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Summary
Background The field of precision medicine endeavors to transform the healthcare industry by advancing individu-
alised strategies for diagnosis, treatment modalities, and predictive assessments. This is achieved by utilizing
extensive multidimensional biological datasets encompassing diverse components, such as an individual’s genetic
makeup, functional attributes, and environmental influences. Artificial intelligence (AI) systems, namely machine
learning (ML) and deep learning (DL), have exhibited remarkable efficacy in predicting the potential occurrence of
specific cancers and cardiovascular diseases (CVD).

Methods We conducted a comprehensive scoping review guided by the PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) framework. Our search strategy involved combining key terms related to
CVD and AI using the Boolean operator AND. In August 2023, we conducted an extensive search across
reputable scholarly databases including Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Web of Science,
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and arXiv to gather relevant academic literature on
personalised medicine for CVD. Subsequently, in
January 2024, we extended our search to include
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internet search engines such as Google and various CVD websites. These searches were further updated in March
2024. Additionally, we reviewed the reference lists of the final selected research articles to identify any additional
relevant literature.

Findings A total of 2307 records were identified during the process of conducting the study, consisting of 564 entries
from external sites like arXiv and 1743 records found through database searching. After 430 duplicate articles were
eliminated, 1877 items that remained were screened for relevancy. In this stage, 1241 articles remained for additional
review after 158 irrelevant articles and 478 articles with insufficient data were removed. 355 articles were eliminated
for being inaccessible, 726 for being written in a language other than English, and 281 for not having undergone peer
review. Consequently, 121 studies were deemed suitable for inclusion in the qualitative synthesis. At the intersection
of CVD, AI, and precision medicine, we found important scientific findings in our scoping review. Intricate pattern
extraction from large, complicated genetic datasets is a skill that AI algorithms excel at, allowing for accurate disease
diagnosis and CVD risk prediction. Furthermore, these investigations have uncovered unique genetic biomarkers
linked to CVD, providing insight into the workings of the disease and possible treatment avenues. The construction
of more precise predictive models and personalised treatment plans based on the genetic profiles of individual pa-
tients has been made possible by the revolutionary advancement of CVD risk assessment through the integration of
AI and genomics.

Interpretation The systematic methodology employed ensured the thorough examination of available literature and
the inclusion of relevant studies, contributing to the robustness and reliability of the study’s findings. Our analysis
stresses a crucial point in terms of the adaptability and versatility of AI solutions. AI algorithms designed in non-CVD
domains such as in oncology, often include ideas and tactics that might be modified to address cardiovascular
problems.

Funding No funding received.

Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
Prior to initiating this study, there were limited existing
research and programme and programme descriptions
concerning the integration of personalised medicine (PM) and
AI in managing CVD. Despite several study projects, the
scholarly literature lacked a comprehensive synthesis of this
information. This gap underscored the significance of our
scoping assessment in consolidating and appraising the
existing body of knowledge in this domain.

Added value of this study
Our study represents the first of its kind in exploring the
integration of AI and PM in CVD management. Through a
systematic scoping review, we have provided unique insights
into the application of AI algorithms for tasks such as risk
prediction, disease classification, and the identification of
genetic biomarkers associated with CVD. These findings
underscore the potential of AI to revolutionise cardiovascular

risk assessment, enable early diagnosis, and optimise
personalised treatment strategies.

Implications of all the available evidence
Our study underscores the importance of harnessing AI-driven
approaches to enhance the accuracy of cardiovascular risk
prediction and advance personalised medicine in managing
CVD. Our findings provide valuable insights for healthcare
providers and administrators to guide the development and
implementation of AI-driven solutions aimed at optimising
clinical care, reducing adverse outcomes, and enhancing
patient outcomes in cardiovascular medicine. By consolidating
and analysing the existing knowledge in this field, our study
lays the foundation for further research and innovation to
tackle the evolving challenges and opportunities in CVD
management through AI-driven personalised medicine
approaches.
Introduction
Personalised medicine (PM) is an approach to health-
care that tailors medical decisions and treatments to
individual patients based on their unique
characteristics, including their genetic makeup, lifestyle,
environment, and other pertinent factors.1,2 The primary
goal of PM is to provide more effective and precise
treatments, reducing the likelihood of adverse reactions
www.thelancet.com Vol 73 July, 2024
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and optimizing patient outcomes.3 This approach rec-
ognises that not all patients with the same condition will
respond similarly to a particular treatment. Hence, it
aims to deliver targeted therapies that align with each
patient’s needs. It enables doctors to predict how pa-
tients will respond to a particular treatment, helping
them make more informed decisions and avoid inef-
fective or potentially harmful therapies.4

PM offers numerous advantages. First, customizing
treatments to a patient’s unique genetic and clinical
characteristics ensures that interventions, medications,
and therapies are directed precisely where they are most
likely to give positive results. This targeted approach
enhances patient care and minimises the waste of
valuable resources on treatments that may prove inef-
fective or less beneficial for certain individuals. Second,
it can expedite drug discovery by screening for poten-
tially useful compounds much more efficiently than a
human medicinal chemist.5 This streamlines the
research process, shortens drug development timelines,
and brings potentially life-saving medications to market
sooner. Third, it can help identify patients more likely to
experience adverse reactions to certain drugs. This in-
formation allows for more precise prescribing and
monitoring, reducing the risk of harmful side effects.
Fourth, it also plays a role in cardiovascular interven-
tion. With minimally invasive techniques, the inter-
ventional branch aims to diagnose and treat a wide
range of cardiovascular problems. Procedures like
percutaneous coronary intervention (PCI), which uses
balloons and stents to open narrowed or blocked coro-
nary arteries and structural heart interventions like
transcatheter aortic valve replacement (TAVR), which
corrects structural heart abnormalities, are essential to
interventional cardiology.6–10 Lastly, it offers hope for
patients with rare diseases or conditions that have been
historically challenging to treat effectively.

Nowadays, PM is applied in various areas, such as
cancer therapy, where specific genetic mutations are
targeted with precision medicines.11 It is making ad-
vancements in areas like genetic testing for disease risk
assessment,12,13 personalised vaccines,14 and regenera-
tive medicine.15 Fig. 1 depicts the 8 P’s of PM that serve
as the fundamental basis of this pioneering approach to
healthcare, building on the longstanding intellectual
legacy of the 4 P concept in medical science—predictive,
preventive, precise, and participatory.27,28 These guiding
concepts, predictive, preventive, participatory, precision,
pharmacogenomics, patient empowerment, prognostic,
and privacy, collectively shape a comprehensive frame-
work for PM-based CVD.

It also faces several challenges that must be
addressed to integrate into healthcare successfully. One
significant challenge is the complexity of interpreting
and integrating vast amounts of diverse data, the so-
called “big” data,29 as PM harnesses a wealth of
different data types, including genetic information,
www.thelancet.com Vol 73 July, 2024
molecular profiling, electronic health records (EHRs),
laboratory tests, patient histories, lifestyle data, and
environmental factors motivating for a composite
design.30 However, the seamless extraction and harmo-
nization of these multifaceted data originating from
multiple sources in a meaningful and standardised way
poses technical and logistical challenges. Gathering pa-
tient data is the first step in orchestrating PM, such as
genetic data from deoxyribonucleic acid (DNA)
sequencing techniques, biomarker data from blood
tests, and lifestyle data from wearables and health
monitoring devices.31 Additionally, EHRs capture pa-
tients’ medical histories and treatment responses. All
these data sources must be synergised for purposeful
comprehension and precise predictions.

AI-driven advances in hardware have sparked revo-
lutionary shifts in the personalised treatment of CVD.
Data processing capabilities have been transformed by
the increase of computational capacity, through devices
such as multi-core CPUs, specialised GPUs, and Tensor
Processing Units (TPUs).32,33 Improved diagnosis, risk
assessment, and tailored therapy are made possible by
these improvements that allow for the integration and
analysis of many data modalities, such as genetic data,
medical imaging, and electronic health records. AI-
driven medical technologies are also becoming more
widely available due to the availability and affordability
of high-performance computer resources as well as the
growth of cloud computing services. Furthermore, the
effective processing of huge datasets (or big data)
necessary for tailored CVD management is ensured by
advancements in data management and storage, such as
scalable cloud storage and high-performance solid-state
drives (SSDs).29,34–36 As specialised hardware continues
to advance, it promises to further enhance the efficacy
and scalability of AI-driven approaches, ultimately opti-
mizing patient care and outcomes in cardiovascular
medicine.

AI uses a diverse array of techniques, with super-
vised and unsupervised learning being two fundamental
approaches.37 Supervised learning trains a model on
labeled data, mapping input variables or risk predictors
to corresponding output labels.38,39 For example, in car-
diovascular risk prediction, patient demographics, clin-
ical variables, and miRNA expression profiles are used
to predict the presence or absence of cardiovascular
diseases, so-called risk stratification. Unsupervised
learning, on the other hand, does not need labeled
data.40 Rather, it investigates data structures to find
hidden correlations and patterns. In cardiology, tech-
niques like clustering and dimensionality reduction
identify patient subgroups or extract features from high-
dimensional datasets. For instance, unsupervised
learning can analyze miRNA expression data to identify
molecular subtypes or novel biomarkers of cardiovas-
cular disease progression. The key distinction lies in
labeled data: supervised learning uses labels for
3
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Fig. 1: The 8 P’s of PM. Each “P” stands for the fundamental aspect that has contributed to developing and advancing the ground-breaking field
of PM. The predictive aspect harnesses data and AI to forecast patients’ disease risks and treatment responses.16,17 Preventive strategies focus on
proactive interventions to mitigate disease risks, while participatory engagement empowers patients to be active partners in their healthcare
decisions.18,19 Precision modifies the treatments to meet patients’ needs and preferences.16,18,20–25 Pharmacogenomics focuses on understanding
how an individual’s genetic makeup affects their drug response, leading to optimised drug selection and dosages.4,26 Patient empowerment
provides patients with the knowledge, skills, and resources necessary to make informed decisions about their health. Prognostic models use AI
to predict disease progression and patient outcomes, guiding personalised insights into a patient’s health status. Finally, ensuring privacy
safeguards patient data confidentiality, fostering trust in the PM journey.

Fig. 2: Venn diagram depicting AI, ML, and DL hierarchy.
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training, while unsupervised learning relies solely on
data structure.41 Both methods complement each other
in cardiology, with supervised learning for predictive
modeling and unsupervised learning for understanding
data structure and complexity. Big data presents unique
challenges in disease prediction.42 As datasets become
more extensive and complex, traditional linear models
may not be sufficient to capture all the nuances and
interactions within the data. In such scenarios, non-
linear relationships between risk factors and the gold
standard or between the risk factors themselves can
exist, further complicating the accurate prediction of
outcomes.43 This is where the pivotal role of AI in PM
becomes evident.44 Fig. 2 depicts the relationship be-
tween AI, ML, and DL. AI is the umbrella term,
embracing computer systems designed to do activities
that generally need human-like intellect. ML is a subset
of AI dedicated to developing algorithms and statistical
models that allow computers to learn from data and
make informed predictions or decisions. ML techniques
include supervised,37 unsupervised,45 and reinforcement
learning.46 DL, a subset of ML inspired by the human
brain’s structure, uses artificial neural networks (ANN)
with numerous layers that process and learn from data
hierarchically.47

It is a specialised and more advanced form of ML
that has gained significant attention in PM due to its
ability to handle large and complex datasets effectively
because of its distributed computing capabilities and
scalability.48 It automatically identifies essential ele-
ments from raw data, allowing it to capture intricate
correlations. In PM, DL has been utilised in various
tasks, such as image analysis,49 genomics,50 and EHR
processing.51 These models have shown remarkable
success in detecting anomalies and classifying medical
images, enabling more accurate diagnoses.23,52 They
have been instrumental in predicting disease risk and
treatment responses by incorporating multi-modal data,
such as genomic and imaging data, to improve
www.thelancet.com Vol 73 July, 2024
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predictive accuracy. However, the development, imple-
mentation, and use of AI technologies in cardiovascular
care must be governed by a strong legal framework that
addresses issues of patient consent, data privacy, liabil-
ity, and regulatory compliance. Comprehensive steps
are also required to guarantee the ethical and fair
application of AI-driven solutions in clinical practice,
including issues with algorithmic bias, accountability,
and transparency.6,25,53–55
Methods
Literature sources
The authors MS and JSS conducted an extensive search
up to March 2024 to identify relevant literature. Core
search terms for CVD included: “CVD”, “AI in CVD”,
“Genomics in CVD”, “Personalised Medicine in CVD”,
“Personalised Risk Assessment in CVD”, “Deep
Learning in CVD”, “Deep Learning in Personalised
Medicine”, “Composite CVD Risk Assessment in Per-
sonalised Medicine”, “Personalised Medicine and
CVD”, “Personalised Medicine-based biomarkers for
CVD”, “AI and CVD”, “AI, CVD for Personalised
Medicine”. We searched the following databases on
August 10, 2023: Google Scholar, PubMed, IEEE Xplore,
ScienceDirect, Web of Science and arXiv and then
updated the searches on March 20, 2024. Within these
databases, we searched for research articles, book
chapters, and conference proceedings.

Literature selection
We conducted a two-stage screening process without
restrictions on study design, location, time, or sex or
gender differences. In the first stage, two reviewers
(MS and JSS) independently screened titles and ab-
stracts in duplicate. Documents were excluded if they
did not pertain to CVD, PM, or AI. Any title/abstract
deemed relevant by either reviewer advanced to the
second stage. If a title seemed relevant but lacked an
abstract, the article was also advanced to the second
stage. During the second stage, two reviewers (MS and
JSS) independently reviewed the full-text documents
selected from stage one in duplicate. Fig. 3 represents
the Sankey diagram illustrating the methodical
journey taken in the review process from the initial
identification stage across various databases to the
application of exclusion criteria. The width of the lines
in the diagram corresponds to the number of papers
passing through each step, illustrating the filtering
process. Initially, a sizable pool of studies was
retrieved, reflecting the breadth of literature available
in the field. The inclusion and exclusion criteria for
full text review included.

Inclusion criteria
Studies were included if they focused on the topics of
cardiovascular disease, personalised medicine, or
www.thelancet.com Vol 73 July, 2024
artificial intelligence. There were no restrictions on
study design, location, or gender.

Exclusion criteria
Studies were excluded if they did not focus on CVD,
personalized medicine, or AI. Additionally, duplicate
records, non-English language publications, non-peer-
reviewed works, studies utilizing non-standard AI
techniques, and studies with low-quality design were
excluded.

Role of funding source
There was no exclusive funding for this project. Further,
the development, design, and undertaking of this
scoping review was implemented by co-authors itself.
All authors had access to the data and were responsible
for the decision to submit this scoping review for
publication.
Results
The search from the five databases identified 1743 re-
cords. The search from other sources (e.g., websites and
arXiv) identified an additional 564 records. A total of 121
documents met our final inclusion criteria and were
included in this review (Fig. 4).

Personalised medicine and artificial intelligence
The journey of PM has been marked by significant
milestones that have shaped the landscape of healthcare
(Fig. 5). It all began with the ground-breaking discovery
of DNA, the genetic material and molecular basis for
heredity.56 Its structure laid the foundation for under-
standing genetic variations and heredity. Completing
the Human Genome Project propelled the evolution of
genomics, providing a comprehensive map of the hu-
man genome and advancing genomic research.57,58 Ad-
vancements in omics technologies enabled the
identification of disease-related biomarkers, revolution-
izing early diagnosis and opening doors to personalised
treatments.59,60 The advent of consumer genomics ser-
vices empowered individuals to access their genetic in-
formation, granting them greater control over their
health decisions.61,62 The increasing acceptance of PM
into mainstream clinical practice necessitates rethinking
resilient and robust frameworks to address medical
ethics and data privacy.63,64 While the landscape is
evolving, PM continues to make strides in healthcare,
seamlessly integrating into established clinical practices
and transforming patient care.

PM, also known as precision medicine,48 relies on
various cutting-edge technologies, including high-
performance computing (HPC) and vast biological
datasets, to guide tailored diagnosis and treatment for
individual patients.65 These advanced tools are essential
for implementing a precise approach that can revolu-
tionise healthcare outcomes. At the core of this strategy
5
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Fig. 3: Sankey diagram depicting the keywords used per database for initial paper identification and subsequent exclusion criteria.
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are sophisticated computer algorithms capable of iden-
tifying patterns in complex multidimensional
datasets.66–72 These algorithms employ various feature or
pattern extraction methods,73 which can then be used for
classification of binary or multiclass scenarios based on
gold standard labels.74 Note that the pattern recognition
is a precursor for extraction of features while classifi-
cation or risk stratification is a specific task performed
by the classifier model to predict the risk or bin in the
stratified risk. The trained classifier is actually designed
Fig. 4: PRISMA flowchart for systematic pa
using the training features with known gold standard
labels. The training-based classifiers can be linear and
non-linear methods.75,76 Examples of non-linear classi-
fier models include Support Vector Machines, Random
Forest, Decision Tree, and Artificial Neural Net-
works.16,17,77 These algorithms leverage knowledge from
similar patient data to predict or optimise treatments for
new individuals. While both neural network (NN) and
random forest (RF) are non-linear, a NN’s large
parameter space greatly enhances its non-linear
per selection and quality assessment.

www.thelancet.com Vol 73 July, 2024
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Fig. 5: Milestones in the journey of PM.
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performance when compared to a RF. A NN’s archi-
tecture enables it to learn hierarchical features from
data, resulting in extremely complicated and non-linear
mappings, whereas a RF depends on an ensemble of
decision trees, each of which contributes to a non-linear
decision boundary. For example, AI generated 3D
models and simulations can be used by surgeons to
rehearse operations in a safe setting. This method op-
timises operations based on each patient’s distinct
anatomy, improving surgical competence.78

Cardiovascular diseases
CVD pose a significant global health challenge, ac-
counting for a substantial proportion of morbidity and
mortality worldwide. According to statistics, CVD is the
leading cause of death globally, responsible for more
deaths than any other disease category.79 It includes
coronary artery disease (CAD), heart failure (HF),
stroke, and peripheral vascular disease (PVD). The
burden of CVD affects both developed and developing
countries, with an increasing prevalence in low- and
middle-income nations due to changes in lifestyle, ur-
banization, and population aging.80 According to the
World Health Organization (WHO), over 17.9 million
people die yearly due to CVD, accounting for approxi-
mately 31% of all global deaths.81 Alarmingly, this
number is projected to rise in the coming decades,82

posing significant challenges to healthcare systems
and economies. Tackling this growing burden requires
comprehensive prevention strategies, early detection,
effective management, and continued research to
address the complex interplay of risk factors contrib-
uting to CVD development on a global scale. Fig. 6 de-
picts the major risk components associated with CVD
and the methods of data acquisition used in risk
assessment. The depicted risk factors encompass both
www.thelancet.com Vol 73 July, 2024
traditional elements, such as lifestyle factors (smoking
status, alcohol, and fast-food consumption), as well as
newly uncovered factors like genetic information and
medical conditions. Moreover, some risk models also
take environmental factors into consideration, further
deepening the scope of risk assessment. This compre-
hensive integration of diverse risk factors, gathered
through EHRs, medical imaging, omics data, wearables,
and genetic testing, plays a crucial role in accurately and
holistically assessing an individual’s risk for developing
CVD.

The potential of DL in PM is further increased by
assimilating the analysis of carotid vessel morphology
since it offers vital insights into vascular health and
contributes to a thorough understanding of cardiovas-
cular problems. As the global burden of CVD grew, a
paradigm shift emerged in the field of CVD risk
assessment, embracing the integration of genomics and
AI. Genomics offered new insights into the genetic
basis of CVD risk, unveiling susceptibility and molecu-
lar mechanisms underlying the disease.83,84 Genetic
testing can identify specific mutations or variants un-
derlying certain cardiovascular disorders, aiding in ac-
curate disease classification. It can provide crucial
diagnostic clarity in ambiguous clinical presentations
and facilitate appropriate management decisions. Iden-
tifying essential genes, pathways, and biological pro-
cesses associated with CVD has deepened our
knowledge of disease pathophysiology. This funda-
mental understanding lay the groundwork for precision
medicine in CVD. Simultaneously, AI harnesses the
power of big data analytics, allowing for the thorough
analysis of diverse datasets to identify novel risk in-
dicators and refine predictions.85

As one of the most advanced biomarkers for CVD,
microRNAs (miRNAs) have many benefits that make
7
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Fig. 6: CVD risk factors and data acquisition.
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them effective diagnostic instruments.86 These tiny,
non-coding RNAs boast remarkable stability in circula-
tion and tissue-specific expression patterns. Their early
detection potential of CVD is made possible by the fact
that they are in the bloodstream even before symptoms
emerge. This enables rapid diagnosis and intervention.
Because miRNAs amplify only at specific sequences,
they are particularly good at detecting disorders related
to the cardiovascular system with high specificity and
sensitivity. For instance, increased levels of miR-21 are
connected to inflammation and fibrosis, making it a
significant biomarker for the development of heart
failure. Its elevated expression is associated with the
pathogenic mechanisms that underlie heart failure,
suggesting that it may be used as a therapeutic target
and prognostic marker to manage this condition.87

Conversely, miR-126, which is recognised for its func-
tion in controlling endothelial function, shows potential
in forecasting the probability of atherosclerosis.88 One of
the main factors to atherosclerosis is endothelial
dysfunction, and miR-126 is essential for preserving
endothelial integrity and function. It has been observed
that dysregulation of miR-126 levels occurs in those who
have atherosclerosis, indicating the potential use of this
biomarker to guide preventative measures and assess
cardiovascular risk. Furthermore, patient comfort is
increased, and the danger associated with invasive pro-
cedures is decreased due to the minimally invasive na-
ture of miRNA testing, which normally just takes a
blood sample. Their revolutionary potential in early
identification, risk assessment, and personalised treat-
ment options is highlighted by the strong correlation
observed between miRNA signatures and a range of
cardiovascular diseases. Harnessing the therapeutic and
diagnostic potential of miRNAs promises to usher in a
new era of precision cardiovascular medicine, ultimately
improving patient care and outcomes, as our under-
standing of miRNA biology continues to grow.

Table 1 provides an exhaustive overview of the use of
AI and genomics in the context of CVD and non-CVD
disorders. They utilise ML algorithms and techniques
to identify biomarkers, classify different types of car-
diomyopathies and diseases, develop prediction models
for CVD risk, and explore novel genetic biomarkers
associated with specific diseases. For example, in CVD
studies, Phan et al.89 aimed to identify biomarkers for
CVD using genomic datasets and applied various ML
algorithms. The study achieved an accuracy ranging
from 55% to an impressive 97%. Biomarker detection
using AI and genomics has the potential to aid in early
detection and management of CVD greatly. Alimadadi
et al.90 used RNA-seq data from seven datasets to classify
different forms of cardiomyopathies. Random forest
(RF) outperformed others with 78%–84% accuracy
among the algorithms employed. This shows the efficacy
of AI algorithms in accurately distinguishing between
various cardiomyopathy types. Steinfeldt et al.91 devel-
oped a prediction model for the 10-year risk of major
adverse cardiac events (MACE) using NeuralCVD-DSM.
The model showed an improved C-index and net
reclassification index (NRI), providing better risk strati-
fication for individuals with low to intermediate clinical
risk. This demonstrates the potential of AI in enhancing
cardiovascular risk prediction, aiding in better preventive
measures. Using CNN-GWAS, Kwon et al.92 classified
atrial fibrillation (AF) vs. non-AF. The model achieved
moderate accuracy in predicting AF phenotype based on
genetic information, with an area under the curve (AUC)
www.thelancet.com Vol 73 July, 2024
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SN Author &
year

Disease
type

Objective Models Dataset Data Size Input Performance
metrics

Conclusion

CVD

1 Phan
et al.89

(2012)

CVD To describe the
pipeline for biomarker
identification for CVD
and exemplify it by
analyzing 4 genomic
datasets.

KNN, linear
SVM, LR,
Bayesian

Blood Gene Exp. CAD,
Baseline Macrophages
Atherosclerosis,
Monocytes FH,
Monocytes
Atherosclerosis.

370
samples in
4 datasets

Gene expression data ACC: 61%,
87%, 55%,
97%

A systematic pipeline for
biomarker identification in CVD
can be constructed using high-
throughput genomic data and
bioinformatics methods.

2 Alimadadi
et al.90

(2020)

CM To classify different
types of
cardiomyopathies.

svmRadial,
pcaNNet,
DT, ENet,
RF

7 datasets in the GEO
database

137
samples in
7 datasets

RNA-seq data aACC: 80%,
83%, 78%,
84%, 82.66%

RF outperformed the others as it
was the only one to show an
increase in all the metrics.

3 Steinfeldt
et al.91

(2022)

CVD To develop and
validate the prediction
model for the 10-year
risk of MACE.

NeuralCVD-
DSM

UK Biobank 395,713
CVD-free
participants

29 clinical predictors
and 6 PGS

ΔC-index:
0.006, 95%
CI:
0.005–0.007
NRI: 0.0116,
95%
CI:
0.0066–0.0159

When additional high polygenic
risk was present, those with low
to moderate clinical risk and ages
less than 50 years experienced a
substantial rise in overall risk.

4 Kwon
et al.92

(2022)

AF To classify AF vs. non-
AF.

CNN-GWAS Yonsei AF cohort,
Korea AF Network,
KoGES, Korean
Genome Rural cohort,
3-independent ethnic-
specific GWAS

6358
subjects
selected
from 4
cohorts

SNPs AUC:
0.74–0.82

CNN-GWAS algorithms predict
AF phenotype moderately
accurately using only genetic
information, capturing
cumulative gene effects and
interactions.

5 Venkat
et al.93

(2023)

HF, AF,
other
CVD
disease

To identify genes
associated with CVD
diseases and predict
the disease.

RF Self-made dataset 61 CVD
patients

Gene expression data
and clinical data

ACC: 90.9%,
95%,95.9%

Predicted the association of
highly significant HF, AF, and
other CVD genes with
demographic variables.

Non-CVD

6 Khalifa
et al.94

(2020)

KIRC,
BRCA,
LUSC,
LUAD,
UCEC

To classify 5 different
types of cancer.

BPSO-DT,
CNN

Tumor gene
expression dataset

2086
samples

RNA-Seq gene
expression data

ACC: 96.90% The present work exceeds prior
relevant work regarding testing
accuracy for 5 tumor types.

7 Peng
et al.95

(2021)

AD, IBD,
T2D,
BRCA

To identify the high-
risk individuals by
calculating the PRS.

BiLSTM UK biobank 351,022
participants

SNPs, clinical features AUC: 0.8624,
0.6585,
0.7316,
0.6660

DeepPRS outperforms traditional
techniques in terms of
performance.

8 Li et al.96

(2021)
AD To classify AD patients

and HC.
GWAS,
ResNet

ADNI database 988
subjects

SNP genotype data ACC: 71.38%,
92.65%

DLG model performs better than
the traditional GWAS model.
Also, they discovered novel
genetic biomarkers of AD.

9 Zekavat
et al.97

(2022)

Multiple To calculate FD & VD. U-Net
Ensemble

UK biobank cohort 54,813
participants

Retinal fundus
photographs

ACC: 95.6% GWAS identified 7 new loci
related to FD and 13 with VD.
PheWAS discovered systemic and
ocular phenotypes associated
with retinal microvasculature.

10 Hahn
et al.98

(2022)

T2D To integrate genetic
information and
metabolite profiles to
predict T2D risk.

LR, RF KoGES Ansan Ansung
cohort

1425
participants

Demo. +gPRS + clinical
features+
metabolites

ACC: 81.2%,
85.4%

RF-based model using clinical
factors, gPRS, and metabolites
predicted T2D risk more
accurately than the LR-based
model.

CVD: Cardiovascular disease, CM: Cardiomypathy, AF: Atrial fibrillation, HF: Heart failure, MACE: Major adverse cardiac event, KNN: K-nearest neighbor, SVM: Support vector machine, LR: Logistic regression,
svmRadial: Support vector machine with radial kernel, pcaNNet: Principal component analysis neural networks, DT: Decision tree, ENet: Elastic net, RF: Random forest, DSM: Deep survival machine, CNN:
Convolutional neural network, GWAS: Genome-wide association studies, CAD: Coronary artery disease, FH: Familial hypercholesterolemia, GEO: Gene expression omnibus, KoGES: Korean genome
Epidemiology Study, RNA: Ribonucleic acid, PGS: Polygenic score, ACC: Accuracy, CI: Confidence interval, C-index: Concordance index, NRI: Net reclassification index, AUC: Area under curve, KIRC: Kidney
renal clear cell carcinoma, BRCA: Breast Cancer, LUSC: Lung squamous cell carcinoma, LUAD: Lung adenocarcinoma, UCEC: Uterine corpus endometrial carcinoma, AD: Alzheimer’s disease, IBD: Inflammatory
Bowel Disease, T2D: Type 2 Diabetes, BPSO-DT: Binary particle swarm optimization with decision tree, BiLSTM: Bidirectional Long Short Term Memory, ADNI: Alzheimer’s Disease Neuroimaging Initiative,
Demo.: Demographics, gPRS: genome-wide polygenic risk score, DLG: Deep learning genomics, FD: Fractal dimension, VD: Vascular density, PheWAS: Phenome-wide association study. aACC: These are the
average accuracies for the 5 algorithms in classifying different types of cardiomyopathies.

Table 1: AI-genomics CVD/non-CVD.
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ranging from 0.74 to 0.82. This highlights the potential
of AI algorithms in leveraging genetic data for improved
disease classification. Venkat et al.93 identified CVD-
associated genes and predicted CVD diseases using a
RF approach. The model achieved high accuracy,
particularly in predicting HF, AF, and other CVD dis-
eases, ranging from 90.9% to 95.9%. Evidence like this
demonstrates the promise of AI in areas like identifying
genes and disease prediction, opening avenues for
progress in PM. For non-CVD studies, Khalifa et al.94

classified five types of cancer across four organs using
BPSO-DT and CNN. The study achieved a high accuracy
of 96.9% in classifying cancer types, surpassing the ac-
curacy achieved by other related works. This emphasises
the significance of AI in cancer classification, potentially
aiding in precision oncology. Peng et al.95 identified
high-risk individuals for various diseases, including
Alzheimer’s Disease (AD), Inflammatory Bowel Disease
(IBD), Type 2 Diabetes (T2D), and Breast Cancer
(BRCA) using Bidirectional Long Short Term Memory
(BiLSTM). The model achieved promising performance
with AUC values ranging from 0.66 to 0.86, out-
performing traditional methods. This indicates the po-
tential of AI in identifying individuals at risk for specific
diseases. Li et al.96 classified AD patients and healthy
controls using GWAS and ResNet, achieving accuracies
of 71.38% for AD classification and 92.65% for healthy
control classification. The study also discovered novel
genetic biomarkers for AD. This showcases the potential
of AI in genomics research and its role in uncovering
new insights into complex diseases. Zekavat et al.97

calculated fractal dimension (FD) and vascular density
(VD) using the U-Net-based Ensemble, identifying seven
novel loci associated with FD and 13 with VD. The
model achieved an outstanding accuracy of 95.6% in this
task. This demonstrates the potential of AI in analyzing
complex patterns in medical imaging and uncovering
novel disease-related markers. Hahn et al.98 integrated
genetic information and metabolite profiles to predict
T2D risk using LR and RF. The RF-based model out-
performed the logistic regression-based model,
achieving an accuracy of 85.4%. This indicates the po-
tential of AI in combining diverse data sources for
improved disease risk prediction.

These studies demonstrate the power of AI algo-
rithms in extracting meaningful patterns from complex
genomic data, facilitating disease diagnosis, risk pre-
diction, and the discovery of novel genetic biomarkers.
This personalised approach to risk assessment signifies
a promising step towards improving the precision of
cardiovascular risk prediction and advancing precision
medicine in the battle against CVD. By embracing such
innovative approaches and continuing to explore the
potential of genomics and AI, the future holds promise
for a more proactive, personalised approach to CVD
management, ultimately improving patient outcomes
worldwide.
Discussion
In cardiovascular medicine, AI has distinct applications,
ranging from the lab to the bedside and beyond. It has
accelerated data analysis, identified genetic patterns, and
predicted disease based on genetic information.
Computational modelling leverages computers to
simulate the behaviour of the human body, enabling
personalised heart simulations and optimizing thera-
pies tailored to individual patients. The construction of a
personalised “digital twin” is a major goal of the syn-
ergistic integration of numerous cutting-edge technolo-
gies.99 This ground-breaking technology aims to
seamlessly combine the distinct clinical data of each
patient, which may come from various sources. Its goal
is to provide clinicians with a never-before-seen level of
individualised knowledge of a patient’s overall cardio-
vascular health. This can completely transform how
CVD are detected, treated, and managed. Notably, one
of the distinct benefits of the “digital twin” idea is the
capability to pretest cardiovascular therapies inside the
patient’s digital doppelganger. This cutting-edge
method enables a complete and quantitative evaluation
of possible outcomes without putting the actual patient
through damaging operations.100 Synthetic data genera-
tion is valuable for tracking disease progression in large-
scale clinical studies and addressing privacy and cost
concerns.101 Meanwhile, integrated with AI analytics,
mobile health devices and wearable technologies gather
copious amounts of individual-level data, enabling
detailed phenotyping of diseases and PM.

AI can automate diagnostic pathways, streamline pa-
tient triaging, and facilitate the identification of patients
requiring further evaluation or monitoring for CVD, akin
to other medical tests. This, in turn, can reduce patient
waiting times and optimise clinical care, making the
healthcare system more efficient. In the context of CVD,
AI methods find utility in areas such as drug therapy,48

HF management,102 and risk stratification.103

Table 2 showcases the diverse applications of AI in
CVD. The studies cover a wide range of applications,
including identifying patients with acute decom-
pensated heart failure (ADHF),104 predicting 30-day
readmissions of HF patients,105 developing ML risk
calculators for atherosclerotic cardiovascular disease
(ASCVD),106 and predicting modified Rankin Scale
(mRS) scores for stroke patients.107 Other applications
include diagnosing asymptomatic left ventricular
dysfunction (ALVD),108 predicting myocardial infarction
(MI) from non-enhanced MRI,110 and assessing the risk
of CVD mortality and hospitalization in hypertensive
patients.113

AI algorithms can diagnose heart murmurs,115 detect
left ventricular dysfunction,116 and even identify HF
patients through histological interpretation of biopsy
slides.117 Moreover, blood flow dynamics within the
aorta are simulated by AI-based computer models,
which let physicians choose the best course of action
www.thelancet.com Vol 73 July, 2024
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& Year

Disease
Type

Aim Method Dataset N Feature
Types

Performance
Metrics

Conclusion

1 Blecker
et al.104

(2018)

ADHF To test 4 algorithms to identify
patients with ADHF.

LR Single
center

37,229 EHR and clinical
features

A1: Sen
(0.98), PPV
(0.14)
A2: AUC
(0.96)
A3&A4: AUC
(0.99)

ML with the unstructured data had the
best performance for identifying ADHF.

2 Golas et al.105

(2018)
HF To develop this EMR-based

prediction model for 30-day
readmissions in HF patients.

LR, GBA,
Maxout
networks,
DUNs

Hospitals
in Partners
Healthcare
System

11,510 EHR AUC: 0.664,
0.650,
0.695, 0.705

At the classification threshold, the
DUNs model had an accuracy of 76.4%,
corresponding to the largest cost
savings to the hospital.

3 Kakadiaris
et al.106

(2018)

ASCVD To develop a ML Risk Calculator. SVM MESA 6459 CRF Sen:86%,
Spe:95%,
AUC:0.92

The FLEMENGHO-validated ML Risk
Calculator outperformed the ACC/AHA
Risk Calculator.

4 Xie et al.107

(2019)
Stroke To predict mRS scores at 90 days. XGB, GBM Single

center
512 CT Head and

clinical parameters
AUC: 0.884,
0.877

With a high AUC, decision tree-based
GBMs may predict the recovery
prognosis of stroke patients at
admission.

5 Attia et al.108

(2019)
ALVD Role of AI-based learning

algorithms to diagnose
asymptomatic left ventricular
dysfunction.

CNN Single
center

625,326 ECG data AUC: 0.93,
Sen: 86.3%,
Spe:85.7%,
ACC: 85.7%

Patients without a positive AI test were
four times more likely to acquire future
ventricular dysfunction than those with
a negative screen.

6 Lancaster
et al.109

(2019)

CVD Clustering for grouping directly
observed diastolic function
parameters and identifying patient
phenotypes with similar behaviour
to predict future adverse events.

Hierarchical
clustering

Single
center

866 Echocardiographic
variables

Kappa: 0.41
(p < 0.001),
0.619
(p < 0.001)

Using echocardiographic characteristics
recommended by guidelines for
assessing LVDD, hierarchical clustering
produced groupings that distinguish
patient prognosis better than
standards-based categorization.

7 Zhang et al.110

(2019)
MI To predict MI from non-enhanced

MRI.
LSTM,
Optical flow

Single
center

299 MRI images AUC: 0.94,
Sen: 89.8%,
Spe: 99.1%

Using nonenhanced cine MRI, the
model could detect chronic MI
(validated by LGE).

8 Jamthikar
et al.19 (2020)

CVD/
Stroke

To predict the risk of CVD/stroke
on retrospective data while using
EEGS as the surrogate endpoints.

RF Single
center

202 CRF and CUSIP AUC: 0.99 The AtheroRisk-integrated system
outperforms the AtheroRisk-
conventional system.

9 Chao et al.111

(2021)
CVD CVD screening and risk prediction. Deep CNN NLST 10,395 LDCT AUC: 0.871,

0.768
DL can transform LDCT for lung cancer
screening into a dual-screening
quantitative tool for CVD risk estimate
in high-risk individuals.

10 Krittanawong
et al.112

(2021)

SCAD To predict in-hospital mortality in
patients with SCAD.

DL,
AdaBoost,
SVM, KNN,
XGB, DT,
LR, RF

Single
center

30,425 EHR data AUC: 0.98
(Best
performing
DL-
algorithm)

DL outperformed both regression and
ML models.

11 Lee et al.113

(2022)
CVD Assess the risk of CVD mortality

and hospitalization within a year
in patients with hypertension.

LR and DNN KNHIS 2,037,027 Clinical parameters ACC: 92.5%,
78%, 86.3%,
65.5%

The DNN-based model showed higher
performance than the LR in all the
datasets.

12 Absi et al.114

(2022)
CVD Distinguishing the CVD group

from the non-CVD using DXA and
retinal images.

CNN QBB 500 Retinal images and
DXA data

ACC: 78.3% Integrating multi-modal data and DL
techniques provides a fast and relatively
non-invasive method for diagnosing
CVD.

ADHF: Acute decompensated heart failure, HF: heart failure, ASCVD: Atherosclerotic cardiovascular disease, ALVD: Asymptomatic left ventricular dysfunction, MI: Myocardial infarction, CVD: Cardiovascular
disease, SCAD: Spontaneous coronary artery dissection, EMR: Electronic medical record, ML: Machine learning, AI: Artificial intelligence, mRS: modified Rankin Scale, MRI: Magnetic Resonance Imaging,
EEGS: Event-equivalence gold standard, DXA: Dual-energy X-ray absorptiometry, LR: Logistic regression, GBA: Gradient boosting algorithm, DUNs: Deep unified networks, SVM: Support vector machine,
XGB: Extreme gradient boosting, GBM: Gradient boosting machine, CNN: Convolutional neural network, LSTM: Long short term memory, RF: Random forest, KNN: K-nearest neighbor, DT: Decision tree,
DNN: Deep neural network, MESA: Multi-Ethnic Study of Atherosclerosis, NLST: National Lung Screening Trial, KNHIS: Korean National Health Insurance Service, QBB: Qatar biobank, EHR: Electronic Health
Record, CRF: Conventional risk factors, CT: Computed tomography, ECG: Electrocardiogram, CUSIP: Carotid ultrasound image pheno types, LDCT: Low dose computed tomography, Sen: Sensitivity, Spe:
Specificity, AUC: Area under curve, PPV: Positive predictive value, ACC: Accuracy, DL: Deep learning, ACC/AHA: American College of Cardiology/American Heart Association, FLEMENGHO: Flemish Study of
Environment, Genes and Health Outcomes, LVDD: Left ventricular diastolic dysfunction, LGE: Late gadolinium enhancement.

Table 2: Applications of AI in CVD.

Review
based on the anatomy and features of each patient’s
aneurysm. AI algorithms can monitor alterations in the
morphology of the aneurysm sac and detect patterns
that indicate the effectiveness or failure of treatment by
www.thelancet.com Vol 73 July, 2024
examining clinical factors and longitudinal imaging
data. Personalised monitoring and intervention tech-
niques can be made possible using AI-driven predictive
models to stratify patients according to their risk of
11
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aneurysm rupture or progression.118 These strides in
diagnostic precision carry substantial ramifications for
clinical choices and the well-being of patients. PM in
CVD is witnessing the convergence of genomics and
clinical data with the revolutionary capabilities of DL for
prognostic prediction.119 This approach is well-suited to
address the complexity of heterogeneous multi-scale
genomic profiles, commonly called multi-omics data.120

Precision cardiology is leading the way in this domain,
which harnesses the vast potential of post-genomics
advancements.

The personalised treatment for CVD follows a sys-
tematic approach (Fig. 7), beginning with comprehen-
sive patient assessment, which includes vital signs
measurement, genetic testing, symptom evaluation,
physical examination, and history-taking to identify
familial predispositions to cardiac disease. Data inte-
gration combines a variety of parameters such as omics,
biomarkers, clinical aspects, and genetic profiles. The
interpretation step includes diagnosis, risk stratification,
decision-making, and prognosis. Based on this assess-
ment, a treatment plan is developed, which includes risk
reduction, symptom management, disease progression
prevention, and drug optimization. Follow-up involves
monitoring symptoms, analyzing risks, reviewing life-
style changes, and maintaining drug adherence for
successful management and improved cardiovascular
health. Notably, a crucial feedback loop would be set up
to allow the AI-driven PM algorithm to learn and
enhance its effectiveness over time continuously. This
iterative procedure allows the treatment plan to be
Fig. 7: Five-step personalize
dynamically adjusted in response to changes in the
patient’s state and the algorithm’s evolving under-
standing, progressively refining the algorithm’s ability
to maintain the patient’s health over time.

Our study also has several limitations that should be
acknowledged. First, the search strategy employed in this
scoping review aimed to comprehensively capture rele-
vant literature; however, there is a possibility that some
relevant studies may have been overlooked. Despite
efforts to employ systematic search techniques, the vast
and diverse nature of the literature pertaining to PM and
AI in CVD framework have led to the omission of certain
relevant articles. Secondly, the inclusion criteria for this
review focused on studies and literature specifically
related to the intersection of PM, AI, and CVD. While this
ensured relevance to our research objectives, it may have
resulted in the exclusion of potentially valuable literature
that intersects with related but distinct domains. Addi-
tionally, the synthesis of findings from diverse sources,
including research articles, guidelines, conference pro-
ceedings, and dissertations, poses challenges in terms of
data integration and interpretation. The heterogeneity in
study designs, methodologies, and outcome measures
across the included literature further complicates the
synthesis and generalization of findings. Finally, our
review primarily focused on summarizing existing liter-
ature and identifying gaps in knowledge. While we have
highlighted implications for research, clinical practice,
administration, and education, the translation of these
implications into actionable strategies requires further
investigation and validation. Future research should aim
d treatment for CVDs.
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to address these limitations and build upon our findings
to advance the understanding and application of PM, AI,
and CVD in healthcare practice.

The healthcare field has already witnessed substan-
tial progress due to AI, and there is optimistic antici-
pation that the accomplishments attained in cancer and
other non-CVDs will likewise be mirrored in CVD.
Integrating AI with PM is driving advancements in
healthcare, enabling medical professionals and patients
to access highly accurate medical diagnostic and treat-
ment information. The confluence of these two factors
contributes to the early identification and prevention of
CVD in individuals, potentially decreasing the total
burden of CVD and mitigating healthcare costs associ-
ated with preventive measures. The integration of AI
algorithms facilitates the examination of extensive
datasets encompassing genomes, proteomics, and clin-
ical information, thereby enabling precise risk evalua-
tions and personalised approaches to treatment. By
adopting this synergistic strategy, CVD management is
poised to witness significant advancements, resulting in
enhanced cardiovascular health outcomes and a more
robust population.
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