) polymorphism and
breast cancer risk under recessive, dominant, and codom-
inant models.

3.2. Association of BAX (-248G>A) Polymorphismwith Breast
Cancer. 0e frequencies of GG, AG, and AA genotypes in
cases and controls were 79.48%, 17.09%, and 3.41%, and

77.88%, 18.26%, and 3.84%, respectively (Table 3). 0e
statistical analysis of observed genotypic frequencies did not
show significant association (p-0.956). Similarly, no sig-
nificant difference was observed in allele frequencies be-
tween cases and control (p-0.747). Also, there was no
significant relationship between BAX (-248G>A) poly-
morphism and risk of breast cancer under recessive,
dominant and codominant models.

3.3. Association of HER2 Ile655Val Polymorphismwith Breast
Cancer. 0e genotype and allele frequencies of HER2
Ile655Val polymorphism in cases and control are summa-
rized in Table 4. 0e genotype frequencies for Ile/Ile (A/A),
Ile/Val (A/G), and Val/Val (G/G) were 55.55%, 37.60%, and
6.83% in cases and 75.96%, 21.15%, and 2.88% in controls,
respectively. With reference to Ile/Ile (A/A) genotype, fre-
quency of Ile/Val (A/G) genotype was significantly higher
among cases than in control group and observed to increase

Table 1: PCR primers, PCR product sizes, restriction enzymes, and enzyme digests of BCL-2 (-938C>A), BAX (-248G>A), and HER2
Ile655Val genes.

Gene Position and base
change Genotyping Primer PCR

product
Restriction enzyme

used Enzyme digests

BCL-
2 -938C>A PCR-RFLP

5′-CTGCCTTCATTTAT
CCAGCA-3′ (forward)
5′-GGCGGCAGATGA
ATTACAA-3′ (reverse)

300 bp BccI (1 unit) C allele: 189 and 111 bp; A
allele: 300 bp

BAX -248G>A PCR-RFLP

5′-CATTAGAGCTGCGA
TTGGACCG-3′ (forward)
5′-GCTCCCTCGGGAG
GTTTGGT-3′ (reverse)

109 bp MspI (1 unit) G allele: 89 and 20 bp
A allele: 109 bp

HER2 I655V A>G PCR-RFLP

5′-
AGAGCGCCAGCCCTCT
GACGTCCAT-3′ (forward)

5′-
TCCGTTTCCTGCAGCA
GTCTCCGCA-3′ (reverse)

148 bp BsmAI (1 unit) G allele: 116 and 32 bp; A
allele: 148 bp

M C/A C/C A/AA/A A/A

300 bp

189 bp
111 bp

(a)

A/A A/A MG/A G/G

109 bp
89 bp
20 bp

(b)

A/A A/A MA/G G/G

148 bp
116 bp

32 bp

(c)

Figure 1: 2% agarose gel electrophoresis for digested PCR product. M-Ladder (a) BCL-2, Hetero (C/A), Homo mutant (A/A), and Homo
wild (C/C); (b) BAX, Homo Mutant (A/A), Hetero (G/A), and Homo wild (G/G); and (c) HER2, Homo wild (A/A), Homo mutant (G/G),
and Hetero (A/G).
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the breast cancer risk (OR, 2.43; 95% CI, 1.32–4.46; p-0.004).
0e statistical analysis of observed genotypic frequencies
showed significant association (p-0.0059). 0e frequency of
Val (G) allele was significantly higher in cases as compared
to controls (6.83% vs 2.88%, resp.). Compared to Ile (A)

allele, significant increase in the risk of breast cancer was
observed with Val (G) allele (OR, 2.21; 95% CI, 1.35–3.63;
p-0.0016).We observed significant association between
HER2 Ile655Val polymorphism and breast cancer risk under
the dominant (OR� 2.52; 95% CI: 1.41–4.51; p-0.001) and

Table 2: Genotype distribution, allele frequency, and association analysis of BCL-2(-938C>A) polymorphism and risk of breast cancer
under different genetic models.

Genotype/allele Cases (n� 117) Control (n� 104) Odd ratio (95% CI) p value
CC 34 (29.05%) 30 (28.84%) Ref Ref
AC 56 (47.86%) 51 (49.03%) 0.968 (0.521–1.801) 0.920
AA 27(23.07%) 23 (22.11%) 1.035(0.493–2.175) 0.925

p value 0.980

Recessive model AA 27 23 1.05 (0.56–1.98) 0.864AC+CC 90 81

Dominant model AC+AA 83 74 0.98 (0.55–1.77) 0.972CC 34 30

Codominant model AC 56 51 0.95 (0.56–1.61) 0.861CC+AA 61 53
Allele
C 124 (52.99%) 111 (53.37%) 1.01 (0.69–1.47) 0.937A 110 (47.01%) 97 (46.63%)
OR: odds ratio, CI: confidence interval, and n: number of samples.

Table 3: Genotype distribution, allele frequency, and association analysis of BAX(-248G>A) polymorphism and risk of breast cancer under
different genetic models.

Genotype/allele Cases (n� 117) Control (n� 104) Odd ratio (95% CI) p value
GG 93 (79.48%) 81 (77.88%) Ref Ref
AG 20 (17.09%) 19 (18.26%) 0.916 (0.457–1.837) 0.806
AA 4 (3.41%) 4 (3.84%) 0.871 (0.211–3.594) 0.848

p value -0.956

Recessive model AA 4 4 0.88 (0.21–3.63) 0.865AG+GG 113 100

Dominant model AG+AA 24 23 0.90 (0.47 to 1.73) 0.771GG 93 81

Codominant model AG 20 19 0.92 (0.46–1.84) 0.819GG+AA 97 85
Allele
G 206 (88.03%) 181 (87.02%) 0.91 (0.51 to 1.60) 0.747A 28 (11.97%) 27 (12.98%)
OR: odds ratio, CI: confidence interval, and n: number of samples.

Table 4: Genotype distribution, allele frequency, and association analysis of HER2 Ile655Val polymorphism and risk of breast cancer under
different genetic models.

Genotype/allele Cases (n� 117) Control (n� 104) Odd ratio (95% CI) p value
Ile(A)/Ile(A) 65 (55.55%) 79 (75.96%) Ref Ref
Ile(A)/Val(G) 44 (37.60%) 22 (21.15%) 2.43 (1.32–4.46) 0.004∗

Val(G)/Val(G) 8 (6.83%) 3 (2.88%) 3.24 (0.82–12.7) 0.091
p value 0.0059∗

Recessive model GG 8 3 2.47 (0.63–9.57) 0.190AG+AA 109 101

Dominant model AG+GG 52 25 2.52 (1.41–4.51) 0.001∗AA 65 79

Codominant model AG 44 22 2.24 (1.23–4.09) 0.008∗AA+GG 73 82
Allele
Ile (A) 174 (74.36%) 180 (86.54%) 2.21 (1.35–3.63) 0.0016∗Val (G) 60 (25.64%) 28 (13.46%)
n: number of samples, OR: odds ratio, and CI: confidence interval. ∗Significant at p< 0.05.
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codominant (OR, 2.24; 95% CI: 1.23–4.09; p-0.008) model,
whereas no significant relationship was found under the
recessive model (OR, 2.47; 95% CI: 0.63–9.57; p-0.190).

3.4. Relationship of BCL-2 (−938C>A), BAX (−248G>A), and
HER2 Ile655Val Polymorphism with Tumor Grade. In this
present study, we reported no significant association of the
BCL-2 (−938C>A), BAX (−248G>A), and HER2 Ile655Val
polymorphism with tumor grade (Table 5).

4. Discussion

Apoptosis is highly programmed cell death and has a sig-
nificant role in functionality and development of multicel-
lular organism. Damaged and redundant cells are eliminated
by activation of apoptosis through various physiological or
pathological death signals for maintaining homeostasis [14].
Apoptosis can be attained through two main pathways:
mitochondrial pathway and death-receptor pathway and
both are propagated through a caspase cascade which results
into activation of apoptosis [15, 16]. During carcinogenesis,
apoptosis is evaded by three different mechanisms: caspase
activity loss, disturbed death receptors signaling, and im-
balance between proapoptotic and antiapoptotic proteins
[17–20].

BCL-2 protein plays significant function in the regula-
tion of apoptosis and cell cycle delay. BCL-2 overexpression
is found to be associated with different types of cancers such
as prostate cancer, chronic lymphocytic leukemia, non-small
cell lung cancer, breast cancer, esophageal cancer, lung
cancer, and endometrial cancer [21–25]. Dysregulation of
apoptosis due to imbalances in BAX/BCL-2 levels may result
in breast cancer pathogenesis [26]. In our study, there was no
significance difference in the allelic and genotype frequency
of the BCL-2 (−938C>A) polymorphism between cases and
controls. We observed no significant relationship between
BCL-2 (−938C>A) polymorphism and risk of breast cancer
under recessive, dominant, and codominant model. Our
results showed that BCL-2 (−938C>A) polymorphism was
not associated with breast cancer risk. 0e findings of our
study showed discrepancy from a study from Hyderabad,
India, which reported the association of AA genotype with
increased risk (AAVs AC + CC) for breast cancer by 2.86-
fold (p-0.07) and the frequency of A allele was also increased
in the breast cancer cases than in controls (95 % CI, 1.41
(0.97–2.04) p-0.06) [14]. Similarly, another study also found

that AA genotype of BCL-2 (−938C>A) may be associated
with breast cancer susceptibility and increase the breast
cancer risk in Chinese women [27], which was also in-
consistent with our findings.

BAX is a proapoptotic protein which controls apoptosis
through regulation of mitochondrial outer membrane
permeabilization [28]. In numerous cancers, protein ex-
pression and function are found to be affected by mutations
in the promoter and coding regions of the BAX gene [29].
Genetic alterations in the BAX gene may play important role
in cancer initiation and progression as it contains series of
target genes involving various tumor suppressor genes and
oncogenes [30–34]. In the current study, we did not observe
statistically significant difference in the genotype and allele
frequencies of BAX (−248G>A) polymorphism among cases
and control. No significant association was found between
BAX (−248G>A) polymorphism and breast cancer under
recessive, dominant, and codominant model. We failed to
find an association between BAX (−248G>A) polymorphism
and breast cancer risk. Our results were in concordance with
a study conducted by Yildiz et al. [35] where no significant
difference was observed in genotype and allele frequencies
for BAX(−248G>A) among breast cancer patients and
controls in Turkish women. Similarly, a meta-analysis study
conducted by Sahu and Choudhuri on seven independent
case-control studies (1772 cases and 1708 controls) did not
find any association of BAX(−248G>A) genotype and allele
frequency with human cancer risk under different genetic
models [36].

SNP at codon 655 of the HER2 gene shows isoleucine
(ATC) to valine (GTC) substitution (I655V) in the trans-
membrane domain-coding region and was found to be
associated with breast cancer risk [37]. HER2 belongs to
epidermal growth factor receptor (EGFR) family and has
intrinsic tyrosine kinase activity [38]. 0e members of this
family regulate various cellular functions like differentiation
and proliferation as they play significant function in signal
transduction pathway [39]. Dimerization of the HER re-
ceptors leads to the activation of signaling pathways [40].
HER2 appears to be the favored heterodimerization partner
for all HER members [41]. HER2 triggers various cellular
signaling pathways involving mitogen-activated protein
kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)
cascades [42]. In our study, the allelic frequency and ge-
notype distribution of HER2 Ile655Val polymorphism
exhibited significant difference between cases and controls.
We found significant association between HER2 Ile655Val

Table 5: Association of BCL-2 (-938C>A), BAX (-248G>A), and HER2 Ile655Val polymorphism with tumor grade.

Genotype Tumor grade I Tumor grade II Tumor grade III p value

BCL-2 (-938C>A) C/C 10 (30.30%) 17 (28.33%) 7 (29.16%) 0.980A carrier (AC+AA) 23 (69.69%) 43 (71.66%) 17 (70.83%)

BAX (-248G>A) G/G 24 (72.72%) 47 (78.33%) 22 (91.67%) 0.206A carrier (AG+AA) 9 (27.27%) 13 (21.66%) 2 (8.33%)

HER2 Ile655Val Ile(A)/Ile(A) 21 (63.64%) 32 (53.33%) 12 (50%) 0.523Val (G) carrier (AG+GG) 12 (36.36%) 28 (46.66%) 12 (50%)
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polymorphism and breast cancer risk under the dominant
and codominant model. 0is present study is the first one to
show significant association between HER2 Ile655Val
polymorphism and risk of breast cancer in Indian pop-
ulation, suggesting the potential role of this polymorphism
in development of breast cancer. Previously, a meta-analysis
study by Tao et al. [43] in overall analysis found that Val
allele frequency was significantly higher in breast cancer
cases than in controls (OR� 1.1, 95% CI 1–1.2, p-0.04) on 20
eligible reports of 10,642 cases and 11,259 controls. Xie et al.
[37] also reported that HER2 Ile655Val polymorphism may
be a susceptibility biomarker for breast cancer among
younger Chinese women. Furthermore, finding of our study
was in accordance with previous studies in which presence of
Val allele in HER2 polymorphism was associated with breast
cancer risk among Portuguese [44] and Slovak populations
[45].

In the Brazilian population, HER2 Ile655Val polymor-
phism was suggested as a candidate marker for breast cancer
susceptibility, although negatively associated with breast
cancer susceptibility [46]. Similarly, Parvin et al. [47] showed
association of HER2 rs1136201 polymorphisms with breast
cancer in Bangladesh population. Moreover, Ozturk et al.
[48] also suggested Ile/Val genotype of HER2 may act as a
genetic risk factor for breast cancer in Turkish population.

Our finding was inconsistent with the previous studies
which did not find any association of Her2 Ile655Val gene
polymorphisms with the breast cancer risk in Turkish
[49–51], Korean [52], Malaysian [53], and Iranian [54]
populations. Many studies suggested that HER2V655 allele
is not a risk factor for breast cancer in British population [55]
and Caucasians, African–Americans, or Latinas [56]. An-
other meta-analysis study by Dahabreh and Murray also
reported no association between HER2 Ile655Val poly-
morphism and breast cancer development which was based
on 33 case-control studies including 20,461 cases and 23,832
controls [57]. Likewise, in a previous study from our group
[58], we found no significant association of HER2 Ile655Val
polymorphism with colorectal cancer in Indian population.

0ere were some limitations in the present study. Firstly,
the sample size was small. Indian population is thought to be
most diverse due to different sociocultural traditions. A
single larger study with diverse sample size may help us in
better understanding the association of the genetic variation
of these genes with breast cancer risk. Secondly, the gene-
environment and gene-gene interactions have not been
taken into account. Combination of gene-environment in-
teractions and gene polymorphisms should be taken into
consideration to better understand the genetic background
of breast cancer. Further studies on larger sample size are
needed to confirm our findings.

5. Conclusion

In conclusion, the present case-control study concludes that
BCL-2 (-938C>A) and BAX (-248G>A) polymorphism were
not significantly associated with breast cancer risk. 0is
current study for the first time revealed significant associ-
ation of HER2 Ile655Val polymorphism with high risk of

breast cancer in Indian population.0ese genetic risk factors
identification can be useful in predicting the occurrence of
breast cancer and defining high risk individuals. Hence, we
suggest that each population need to evaluate its own genetic
profile for breast cancer risk that may be helpful for better
understanding the racial and geographic differences re-
ported for breast cancer incidence and mortality.
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