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S u m m a r y  

To determine the role of humoral mucosal immune response in protection against shigellosis, 
we have obtained a monoclonal dimeric immunoglobulin A (IgA) antibody specific for Shigella 
flexneri serotype 5a lipopolysaccharide (mlgA) and used a routine pulmonary infection model 
that mimics the lesions occurring in natural intestinal infection. Adult BALB/c mice challenged 
with 10 7 S. flexneri organisms developed a rapid inflammatory response characterized by poly- 
morphonuclear cell infiltration around and within the bronchi and strong systemic interleukin 
6 response. Implantation of hybridoma cells in the back of mice, resulting in the development 
of a myeloma tumor producing mlgA in the serum and subsequently secretory mlgA in local 
secretions, or direct intranasal administration of these antibodies, protected the animals against 
subsequent intranasal challenge with S. flexneri serotype 5a. Absence of histopathological lesion 
and significant decrease in bacterial load of the lungs and of systemic interleukin 6 response were 
the three major criteria of protection. This protection was shown to be serotype-specific and 
dependent on local concentration of mlgA. These data demonstrate that mucosal antibodies directed 
against a single polysaccharidic surface epitope of Shigella can protect against the disease. 

S higella flexneri, a gram-negative bacillus, is the major 
etiological agent of the endemic form of shigellosis, a 

dysenteric syndrome causing a high rate of mortality among 
infants, particularly in developing countries. It causes disease 
by invading the epithelial layer and the lamina propria of the 
colon (1). A major characteristic of the infectious process is 
the occurrence of an acute inflammatory reaction of mucosai 
tissues. Recently, confirming in vitro demonstration that 
S. flexneri is unable to invade the apical pole of colonic cells 
(2) and that polymorphonuclear cells (PMN) assist it in 
reaching the basal side of epithelial cells, where it can invade 
(3), in vivo evidence has been provided that, at the early stage 
of infection, S.flexneri enters the epithelial barrier essentially 
through M cells (4) that cover the dome of lymphoid fol- 
licles, and that subsequent invasion and destruction of the 
epithelium is primarily due to the immigration of PMN, which 
destroy cohesion of the epithelial barrier (5). The proinflamma- 
tory cytokine Ibl,  which is released by tissue resident mac- 
rophages infected by the bacteria and killed by apoptosis (6, 
7), has recently been shown to play a central role in the initi- 

ation of the inflammatory process leading to PMN cell infiltra- 
tion (8). 

Systemic and mucosal immune responses elicited by the 
host, after natural or experimental infection, are mainly 
directed against the LPS and some virulence plasmid-encoded 
proteins (9-12). Protection has been shown to occur after 
natural or experimental infection, but the immunological 
correlates of protection have not yet been clearly established 
(13-19). It is assumed that mucosal, rather than systemic, 
immunity plays a major role in protecting hosts, since Shigella 
infection remains associated with the colonic mucosa and only 
rarely disseminates via the systemic route. Secretory IgA 
(sIgA) 1 antibodies, which constitute a first line of defense 
against pathogens, have been found in local secretions after 
natural infection in humans (12, 20) and in experimentally 
infected monkeys and rabbits (11, 21), but their protective 

1 Abbreviations used in this paper: Ipa, invasion plasmid antigen; mlgA, 
anti-S, flexneri 5a LPS monoclonal IgA; PMN, polymorphonuclear cell; 
slgA, secretory IgA. 
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role remains unclear. However, an in vitro study has reported 
an antibody-dependent, cell-mediated antibacterial activity 
of intestinal lymphocytes with Shigella-spedfic slgA (22). The 
protection provided by natural infection or vaccination is con- 
sidered to be serotype specific, pointing to LPS as a primary 
target antigen for protective immunity, but experimental 
demonstration has never been achieved. 

Therefore, the aim of this study was to identify antibodies 
protecting mucosal surfaces against Shigella infection and to 
determine whether protection required the presence of these 
antibodies in the luminal or mucosal compartments. Three 
conditions had to be fulfilled to achieve this goal: (a) to es- 
tablish a mouse infectivity modal; (b) to generate Shigella- 
specific monoclonal dimeric IgA antibodies; and (c) to de- 
liver the antibodies into mucosal secretions. Since mice do 
not develop intestinal infection, we adapted a previously de- 
scribed model of infection (23), in which mice are challenged 
intranasaUy with virulent Shigdla. It was shown that bac- 
teria invaded the bronchial epithelium and triggered an in- 
tense inflammatory response with acute suppurative polymor- 
phonuclear infiltrates and epithelial necrosis that resembled 
the dementary lesions observed in shigeUosis. An antiS, flex- 
net/5a LPS monoclonal IgA (mIgA) was obtained by fusing 
Peyer's patch lymphoblasts from orally immunized mice with 
mydoma cdls, as previously described (24), and mucosal 
delivery was achieved either by a "back pack" tumor proce- 
dure (25) or by intranasal administration. We show here that 
mIgA present in bronchoalveolar secretions protects the re- 
spiratory mucosa of mice against infection, after intranasal 
challenge. 

Material and Methods 

Bacterial Strains. The two wild-type S. flexneri strains, M90T 
(serotype 5a) and 454 (serotype 2a), were routinely grown on tryp- 
ticase soy broth (TCS, Diagnostics Pasteur, Marries la Coquette, 
France) at 370C with aeration. For intranasal infection of mice, 
an overnight culture was diluted in sterile physiological serum to 
obtain a suspension of 5 x 10 s bacteria/ml. 

Production and Screening of lgA Hltbridomas. Five female BALB/c 
mice were immunized orally on day 0 by gastric intubation of 1011 
live cells of the S. flexneri serotype 5a strain (M90T) plus 5/~g of 
purified cholera toxin (Sigma Chemical Co., St. Louis, MO) in 
0.2 M sodium bicarbonate. Immunizations were repeated at day 
10 and day 20. On day 24, mice were killed by cervical dislocation, 
and the Peyer's patches (7-10 per mouse) were excised, payer's patch 
lymphocytes were isolated by colhgenase digestion, pooled, washed 
in P, PMI 1640 tissue culture medium, and fused with P3X63/ 
Ag8U.1 mouse myeloma calls as previously described (24). After 
a 14-d culture, hybridoma screening for anti-Shigella activity was 
performed by ELISA, using an S. flexneri 5a whole-cell lysate as 
antigen. Positive hybridomas were subcloned by limiting dilution, 
and Ig isotype was determined by an isotype-specific ELISA kit 
(Boehringer Mannheim Corp., Indianapolis, IN) according to the 
manufacturer's instructions. 

Characterization and Purification of Anti-LPS mlgA. Anti-S. flex- 
neri 5a hybridomas were further characterized as follows: ELISA 
were performed using S.flexneri 5a LPS extracted according to West- 
phal (26) as antigen, mlgA were purified from ascitic fluid obtained 
from pristane-primed BALB/c mice in which 10 ~ cloned hybrid 
cells had been injected intraperitoneally. After collection, ascitic 

were precipitated with ammonium sulfate at a final concentration 
of 50%. After 30 rain at room temperature, the ammonium sul- 
fate-precipitated supernatant was centrifuged at 7,000g for 30 min, 
and the resulting pellet was resuspended in 4 ml of PBS. After over- 
night dialysis against PETS, the solution was applied onto an ACA3/4 
column (Pharmacia, Saint Quentin-Yvelines, France). Elution was 
performed with 0.5 M sodium chloride in PBS. Each 5-ml fraction 
of ehtion was tested by measuring both the amount of proteins 
at OD~0 nm and the reactivity in ELISA against specific LPS. 
Fractions corresponding to the higher reactivity in ELISA were 
pooled and dialyzed against PBS, and aliquots were frozen at - 200C. 
To determine whether mlgAs recognized a common or a serotype- 
specific LPS epitope, purified mlgAs were further tested in ELISA, 
using purified LPS from S. flexneri 5a or 2a as antigens. 

ELISAs. ELISAs were performed as previously described (27), 
with the following modifications. To test the specificity of the mono- 
clonal IgA antibodies, wells were coated with either 5/zg/well of 
S. flexneri 5a whole-cell lysates or 1/~g/weil of S. flexneri 5a- or 
2a-purified LPS. Purified S. flexneri 5a LPS (1 #,g/well) was used 
to determine the concentration of mlgA in serum and bronchoal- 
veolar wash specimens. The concentration of unknown specimens 
was determined from the standard regression curve constructed for 
each assay by using a solution of purified mIgA at 1.7 mg/ml. Con- 
centrations were calculated for dihtions giving values in the mid- 
range (linear portion) of the standard ELISA curve. Alkaline phos- 
phatase goat anti-mouse IgA conjugate (Sigma Chemical Co.) was 
used at a 1:2,500 dilution as secondary antibody. 

In Vivo Protection Experiments. The back pack tumor model was 
performed as previously described (25). mIgA serum levels were 
measured by ELISA in mice developing a tumor. These mice were 
then intranasally challenged with 20/~1 ofa S.flexneri 5a or &flex- 
neri 2a culture at 5 x 10Vml. This inoculum was 10-fold less than 
the inoculum required for the LDs0 in this model. For each ex- 
periment, naive BALB/c mice were concomitantly challenged with 
the same inoculum. 1 d after the challenge, mice were tail bled, 
and serum Ib6 levels were measured. Representative mice were 
killed, and their lungs were removed from the thoracic cavity after 
being filed with paraformaldehyde for histopatholo#ocal analysis. 
For intranasal administration of mlgA, mice were inoculated with 
different amounts of the purified antibody in a volume of 20 #1 
1 h before being challenged as described above. At 6 h after infec- 
tion, serum IL-6 levels were measured, specimens were taken for 
histopatholo#ocal analysis, and bacterial counts in lung tissues were 
performed. For the latter experiments, mice were killed by cervical 
dislocation, and lungs were dissected and placed in 10 ml of ice- 
cold 0.9% NaCI, and then ground with an Ultra-turrax apparatus 
(Janke and Kunkel, GmbH and Co., Staufen, Germany). Serial di- 
lutions of the resulting solution were plated on Congo red agar 
and incubated overnight at 37~ For each experiment corre- 
sponding to a #oven amount of antibody administered intranasally, 
a control group of naive mice was concomitantly challenged. For 
the back pack tumor model or the intranasally administered purified 
mlgA experiments, each experiment was comprised of 10 mice per 
group and was repeated three times. 

Bronchoalveolar Wash Specimens. Mice were killed by cervical dis- 
location. After tracheotomy, bronchoalveolar wash specimens were 
obtained by injecting 1 ml of 0.9% NaC1 twice. Possible blood 
contamination of bronchoalveolar secretions was estimated by 
counting the number of red blood cells and comparing it with the 
counts of a serially diluted blood sample (28). These specimens were 
stored at -20"C until tested. 

IL6 Measurement. IL-6 activity was determined by using the 
specific 7TD1 IL-6-dependent cell line as described previously (29). 
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Histopathoiogical Studies. Lung specimens were fixed in a mix- 
ture of 0.25% glutaraldehyde and 4% paraformaldehyde in PBS, 
pH 7.2, for 48 h before embedding in paraffan or Lowicryl (K4M; 
Miles Inc., Naperville, IL) resin. Paraffm-embedded 4-mm-thin sec- 
tions were stained with hematoxylin and eosin, whereas Lowicryl- 
embedded 2.5-mm-thin sections were stained with toluidine blue 
and processed for light microscopy and immunocytochemistry. To 
detect S.flexne~ in infected lungs, sections were first incubated with 
0.1% BSA-cont~inlng PBS to quench free aldehyde groups and then 
with biotinyhted mlgA at a concentration of 3 #g/ml and 
streptavidin-FITC (Amersham Life Science, Les Ulis, France) at a 
dilution of 1:200. Controls included a nonrelevant biotinylated 
monoclonal IgA antibody used at the same concentration as the 
anti-LPS mIgA. 

Statistics. Significant differences in bacterial counts and serum 
IL-6 levels after S. flexner/challenge were compared for the IgA- 
treated mice group and the naive mice group using the Student's 
t test. Probability values <0.05 were considered significant. 

R e s u l t s  

Time Course of Lung Lesions in Mice Infected Intranasally with 
S. f lexn~ 5a. Histopathological lesions of naive mice in- 
fected intranasally with 107 S. flexneri microorganisms were 
characterized by a strong inflammatory reaction. During the 
first 6 h after infection, the morphology of the lung was in- 

distinguishable from that of control mice (Fig. 1 A). At 6 h, 
the first signs of acute bronchopncumonia were seen, charac- 
terized by edema and diffuse polymorphonudear and mono- 
nuclear cell infiltration of bronchial and peribronchial tissues 
with concomitant accumulation of debris and pus cells in 
the lumen of the bronchioles (Fig. 1 B). The inflammatory 
process primarily infiltrated the proxiraal region of the lobes, 
while the periphery was rarely affected. At 24 h, the bron- 
chial and bronchiolar epithelium were partially destroyed and 
the subjacent mucosa appeared strongly infiltrated (Hg. 1 C). 
Inflammatory cells also were evident in the neighboring al- 
veolar interstitium (Fig. 1 D). Although the maximal inflam- 
matory response occurred 24 h after the challenge, the re- 
sponse was not qualitatively different from that seen at 6 h. 
No lesion was observed after intranasal infection with a nonin- 
vasive strain. 

The fate of S. flexneri 5a bacteria after intranasal infection 
was examined by immunofluorescence labeling of bacteria 
within lung tissue and by electron microscopy. 2 h after chal- 
lenge, the microorganisms were detected at the surface of 
bronchial epithelial cells (Fig. 2 A). 4 h later, intraceUular 
proliferation of the bacteria was restricted to the bronchial 
epithelium (Hg. 2 B). At 24 h, intraceUular microorganisms 
were detected in the bronchial epithelium, the lumenal pus 

Figure 1. Histopathological lesions of mouse lungs after intranasal infection with S.flexneri 5a. (A) Uninfected mouse. Note the absence of inflamma- 
tory infiltrate around the bronchus and within alveoli, x300. (B) 6 h after infection. PMN begin to accumulate around the bronchi, and pus is present 
in the bronchial lumen, x 200. (C and D) 24 h after infection. Heavy infiltration of inflammatory cells within alveoli (C) and around the bronchi (D). x 200. 
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Hgure 2. Localization of bacteria after intranasal infection by immunofluorescence labeling. Bacteria were revealed after incubation of lung sections 
with biotinyhted mIgA followed by FITC-streptavidin. (A) 2 h after infection. Bacteria are associated with the cell surface, x 550. (B) 6 h after infection. 
Microorganisms are found in bronchial epithelial cells, x500. (C and D) 24 h after infection. Bacteria are found as clusters within the bronchial epithe- 
lium and the lumenal pus (C), where bacterial debris can be visualized (arrows) and in the alveoli lumen (D). 

(Fig. 2 C), and alveoli (Fig. 2 D). In addition, bacterial de- 
bris was associated with the luminal pus (Fig. 2 C, arrows). 

The bacterial load in the lungs during the time course of 
infection was measured, and results are presented in Fig. 3 
A. Only 5 % of the inocuhm (i.e., 5 x 10 s bacteria) reached 
the lungs after intranasal administration (Phalipon, A., un- 
published data). Consequently, the bacterial load measured 
6 h after infection (265 +_ 224 x 10 s bacteria) reflected bac- 
terial multiplication previously observed within the bronchial 
epithelium (Fig. 2 B). At both 24 and 48 h after infection, 
the bacterial load drastically decreased (9 _+ 22 x 10 s and 
1 _+ 3 x 10 s bacteria, respectively). 

The inflammatory process was also evaluated by measuring 
the production of I1-6, a mediator of both acute and chronic 
inflammatory reaction (30). During the time course of infec- 
tion, I1-6 appeared in the serum (Fig. 3 B). Interestingly, 
the serum I1-6 levels measured at 24 and 48 h after infection 
(2,500 _+ 1,900 U/ml and 1,039 _+ 910 U/ml, respectively) 
remained as high as those measured 6 h after infection (1,414 
+ 374 U/ml) (Fig. 3 B), whereas the number of bacteria 
present within lung tissues significantly decreased during this 
period (Fig. 3 A). A large amount of bacterial debris, re- 
vealed by immunolabeling with mlgA (Fig. 2 C) and not 

observed in a control using a nonrelevant monoclonal IgA 
antibody, indicated that a large pool of LPS was present that 
was not associated with viable bacteria. This pool of LPS 
remained present within the bronchial epithelium during the 
time course of infection and was likely to account for the 
high I1-6 level observed in the presence of few viable bacteria. 

Production of Monoclonal Dimeric lgA Antibodies Directed 
against S. flexneri 5a. Hybridomas producing mAbs were 
obtained as described in Materials and Methods. Two hybrid- 
omas were selected after screening supernatants for S.flexneri 
5a-specific IgA antibodies by an ELISA using purified sero- 
type 5a LPS as an antigen, and the mAb with the highest 
affinity was used in this study. The bybridoma was expanded 
and subcloned twice by limiting dilution, and antibodies were 
purified from ascitic fluids. 

The S. flexneri 0 antigen basic structure is composed of 
three rhamnose and one N-acetyl glucosamine residue linked 
to each other by specific otl-3, otl-2, ~1-2 links. This basic 
structure specifies the S. flexneri Y serotype. Specific linking 
of an additional glucosyl residue to one of the three rham- 
nose residues SlX'cities the S. flexneri serotype 5a or 2a. To 
define whether the antibody recognized a common or a 
serotype-specific determinant on the LPS molecule (31), the 
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Figure 3. Bacterial load in lung tissues (A) and corresponding serum 
IL-6 level (B) during the time course of infection. Three groups of mice 
(n = 10) infected intranasally with S. flexneri 5a were bled for serum IL-6 
measurement (B) and then killed to determine the corresponding lung 
bacterial load (A) at 6, 24, and 48 h after infection, respectively. Means 
and standard deviations are indicated. 

purified mlgA was tested for its reactivity with purified LPS 
from S.flexneri serotypes 5a, 2a, and Y. The antibody recog- 
nized 5a LPS but failed to react with 2a LPS and Y LPS (Fig. 
4). This suggested that mlgA was directed against a serotype- 
specific epitope comprising at least the glucosyl residue 
specifically linked to the central rhamnose of the basic struc- 
ture of the S. flexneri LPS. 

Protection against Intranasal S. flexneri Challenge by Subcuta- 
neous Implantation of Anti-LPS Hybridoma Cells. Since recep- 
tor-mediated transport of IgA into local secretions requires 
antibody dimerization, we confirmed the dimeric nature of 
the mlgA by gel filtration. Secretion of the antibody into 
the systemic circulation from the hybridoma cells implanted 
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Figure 4. mlgA specificity. Dilutions of purified mlgA were incubated 
with purified LI~ of the S. flexn~ 5a, 2a, or Y serotype, mlgA binding 
was revealed using phosphatase alkaline goat anti-mouse IgA conjugate. 

in the back of BALB/c mice was then confirmed, and ef~dent 
antibody transcytosis into bronchoalveolar secretions was 
demonstrated. The amount of locally transcytosed mlgA was 
dependent on the mlgA concentration in the serum, which 
was itself dependent on the tumor size (data not shown). 
Each tumor-bearing mouse secreted a different amount of 
mlgA into the serum, and consequently into local secretions. 

The capacity of mlgA to prevent S.flexneri invasion of the 
bronchial epithelium was first assessed by measuring serum 
Ib6 levels. We previously established that Ib6 was undetect- 
able in the serum of uninfected mice and that implantation 
of hybridoma cells in the back of mice did not increase serum 
II:6 titers. Tumor-bearing animals were infected 21 d after 
hybridoma cell implantation by intranasal challenge with 107 
S.flexneri bacteria, and Ib6 measurement was performed 24 h 
after infection. As shown in Fig. 5 A, after S.flexneri 5a chal- 
lenge, a significant decrease of serum Ib6 values was observed 
in mlgA-secreting mice (P = 0.02) (compare groups a and 
b), whereas no significant difference occurred in mice secreting 
a nonrelevant monoclonal IgA antibody (P = 0.67) (com- 
pare a and c). Moreover, no significant difference occurred 
in mlgA-secreting mice (P = 0.18) (compare d and e) after 
S. flexneri 2a challenge. 

Lung histopathological observations appeared to be well 
correlated with serum IL-6 titers. After S. flexneri 5a chal- 
lenge, the intensity of lung lesions depended on the amount 
of mlgA present in mucosal secretions. No lesion was ob- 
served in mice of which mucosal secretions contained more 
than 100 ng of mlgA (as measured in the total of 2 ml of 
lung wash) (Fig. 5 B, I). In contrast, intense PMN infiltra- 
tion occurred after S. flexneri 2a challenge, which was inde- 
pendent of the local amount of mlgA (Fig. 5 B, II). A similar 
result was obtained in mice secreting a nonrelevant mono- 
clonal IgA antibody when challenged with S. flexneri 5a. 

In summary, the tumor back pack procedure enabled us 
to demonstrate pathogen-specific IgA antibody-mediated pro- 
tection of the bronchoalveolar epithelium against S. flexneri 
invasion. This protection was shown to be serotype specific 
and dependent on local mlgA concentration. 

Intranasal Administration of mlgA before Bacterial Challenge 
and Analysis of Subsequent Protection. To quantify the local 
concentration required to confer protection and to determine 
whether only secreted mlgA antibodies were involved in pro- 
tecting mice from S.flexneri invasion or whether mlgA present 
in the interstitium interfered with the later stages of infec- 
tion, various amounts of mlgA were administered intranasally 
I h before S. flexneri 5a challenge. The subsequent amount 
of mlgA in bronchoalveolar secretions after intranasal adminis- 
tration corresponded to 20% of the initial inoculum. Thus, 
three groups of mice; whose local amounts of mIgA (expressed 
as the total amount of mIgA recovered from bronchoalveolar 
washes performed as described in Materials and Methods) were 
7, 0.5, and 0.07/~g, respectively, were challenged as previ- 
ously described. To observe the role of mIgA in preventing 
the first stages of bacterial infection, samples were collected 
6 h after infection. As shown in Fig. 6, in the presence of 
7/~g (a) as well as 0.5 #g (b), but not 0.07/~g (c) of mIgA 
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Figure 5. Protection against intranasal S.flexneri challenge by sub- 
cutaneous implantation of anti-LPS hybridoma cells. Protection was 
assessed, in hybridoma-bearing mice, 24 h after infection by mea- 
suring serum IL-6 concentration (14) and by lung histopathological 
studies (B). A, a-c, represents three groups of mice concomitantly 
challenged with the strain serotype 5a, in the absence of mIgA 
(a, -slgA), in the presence of mlgA (b, +rMgA), and in the pres- 
ence of a nonrelevant monoclonal IgA (c, + mlgA control). A, d 
and e, represents two groups of mice concomitantly challenged with 
a heterologous strain (serotype 2a) in the absence and in the presence 
of mlgA, respectively. The mean is indicated as a black line. (R I) 
No lesion was observed, after homologous challenge, in mice secreting 
locally >100 ng of mIgA. xl00. (/~ II) Intense inflammatory reac- 
tion after heterologous challenge, x200. 
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Figure 6. lntranasal administration of various amounts of purified mlgA 
and subsequent protection. Three different amounts of mlgA were ad- 
ministered intranasally, thus leading to a local amount of 7 (a), 0.5 (b), 
and 0.07 (c)/zg, respectively. An anti-Salmonella monoclonal IgA was used 
as control (7/~g present locally). Serum Ib6 and lung bacterial load values 
obtained in the absence of antibodies (-mlgA) were arbitrarily defined 
as 100. Measurements were performed 6 h after infection. The mean and 
standard deviation are presented. 

in local secretions, both lung bacterial load and serum Ib6 
level significantly decreased compared with the control 
(-mlgA) (P = 0.001, 0.002, and 0.1, respectively. Similar 
P values were obtained for lung bacterial load and serum I1.-6 
measurements). In contrast, no significant difference was ob- 
served in the presence of 7/~g of a purified monoclonal IgA 
antibody directed against a carbohydrate epitope of Salmonella 
typhimurium (32) (P = 0.7 and 0.6 for lung bacterial load 
and serum II.-6 tiler, respectively). These data demonstrated 
that a few hundred nanograms of mlgA were required to 
confer protection and that their presence in mucosal secre- 
tions only was sufficient to protect against Shigella invasion. 

Discussion 
An understanding of the basis of protective immunity 

against Shigella infection will provide fundamental informa- 
tion about immunity against intracellular microorganisms 
and will contribute towards vaccine development. In this paper, 
we focused our study on the role of anti-LPS IgA mucosal 
immunity for two reasons: (a) Shigella infection remains gener- 
ally restricted to the colonic mucosa, and (b) LPS has been 
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proposed as the primary target antigen for protective im- 
munity 

To achieve this goal, monoclonal IgA antibodies were raised, 
and a previously described mouse pulmonary infection model 
(23) was developed. This model constitutes the only avail- 
able murine system, since mice do not develop shigeilosis; 
neither clinical symptoms nor histopathological lesions are 
observed after oral infection at any level of the intestine. The 
reason for this may be that bacteria are transiently recovered 
from the feces, and only a few of them are recovered from 
Peyer's patches (Fontaine, A., and A. Phalipon, unpublished 
data). Antigen sampling by M cells that cover Peyer's patches 
is required for the induction of the mucosal immune response 
(33). The fact that few bacteria are found associated with 
the lymphoid follicles may explain the weak stimulation of 
B cells to commit into B cells expressing IgA at their surface, 
and may therefore account for the low number of IgA hy- 
bridomas obtained after fusion between myeloma cells and 
Peyer's patch lymphoblasts from orally infected mice. 

Like the rabbit ligated intestinal loop and macaque monkey 
dysentery infection modds (5, 34, 35), the mouse pulmo- 
nary infection model is characterized by the development of 
an intense inflammatory reaction with a leukocytic exudate 
that accumulates, in this case, in bronchi and alveoli (23). 
We observed that lesions occurred as early as 6 h after infec- 
tion, with an increase in tissue damage reaching a maximum 
at 24 h after infection. In addition to the histopathological 
studies, the inflammatory process was evaluated by measuring 
the production of IL-6, a mediator of both acute and chronic 
inflammatory processes, which represents an accurate marker 
of disease progression as reported for other experimental 
models of infection (36). Production of IL-6 was shown to 
remain high, even in the presence of only few bacteria within 
the bronchial epithelium. Concomitantly, free LPS was de- 
tected, remaining associated with the epithelium as previ- 
ously noticed in the rabbit infection model (Sansonetti, P., 
manuscript in preparation). Therefore, it is likely that free 
LPS accounts for the amplification and/or the duration of 
this striking inflammatory process. Recently, the persistence 
of inflammation was noted in Shigella-infected patients whose 
disease was clinically resolved (37). An up-regulation of 
cytokine-producing cells, among which are ceils producing 
I1--6, was actually observed 30 d after the onset of disease. 
Whether the presence of free LPS within the enterocytes 
and/or the lamina propria is responsible for this phenomenon 
remains to be studied. 

In agreement with results obtained previously using the 
rabbit ligated ileal loop model (5), we found a low number 
of intracellular microorganisms within tissues over the time 
course of infection. This may be due to the intense inflam- 
matory reaction, mediated in part via activated PMN ceils, 
which release antibacterial products (38). This observation 
emphasizes the double role of inflammation in shigellosis, 
i.e., to promote invasion as well as to act as a defense strategy. 

Our results demonstrate that mucosal immunity directed 
against LPS plays a major role in protecting the host against 
shigellosis. Actually, monoclonal IgA antibodies present in 

the bronchoalveolar secretions of mice and directed against 
a serotype-specific polysaccharidic epitope ofS.flexneri 5a LPS 
were necessary and sufficient to confer protection against in- 
tranasal challenge with the homologous strain. The quan- 
tity of local antibodies required for protection was estimated 
as a few hundred nanograms of antibody, which corresponds 
to the protective dose reported in previous studies of passive 
transfer of IgA either in the murine respiratory or intestinal 
tract (39, 40). 

The demonstration that LPS was the main target of the 
protective immune response is consistent with previous epi- 
demiological studies and vaccine field trials, which reported 
serotype-specific protection after Skigella infection (13-19). 
In these studies, however, antiinvasin slgA as well as anti- 
LPS and antiinvasin IgG antibodies were elicited concomi- 
tantly with anti-LPS slgA antibodies. Therefore, the actual 
role of each type of targets and effectors in protection has 
never yet really been assessed. Systemic responses are gener- 
ally considered to play a minor role in protection, since Shigella 
infection remains localized to the colonic and rectal levels and 
only rarely disseminates systemically. Moreover, unlike IgA, 
few IgG antibodies are present in both intestinal secretions 
and lamina propria (41). However, if for any reason the local 
response fails to be ef~cient, bacterial entry through M cells 
would consequently occur, initiating via the release of Ib l  
from apoptotic macrophages (7, 8) the characteristic inflam- 
matory process. The latter may lead to anti-LPS and/or an- 
tiinvasin IgG antibody transudation from the serum into the 
lamina propria, thus contributing to a limited tissue invasion. 

It has been hypothesized that the slgA antibodies directed 
against the invasins invasion plasmid antigen (Ipa) B and IpaC 
may also contribute to protection by neutralizing the inva- 
five process. Recent in vitro data dearly show that Ipa pro- 
teins, including IpaB and IpaC, are retained in the bacteria 
cytoplasm, with only small amounts being secreted. Their 
secretion has been shown to occur after epithelial cell contact 
or in response to a soluble factor sensed by Skigella and not 
yet identified (42). The exact secretion response of Skigella 
during entry into epithelial ceils in vivo remains unknown. 
If they are not secreted from bacteria present in the lumen, 
but are secreted only from bacteria reaching the basolateral 
pole of the enterocytes where invasion occurs subsequently 
to the initiation of the inflammatory process (2, 3, 5), it be- 
comes difficult to imagine a role of antiinvasin IgA antibodies 
as first line of protection. 

In summary, we propose that anti-LPS, IgA-mediated im- 
mune response only is eflicient as a primary line of protec- 
tion, whereas anti-LPS IgG and antiinvasin IgG or IgA anti- 
bodies may only be effective to a lesser extent, as a second 
line of defense. This is reminiscent of a study on the mecha- 
nisms of neutralization of influenza virus, which reports that 
slgA and monomeric IgA or IgG are able to confer protec- 
tion at different stages of the viral pathogenic process (43). 

Intranasal administration of purified mlgA has been useful 
to demonstrate that the presence of the antibody in the lu- 
minal compartment was suflicient to confer protection. This 
suggests that protection can occur at the initial stage of in- 
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fection by preventing invasion and that the presence of mlgA 
in the interstitial compartment for blocking the later stages 
of the pathogenic process is not required. It is worth noting 
that this phenomenon, generally known as the "immune ex- 
clusion" mechanism, is generally seen as the major mecha- 
nism of IgA-mediated protection (44). This mechanism has 
been reported in several studies, both in vitro and in vivo, 
of IgA-mediated protection against pathogens such as S. typhi- 
murium and Vibrio cholerae (45, 46). Interestingly, in both cases, 
effective protection is achieved by IgA antibodies directed 
against a polysaccharidic epitope present on the bacterial sur- 
face. In contrast, IgA antibodies specific for a secreted pro- 
tein such as cholera toxin are not efficient to confer local pro- 
tection (46). 

However, the reduction of the lung bacterial load in the 
presence of mlgA observed in this study does not necessarily 
mean that protection occurs exclusively via an immune exclu- 
sion mechanism. The function of IgA antibodies is consid- 
ered to be augmented through interaction with phagocytic 
cells bearing IgA receptors. Actually, IgA-coated microorgan- 
isms at mucosal sites are able to trigger release of oxygen 
metabolites from monocytes or macrophages via Fco~ receptors 

present on these cells, thus producing bacteriostatic and bac- 
tericidal effects (47). Therefore, one might imagine that slgA- 
opsonized Shigella bacteria present in the lumen may enter 
the intestinal epithelium through M cells, and subsequent 
Fcce receptor-mediated phagocytosis by tissue-resident macro- 
phages may trigger expression of antibacterial activities by 
these phagocytic cells. 

In addition to immune exclusion, two additional functions 
for mucosal IgA have been proposed (44). One is to neu- 
tralize intracellular pathogens (i.e., virus) directly within the 
epithelial cells. The second is to bind antigens in the lamina 
propria and excrete them through the epithelium into the 
lumen, thereby clearing the body of locally formed immune 
complexes and decreasing their access to systemic circulation. 
Experiments will be conducted to test whether such mecha- 
nisms may achieve neutralization of the effects of free LPS 
within the epithelial barrier. 

In conclusion, this study both contributes to our knowl- 
edge of the mucosal immune response and suggests an alter- 
native approach to Shigella vaccine development. Specifically, 
attempts at stimulating local production of anti-LPS IgA an- 
tibodies may be sufficient to elicit protection. 
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