
fnins-15-760611 February 8, 2022 Time: 11:40 # 1

ORIGINAL RESEARCH
published: 10 February 2022

doi: 10.3389/fnins.2021.760611

Edited by:
Yi Du,

Institute of Psychology, Chinese
Academy of Sciences (CAS), China

Reviewed by:
Junfeng Li,

Chinese Academy of Sciences (CAS),
China

Behtash Babadi,
University of Maryland, College Park,

United States

*Correspondence:
Fei Chen

fchen@sustech.edu.cn

Specialty section:
This article was submitted to

Auditory Cognitive Neuroscience,
a section of the journal

Frontiers in Neuroscience

Received: 18 August 2021
Accepted: 30 December 2021
Published: 10 February 2022

Citation:
Wang L, Wang Y, Liu Z, Wu EX

and Chen F (2022) A
Speech-Level–Based Segmented

Model to Decode the Dynamic
Auditory Attention States

in the Competing Speaker Scenes.
Front. Neurosci. 15:760611.

doi: 10.3389/fnins.2021.760611

A Speech-Level–Based Segmented
Model to Decode the Dynamic
Auditory Attention States in the
Competing Speaker Scenes
Lei Wang1,2, Yihan Wang1, Zhixing Liu1, Ed X. Wu2 and Fei Chen1*

1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China,
2 Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China

In the competing speaker environments, human listeners need to focus or switch their
auditory attention according to dynamic intentions. The reliable cortical tracking ability
to the speech envelope is an effective feature for decoding the target speech from the
neural signals. Moreover, previous studies revealed that the root mean square (RMS)–
level–based speech segmentation made a great contribution to the target speech
perception with the modulation of sustained auditory attention. This study further
investigated the effect of the RMS-level–based speech segmentation on the auditory
attention decoding (AAD) performance with both sustained and switched attention in
the competing speaker auditory scenes. Objective biomarkers derived from the cortical
activities were also developed to index the dynamic auditory attention states. In the
current study, subjects were asked to concentrate or switch their attention between two
competing speaker streams. The neural responses to the higher- and lower-RMS-level
speech segments were analyzed via the linear temporal response function (TRF) before
and after the attention switching from one to the other speaker stream. Furthermore,
the AAD performance decoded by the unified TRF decoding model was compared to
that by the speech-RMS-level–based segmented decoding model with the dynamic
change of the auditory attention states. The results showed that the weight of the typical
TRF component approximately 100-ms time lag was sensitive to the switching of the
auditory attention. Compared to the unified AAD model, the segmented AAD model
improved attention decoding performance under both the sustained and switched
auditory attention modulations in a wide range of signal-to-masker ratios (SMRs). In
the competing speaker scenes, the TRF weight and AAD accuracy could be used
as effective indicators to detect the changes of the auditory attention. In addition,
with a wide range of SMRs (i.e., from 6 to –6 dB in this study), the segmented AAD
model showed the robust decoding performance even with short decision window
length, suggesting that this speech-RMS-level–based model has the potential to decode
dynamic attention states in the realistic auditory scenarios.

Keywords: auditory attention decoding, speech-RMS-level segments, auditory attention switching, temporal
response function, EEG signals
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INTRODUCTION

In a competing speaker environment, the target speech
perception relies on the modulation of selective auditory
attention. A large number of behavioral and neuroimaging
studies have investigated the human abilities to selectively track
the particular speech stream with sustained auditory attention
(e.g., Cherry, 1953; Shamma and Micheyl, 2010; Szabó et al.,
2016). Nevertheless, the dynamic change of the auditory attention
states often occurs in the real-life environments, which requires
the auditory system to reorganize the relevant information of
specific auditory objects and reallocate attention resources when
the focus of attention switches between different speaker streams
(e.g., Fritz et al., 2007, 2013; Ahveninen et al., 2013). Some studies
also suggested that, in the dynamic auditory scenes, the salient
speech features played an important role in the target speech
perception through the bottom-up auditory pathways (Kaya and
Elhilali, 2014; Shuai and Elhilali, 2014). However, it remains
unknown whether the dynamic change of the auditory attention
states can be reliably decoded from the cortical signals when
subjects focus their attention to the natural sentences in the
complex auditory scenes. Besides, it needs to further uncover the
underlying neural mechanisms of the sensitive tracking ability to
the target speech stream in the complex auditory scenes.

Several methods have been proposed to detect
selective auditory attention on the basis of the typical
electroencephalograph (EEG) features with diverse experimental
tasks (e.g., Näätänen et al., 1992; Choi et al., 2013; Larson and
Lee, 2014; Geravanchizadeh and Roushan, 2021). In earlier
electrophysiological studies, the dynamic states of the auditory
attention were captured by comparing the morphology of
event-related potential (ERP) components (e.g., the P1–N1–
P2 complex, P300) elicited by the acoustic properties within
different auditory stimuli (e.g., Polich et al., 1986; Tse et al., 2004;
Choi et al., 2013). Although such ERP-based measurements
were extensively used in the brain–computer interface speller
system (e.g., Donchin et al., 2000; Hoffmann et al., 2008), it was
an inappropriate method for detecting the dynamic attention
changes in the continuous natural speech streams. Recently, some
researchers further developed proper experimental paradigms
and analytical methods to explore the dynamic switching
of the auditory attention under the multi-talker conditions
using the EEG signals (e.g., Lee et al., 2014; Deng et al., 2019;
Geirnaert et al., 2020; Getzmann et al., 2020). Specifically,
two typical characteristics of EEG signals, i.e., the stronger
N2 subcomponent and the lateralization of posterior alpha
power, were significantly correlated with the spatial auditory
attention switching (e.g., Deng et al., 2019; Getzmann et al.,
2020). Nevertheless, these ERP-based features required average
cortical responses over multiple experimental trials to obtain the
high-quality time-locked characteristics. Hence, because of the
time-consuming process of extracting attention-related features,
these ERP-based methods were limited to be used in the realistic
auditory scenes. Many studies also used common spatial patterns
and effective connectivity to decode the dynamic attention states
in single-trial EEG signals when subjects performed the dichotic
listening tasks (e.g., Geirnaert et al., 2020; Geravanchizadeh and
Gavgani, 2020). The spatial differences among speakers evoked

distinct brain activity patterns and such features provided crucial
cues to decode the selective auditory attention. However, in the
absence of spatial cues, there was little understanding about the
effect of dynamic attention modulation on the target speech
perception in the multi-speaker conditions.

The recent understanding of the selective auditory
attention in the cocktail party problem and the advances of
electrophysiological technologies make it possible to decode the
auditory attention from EEG signals in the complex auditory
scenarios. In the natural continuous speech streams, the
extensively used auditory attention decoding (AAD) methods
were based on the mapping functions between the speech
envelope and the corresponding EEG responses via linear and
non-linear computational models (e.g., Ding and Simon, 2012b;
O’Sullivan et al., 2015; Crosse et al., 2016; Ciccarelli et al.,
2019; Das et al., 2020; Geravanchizadeh and Roushan, 2021).
Specifically, the linear decoder models, such as the temporal
response function (TRF), were widely used to decode auditory
attention with reasonable accuracy under a wide range of
signal-to-masker ratios (SMRs) (Crosse et al., 2016). Generally,
the estimation procedure of linear models was simpler and faster
than that of non-linear models. The linear models also provided
the interpretable relations between the continuous auditory
stimulus and the corresponding EEG responses (e.g., Ding and
Simon, 2012b; O’Sullivan et al., 2015). The non-linear decoding
models using deep neural networks (DNNs) can achieve higher
AAD accuracies compared to the linear AAD approaches even
with short decoding window lengths (e.g., Ciccarelli et al., 2019;
Das et al., 2020). Nevertheless, it was still difficult to interpret
the underlying mechanisms for the decoding results by the
DNN-based models. Besides, most non-linear decoding models
concentrated on feature extraction from EEG signals but ignored
the features carried by speech temporal envelopes. Briefly,
these effective AAD methods have successfully decoded the
auditory attention when subjects kept their attention to a specific
target stream throughout the experimental procedure. Several
magnetoencephalography and EEG studies also indicated that
the AAD methods could track the dynamic changes of attentional
states when the competing speakers were presented at the same
or different spatial locations (e.g., Akram et al., 2016; Miran
et al., 2018, 2020; Teoh and Lalor, 2019). Nevertheless, it remains
unclear how the neural responses are affected by the dynamic
change of attention states and which speech features make great
contributions to capturing changes in auditory attention states
(i.e., before or after the auditory attention switching) in the
absence of the spatial cues between the competing speakers
under different SMR conditions.

In general, selective auditory attention can realize successful
perception of the target auditory object by activating the target-
related information and inhibiting the irrelevant information
(Fritz et al., 2007; Shamma and Micheyl, 2010; Szabó et al.,
2016). The target speech perception in noise depends on the
robust representation regions of the target signal and the regions
that are least affected by the competing speaker stream (Cooke,
2006; Li and Loizou, 2007). Specifically, in the competing speaker
environments, the salient auditory cues and silent gaps of
the auditory stimuli play an important role in target speech
perception (e.g., Li and Loizou, 2007; Vestergaard et al., 2011;
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Seibold et al., 2018). The speech temporal information at low
frequency containing the syllable rhythms can also facilitate
target speech perception in noisy conditions (e.g., Greenberg
et al., 2003; Vestergaard et al., 2011). As indicated in the
investigations from previous studies (e.g., Kates and Arehart,
2005; Chen and Loizou, 2012; Chen and Wong, 2013), speech
envelopes not only revealed the change of relative root
mean square (RMS) intensity but also conveyed the phonetic
distribution of the whole sentences. The analysis of different
speech segments on the basis of relative RMS intensity provided
an effective way to understand the attentional modulation of
target speech perception in the competing speaker environments
(Chen and Loizou, 2011; Wang et al., 2020a,b). According
to previous studies, the higher- and lower-RMS-level speech
segments could be extracted with a threshold of –10 dB relative
to the overall RMS level of the speech signal (e.g., Kates and
Arehart, 2005; Chen and Wong, 2013). Higher-RMS-level speech
segments contained the voicing parts of the sentences (i.e., the
most proportion of vowels and vowel–consonant transitions),
whereas most silent gaps and weak consonants were located
in lower-RMS-level speech segments (Chen and Loizou, 2011;
Chen and Wong, 2013). Previous studies also demonstrated
that higher- and lower-RMS-level–based speech segments had
different effects on the encoding and decoding of the target
speech from the corresponding EEG signals (Wang et al., 2019,
2020a,b). Moreover, in cases where the listeners were required
to maintain their attention on the target speech stream, the
AAD sensitivity and accuracy could be improved by using
the time-variant segmented model to decode different types of
RMS-level–based speech segments (Wang, 2021). Accordingly,
it is valuable to further explore whether the speech-RMS-level–
based segmented AAD model could reliably track the dynamic
change of the auditory attention states in the competing speaker
scenes. The contribution of different RMS-level–based speech
segments on attention decoding needs to be studied in the
auditory attentional switching tasks, so as to expand the potential
application of the neurofeedback-based AAD system in the
realistic auditory scenarios.

In the present study, we hypothesized that effective
biomarkers can be extracted from the cortical responses to
index the dynamic auditory attention states in the competing
speaker scenes with a wide range of SMRs. Furthermore, RMS-
level–dependent speech segmentation would have a significant
influence on the decoding performance of selective auditory
attention. Hence, the speech-RMS-level–based segmented
model could have the potential to improve the AAD accuracy
and sensitivity with both the sustained and switched auditory
attention modulations. In addition, the auditory attention states
and the relative SMR levels could jointly affect the AAD abilities
in the competing speaker scenes.

MATERIALS AND METHODS

Participants
Sixteen participants (10 males and 6 females) aged between 16
and 27 years old participated in this experiment. All participants

had normal hearing abilities with the pure-tone threshold less
than 25 dB at 125–8,000 Hz. All subjects were native speakers
of Mandarin Chinese and provided informed written consent
before their participations. The Institution’s Ethical Review Board
of Southern University of Science and Technology approved the
experimental procedures.

Stimuli and Experimental Procedure
The stimuli used in this work were extracted from two Chinese
stories narrated by a female Mandarin speaker and a male
Mandarin speaker. These stories were divided into approximately
60-s segments. Each experimental trial contained a 60-s speech
fragment. The silent gaps within each 60-s fragment were less
than 300 ms to avoid unexpected auditory attention shifts. To
test the neural responses with the switching of attention, subjects
were required to shift their attention from the male speaker to
the female speaker at the middle time of each 60-s segment.
Hence, the auditory attention switching divided the whole trial
into two different sections (i.e., the first half and the latter half).
Specifically, each trial contained a 30-s speech fragment with
the attention to the male speaker in the first half, followed with
a silent gap with random duration (1∼2 s), and a 30-s speech
fragment with the attention to the female speaker in the latter
half. Figure 1A displays the detailed experimental procedure.
The male-to-female ratio (MFR) was fixed in each condition, and
there were three MFR conditions (i.e., 6, 0, and –6 dB) in this
study. More specifically, for the conditions at 6- and –6-dB MFR
levels, the SMR level was changed with the switching of attention
from the male to the female speaker stream, whereas the SMR
level was unchanged before and after the switching of the auditory
attention for the 0-dB MFR condition. The detailed experimental
settings about the three MFR conditions are shown in Figure 1B.
During the whole experiment, visual instructions were displayed
on the screen to control the experimental procedure. The visual
instructions were represented on the screen with white color
against the black background. In each trial, a white cross was
displayed in the middle of the screen without auditory stimuli.
Then, the character “male” appeared on the screen to remind the
listener to focus on the male speaker stream. Subsequently, the
instruction on the screen was changed to “female” to remind the
listener to switch his/her attention to the female speech stream.
To avoid the influence of visual changes on the neural responses,
the auditory stimuli in the second stage played 1∼2 s after the
change of visual instruction. Each trial was played once to each
subject. Five trials were included in each block. At the end of each
block, three questions about the target speech streams with four
choices were asked to the participant. The block with all corrected
answers was reserved for further analyses. Two blocks (i.e., 10
trials) were obtained for each condition.

The experiment was performed in a double-walled acoustically
shielded room. Mixed auditory stimuli were presented bilaterally
via earphones at 65-dB sound pressure level. The whole
experimental procedures were controlled by the software
E-Prime 2. This experiment used 62 electrodes to record the
scalp EEG signals at the 500-Hz sampling rate. Two external
reference electrodes were placed at the left and right mastoids.
An online reference electrode was attached at the nose tip, and
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FIGURE 1 | (A) An illustration of the experimental procedure. (B) Three conditions used in this study. Three conditions fixed the MFR levels at 6, 0, and –6 dB, and
the SMR level were changed in the first half and the latter half with the switching of the auditory attention from the male to the female speaker streams. The icons
used in (A) obtained from https://thenounproject.com/.

the electrooculography signals were recorded by two electrodes
located below and up the left eye. The impedance of all EEG
electrodes was kept less than 5 k�. During the experiment, all
participants were required to reduce body movements.

Data Analyses
Electroencephalograph Signals and Auditory Stimuli
Preprocessing
The preprocessing of the EEG signals was conducted with the
EEGLAB toolbox (Delorme and Makeig, 2004). First, a high-pass
filter with the cutoff frequency of 0.5 Hz was implemented with
the function of windowed sinc finite impulse response (FIR) filter
in the EEGLAB toolbox. Independent component analysis was
implemented to remove typical artifacts (e.g., eye movements)
using the ICLabel toolbox (Pion-Tonachini et al., 2019). On
average, three independent components were removed for each
subject. The EEG signals were then filtered at low-frequency
bands because the cortical responses at these low frequencies
could reliably track the speech envelopes (e.g., Di Liberto et al.,
2015; O’Sullivan et al., 2015; Wang et al., 2019). Specifically, the
EEG signals were high-pass filtered with a zero-phase FIR filter at
a cutoff frequency of 2 Hz and low-pass filtered with a zero-phase
FIR filter at a cutoff frequency of 8 Hz.

Speech envelopes were extracted as the primary feature to
calculate the cortical tracking ability (e.g., O’Sullivan et al.,
2015; Crosse et al., 2016; Das et al., 2020). This study further
investigated the effects of RMS-level–based segmentation on
the phase-locking performance between cortical responses and
speech envelopes at low frequencies. First, speech signals were
divided into the higher- and lower-RMS-level–based segments
on the basis of the threshold of –10 dB relative to the overall

RMS level of the whole utterance. The detailed segmentation
procedures can also refer to Kates and Arehart (2005) and
Wang (2021). Figure 2A shows the RMS level of a continuous
utterance and higher- and lower-RMS-level segments within this
sentence. This segmentation threshold (i.e., –10 dB relative to
the RMS level of the whole sentence) was determined according
to the distribution of perceptual information in different RMS-
level–based speech segments, which was originally proposed
in Kates and Arehart (2005) and extensively studied in many
behavioral and electrophysiological experiments (e.g., Kates
and Arehart, 2005; Chen and Loizou, 2011, 2012; Chen and
Wong, 2013; Wang et al., 2019, 2020a,b; Wang, 2021). Previous
studies have found that higher-RMS-level–speech segments
mainly contained the vowels and transitions between vowels
and consonants, whereas lower-RMS-level speech segments
carried the weak consonants and silent gaps of the continuous
utterance (Chen and Loizou, 2011, 2012; Chen and Wong,
2013). In Mandarin sentences, most voicing parts of the whole
sentence were in higher-RMS-level speech segments, which
contained the vital speech intelligibility information (Chen
and Loizou, 2011; Wang et al., 2020b). Some syllabic onsets
and the silences of the continuous Mandarin sentences were
primarily contained in lower-RMS-level speech segments, which
carried the dynamic temporal structure of target speech in
noisy conditions (Fogerty and Kewley-Port, 2009; Hamilton
et al., 2018). Subsequently, speech envelopes were calculated
using the Hilbert transform function in higher- and lower-
RMS-level speech segments, respectively. Because the envelope
onsets made great contributions to the neural-speech tracking
performance (e.g., Hamilton et al., 2018), speech envelopes
were then half-wave rectified and the first-order derivative
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was calculated to extract the increased envelope fluctuations
(i.e., the positive derivate values). Then, speech envelopes
were resampled to the EEG sampling rate (i.e., 500 Hz) and
filtered band-pass filtered from 2 to 8 Hz using the zero-
shifted FIR. To reduce the processing time, the processed
EEG and speech signals were then downsampled at the
sampling rate of 100 Hz.

Forward Temporal Response Function Models and
Neural Response Predictions
The relationships between speech envelopes and the
corresponding EEG activities were analyzed with the linear
TRF model using the mTRF toolbox (Crosse et al., 2016). The
forward TRF was used to map the cortical responses elicited by
the continuous speech stimuli. In this study, how cortical activity
encoded different segments in the target speech (i.e., higher- and
lower-RMS-level speech segments) and attentional switching
(i.e., attention switching from one speaker to the other) was
analyzed through TRF responses under various MFR conditions
(i.e., 6, 0, and –6 dB). Specifically, the linear transformation of the
stimulus envelopes S(t) to the corresponding cortical responses
R(t) can be represented by the linear regression model TRF, as

R(t) = TRF∗S(t), (1)

where ∗ indicates the convolution operator. The TRF can be
calculated as

TRF = (STS+λI)−1STR, (2)

and the ridge regression is used to prevent overfitting, where I
is the identity function and λ represents the ridge parameter.
The ridge parameter is determined by the minimum mean-
square error between the predicted and original neural signals
using the leave-one-out cross-validation. The weights in the TRF
model indicate the neural responses relative to the auditory
stimulus onsets, and the time lags between –100 and 800 ms were
used in this work to show the TRF responses under different
experimental conditions. The processing step refers to previous
studies (e.g., Di Liberto et al., 2015; Wang et al., 2020b) and the
detailed descriptions can also be seen in Crosse et al. (2016). The
TRF components show similar response patterns as those in ERPs
with specific time lags (e.g., Lalor et al., 2009; Kong et al., 2014;
Di Liberto et al., 2015). The TRF weights indicate the correlation
coefficients between the speech envelope and the corresponding
neural response. The TRF polarity represents the relationship
between the cortical current directions and the speech envelope
fluctuated trends (Ding and Simon, 2012b). In this study, the TRF
weights averaged across all electrodes were statistically analyzed
in three typical components, i.e., the first positive component
(80∼150 ms), the first negative component (170∼240 ms), and
the second positive component (250∼350 ms), with higher- and
lower-RMS-level speech segments before and after the attention
switching between two speaker streams in 6–, 0–, and –6-
dB MFR conditions.

Higher- and Lower-Root Mean Square-Level Speech
Segments Classification
Higher- and lower-RMS-level segments of the target speech
streams can be classified with the corresponding EEG signals,

according to the different neural response patterns to these
speech segments in clean and noisy environments (e.g., Wang
et al., 2019, 2020a). The subject-specific support vector machine
(SVM) classifier was used to classify higher- and lower-RMS-level
speech segments on the basis of the cross-correlations between
speech envelopes and neural responses. In the training procedure,
binary speech labels were generated to represent higher- and
lower-RMS-level segments of the clean target speech. Then, the
feature vector of each channel was composed of the maximum
cross-correlation values between the EEG signals and the relevant
speech envelopes at each short frame. Specifically, the EEG signals
and speech envelopes were divided into 400-ms short frames
with a 20% overlapping ratio because the cortical activity mainly
responded to the auditory stimulus in the time lag interval (from
0 to 400 ms) as shown in the Figure 2B and the related results in
previous studies (e.g., Wang et al., 2020b; Wang, 2021). For each
subject, the SVM classifier with a Gaussian radial kernel function
was trained to predict higher- and lower-RMS-level segments
of the target speech stream on the basis of the corresponding
EEG signals using the leave-one-out cross-validation approach.
During the testing phase, the analyzed features were derived from
the maximum cross-correlation coefficients between the EEG
signals and the auditory envelopes from mixed speech sources.
The trained SVM model and the calculated feature vectors were
used to predict higher- and lower-RMS-level segments within
the continuous auditory stimuli. The classification accuracies
were calculated by the percentage of correctly identified labels
relative to the labels of the target speech source before and after
the attentional shifts at different SMR conditions. The SVM
classification was computed with the functions in the Statistics
and Machine Learning Toolbox Release 2017b of MATLAB
(MathWorks Inc., United States).

Backward Temporal Response Function Methods
and Speech Reconstruction
The backward linear TRF models were widely used in
decoding of the auditory attention under the competing speaker
environments. The envelope of the target speech (i.e., the male
speaker stream in the first half and the female speaker stream
in the latter half) was reconstructed by the spatiotemporal filters
g(τ, n) and the EEG responses r(t, n) at each electrode channel n
over a range of time lag τ. The reconstructed speech envelope ŝ(t)
can be calculated in discrete time as

ŝ(t) =
∑

n

∑
τ

r(t + τ, n)g(τ, n). (3)

The linear mapping function g(τ, n) is estimated by ridge
regression to avoid the overfitting and ill-posed problems,
and the detailed procedure of ridge regression was referred
to previous studies (e.g., Crosse et al., 2016). The leave-one-
out cross-validation approach was implemented for optimizing
the regularization parameter across subjects and conditions.
Different regularization parameters searching from 20, 22, . . ., 212

were used to reconstruct the auditory stimulus, respectively. The
optimal regularization parameter was determined as 26 because
this value yielded the highest averaged correlation coefficient
between the actual and reconstructed speech envelopes across the
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FIGURE 2 | (A) The root mean square (RMS) level of a short fragment in the continuous speech stimulus. The dashed line indicates the threshold (–10 dB relative
RMS level) to classify higher- and lower-RMS-level speech segments within the continuous utterance. The right figure shows the higher- and lower-RMS-level
segments in the temporal series of a sentence. (B) The TRF responses calculated between speech envelopes and the corresponding EEG signals in 6–, 0–, and
–6-dB MFR conditions. The TRF responses between higher-RMS-level speech segments and EEG signals were displayed with the black solid line in the first half (i.e.,
before attention switching) and with the black dashed line in the latter half (i.e., after attention switching) of the whole trial. The right solid line in the first half (i.e.,
before attention switching) and the right dashed line in the latter half (i.e., after attention switching) of the whole trial were represented the TRF responses derived
from lower-RMS-level speech segments and the corresponding EEG signals, respectively. (C) The amplitudes of the three typical TRF components with the
lower-RMS-level segments (right lines) and higher-RMS-level segments (black lines) in –6 dB (dot lines with the rectangular sign), 0 dB (dashed lines with the square
sign), and 6 dB (solid lines with the circle sign) before and after the switching of the auditory attention from the male speaker (the first half) to the female speaker (the
latter half).

trained trials. The range of time lags was consistent with that
contained in the major responses in the forward TRF, i.e., from
0 to 400 ms post-stimulus in this study.

After the processing of the leave-one-out cross-validation,
the unified decoding model (Dunified) was used to predict the
speech envelopes before and after attentional switching under
different MFR conditions in the testing procedure. On the

basis of the different effects of higher- and lower-RMS-level
speech segments on cortical-envelope tracking ability to target
speech streams, a segmented linear decoding model (Dsegmented)
was proposed to separately reconstruct speech envelopes in
higher- and lower-RMS-level segments, respectively (Wang,
2021). The decoder model of higher-RMS-level speech segments
was generated by the EEG signals and auditory stimulus that only
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included higher-RMS-level segments. Similarly, lower-RMS-level
speech segments and the corresponding EEG signals were used
to train the specific model to decode lower-RMS-level speech
segments. The training and validation procedures of these two
decoders were the same as those used in Dunified. In the testing
procedure, the prior-trained SVM classifier was used to predict
higher- and lower-RMS-level speech segments on the basis of the
mixed speech and EEG responses. The speech envelopes were
then reconstructed by the segmented decoders according to the
boundaries of higher- and lower-RMS-levels speech segments.
Finally, the reconstructed speech envelopes using Dsegmented were
generated by the concatenation of the predicted envelopes from
different decoders. Subsequently, the AAD performance was
determined by comparing the correlation coefficients between the
reconstructed speech envelopes and the original envelopes of the
target speech streams (rtar) or the ignored speech streams (rign).

Performance of Auditory Attention Decoding
AAD accuracy was computed as the percentage of correctly
identified trials (i.e., rtar > rign) in each condition. The AAD
accuracies derived from Dsegmented and Dunified were analyzed
to show the effect of the attention switching between speakers
under different MFR levels. The AAD accuracy could be an
indicator to reveal the dynamic changes of the auditory attention
states. In addition, to further test the sensitivity and reliability
of the AAD systems, AAD accuracies were calculated with short
to long decision window lengths (i.e., 1, 2, 5, 20, and 30 s)
in different conditions. The Wolpaw information transfer rate
(ITR) was used to assess the transmitted bits per time unit
(Wolpaw and Ramoser, 1998). It was a metric that jointly
evaluated the decoding accuracy and the decision time length of
the AAD systems with different conditions. In this study, ITR
was represented as bits per minute for five different decision
window lengths τ (1, 2, 5, 20, and 30 s) with the AAD accuracy
p of classification tasks. The detailed calculated equation was
represented as

ITR =
1
τ
(1+ p log2 p+ (1− p) log2(1− p)). (4)

The effects of different decoding models, attention switching,
and different MFR conditions on the ITR values were
further statistically analyzed with the non-parametric Kruskal–
Wallis test.

RESULTS

Temporal Response Function Responses
and Neural Encoding Performance
Repeated measures analysis of variance (ANOVA) was used to
analyze the effects of the auditory attentional switching, RMS-
level–based speech segments and the different SMR levels on
TRF responses. Analyses of the magnitude of TRF responses
in typical components were conducted by a 2 (attentional
states: before vs. after attention switching) × 2 (speech feature:
higher- vs. lower-RMS-level segments) × 3 (MFR level: –
6 dB vs. 0 dB vs. 6 dB) within-subject repeated measures

ANOVA. The Greenhouse–Geisser correction was adjusted
the freedom when sphericity was violated, and the post hoc
analysis was implemented with the Bonferroni correction to
adjust P-value for multiple comparisons. Compared to the
ignored speech stream, the target speech stream could elicit
reliable and typical TRF components under various SMR
conditions (e.g., Kong et al., 2014; O’Sullivan et al., 2015).
Many studies also indicated that the TRF response obtained
from the target speech streams contained biomarkers that could
estimate the switching of the auditory attention states (e.g.,
Akram et al., 2016; Miran et al., 2020). Hence, this study
showed and analyzed the typical TRF components elicited by
the target speech streams in different conditions (see Figure 2B).
TRF weights were statistically analyzed across three typical
components within a specific window across all scalp electrodes
(see Figure 2C).

For the first positive deflection, the average amplitude of the
TRF weight was calculated from 80 to 150-ms time lags. ANOVA
results revealed that a main effect for different RMS-level–based
segments [F(1,15) = 16.77, P = 0.01, η2

p = 0.53] and attention
switching [F(1,15) = 22.43, P < 0.001, η2

p = 0.60] with a significant
interaction effect between these two factors [F(1,15) = 14.25,
P = 0.002, η2

p = 0.49]. These results suggested that the first
positive components of the TRF response were larger with lower-
RMS-level speech segments than with higher-RMS-level speech
segments, and the TRF amplitudes in the first positive deflection
were decreased after the switching of the auditory attention from
one speaker stream to the other. There was no significant three-
way interaction of different speech segments, attention switching,
and MFR levels [F(2,14) = 0.58, P = 0.57, η2

p = 0.08]. Neither the
different speech segments by MFR level [F(2,30) = 3.00, P = 0.08,
η2

p = 0.30] nor the attention switching by MFR level interaction
had significant effects on the amplitude of first positive deflection
[F(2,30) = 0.80, P = 0.47, η2

p = 0.10].
For the second positive deflection, the analysis window was

set between 250 and 350 ms to compute the average amplitudes.
The ANOVA results showed a main effect for different RMS-
level–based segments [F(1,15) = 12.41, P = 0.003, η2

p = 0.45] and
MFR levels [F(2,30) = 10.29, P = 0.002, η2

p = 0.60], indicating
that the TRF amplitude of the second positive component was
significantly larger with the lower-RMS-level segments than with
higher-RMS-level segments, and this TRF weight was reduced
with the decrease of MFR level. There was no main effect
for attentional switching [F(1,15) = 0.97, P = 0.34, η2

p = 0.06]
suggesting that the TRF response around the 300-ms time lag
was not significantly affected by the switching of attention in the
competing speaker auditory scenes. No significant interactions
were found with RMS-level–based speech segments, attention
switching, and MRF level (all P > 0.05).

For the first negative deflection, the average TRF weight
was computed within 170∼240 ms. The only significant main
effect was revealed for the different RMS-level–based speech
segments [F(1,15) = 13.79, P = 0.002, η2

p = 0.48], showing the
larger TRF responses in lower-RMS-level speech segments than
those in higher-RMS-level speech segments. The attentional
switching and MFR levels showed no main effects on the TRF
amplitude of the first negative component (all P > 0.05). There
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were no significant three-way and two-way interactions of the
three factors, i.e., RMS-level–based speech segments, attention
switching, and MRF level (all P > 0.05).

Classification of Higher- and Lower-Root
Mean Square-Level Speech Segments
On the basis of the different neural patterns for higher-
and lower-RMS-level speech segments of the target speech
perception under noisy environments, the current study utilized
the corresponding cortical responses to predict the higher- and
lower-RMS-level speech segments of the auditory speech stimuli.
Figure 2A displays the RMS level of a whole sentence, and the
dashed line indicates the RMS threshold to determine higher-
and lower-RMS-level segments. By averaging the percentages of
all sentences used in this experiment, the duration of higher- and
lower-RMS-level segments accounted for 51.22 and 48.78% of
the whole utterances, respectively, which was consistent with the
previous findings that the higher- and lower-RMS-level segments
had similar duration within the continuous sentences (Chen
and Loizou, 2011; Wang, 2021). The higher-RMS-level speech
segments comprised 57.81, 69.43, and 59.66% durations of mixed
speech under the 6–, 0–, and –6-dB MFR conditions, respectively.
The classified results of higher- and lower-RMS-level speech
segments were calculated with the short time fragments using the
trained SVM classifier. Figure 3 shows the classification accuracy
and F1-score of higher- and lower-RMS-level speech segments
before and after the attentional switching from male to the female
speaker stream under different MFR levels. The effect of attention
switching and MFR level on the SVM classification results were
examined with the non-parametric Kruskal–Wallis test. There
were significant effects of attention switching and MFR level
on the classification accuracy of different speech segments (all
P < 0.001). Specifically, the classification accuracy was decreased
after the switching of the auditory attention from the male
speaker to the female speaker with the 6-dB MFR (the first half:
mean = 82.50, standard error = 0.46; the latter half: mean = 72.47,
standard error = 0.46), the 0-dB MFR (the first half: mean = 81.73,
standard error = 1.10; the latter half: mean = 78.13, standard
error = 0.48), and the –6-dB MFR (the first half: mean = 79.37,
standard error = 0.36; the latter half: mean = 74.73, standard
error = 0.50). These results indicated that the classification
accuracy was significantly affected by the auditory attentional
switching with a wide range of MFR conditions (i.e., from 6 to
–6 dB). The F1-scores in the first 30 s were higher than those in
the latter half with the effect of attention switching under the 6-dB
MFR (the first half: mean = 86.34, standard error = 0.34; the latter
half: mean = 80.34, standard error = 0.43) and the 0-dB MFR
(the first half: mean = 87.19, standard error = 0.72; the latter half:
mean = 81.68, standard error = 0.43). No significant differences
of the F1-score were shown before and after the attention
switching between two speaker streams under the –6-dB MFR
[(χ2 = 1.20, P = 0.27); the first half: mean = 85.46, standard
error = 0.29; the latter half: mean = 84.87, standard error = 0.36].
Both classification accuracy and F1-score were reduced with the
decreased SMR levels in the first half and the latter half (all
P < 0.01), suggesting that the relative SMR level was a critical

FIGURE 3 | (A) The accuracies for the classification of higher- and
lower-RMS-level speech segments using SVM classifier under 6-dB (black
signs), 0-dB (dark gray signs), and –6-dB (light gray signs) MFR conditions
before and after the switching of the auditory attention at the middle time of
the 60-s trails. (B) The F1-scores for the classification of higher- and
lower-RMS-level speech segments under 6-dB (black signs), 0-dB (dark gray
signs), and –6-dB (light gray signs) MFR conditions in the first half and the
latter half. The bars represent the max and min values of each condition, ***
indicates P < 0.001, ** indicates P < 0.01, and n.s. indicates P > 0.05.

factor to influence the classification performance of higher- and
lower-RMS-level speech segments from the EEG signals.

Auditory Attention Decoding
Performance
Correlation Coefficients Between Actual and
Predicted Speech Envelopes
Figure 4A shows the correlation coefficients between the
reconstructed and original speech envelopes to the target or
ignored speech before and after the attention switching under the
6–, 0–, and –6-dB MFR conditions using Dunified and Dsegmented,
respectively. The decoding window length of 30 s was used to
calculate the rtar and rign values in Figure 4A, and the relative
value of rtar and rign was the basis for determining the attentional
direction in the competing speaker scenes. The ANOVA analysis
showed a main effect for the type of reconstructed speech streams,
showing that rtar was significantly larger than rign [F(1,15) = 93.35,
P < 0.001, η2

p = 0.86] under all experimental conditions in
this study. A three-way ANOVA analysis was also performed to
test the effects of different decoding models, MRF levels, and
attentional switching on rtar and rign values, respectively. There
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FIGURE 4 | (A) The correlation coefficients of the reconstructed speech envelopes with the target speech envelope (the above figure) and the ignored speech
envelopes (the below figure) decoded with the Dsegmented (red lines) and Dunified (black lines) computational models in 6-dB (solid lines with circle signs), 0-dB
(dashed lines with square signs), and –6-dB (dot lines with rectangular signs) MFR conditions in the first half and the latter half. (B) The AAD accuracy calculated by
Dsegmented (gray boxes) and Dunified (black boxes) with 2–, 5–, 10–, 20–, and 30-s decoding window lengths before and after the switching of auditory attention in 6–,
0–, and –6-dB MFR conditions. The error bars show the standard error in each condition, *** indicates P < 0.001, ** indicates P < 0.01, * indicates P < 0.05, and
n.s. indicates P > 0.05. (C) ITR with the Dsegmented (red lines) and Dunified (black lines) with 2, 5, 10, 20, and 30 s decoding window lengths before and after the
switching of the auditory attention in 6–, 0–, and –6-dB MFR conditions.

were no significant interactions of these three factors, and the
interaction of decoding model by MFR level for both rtar and
rign values (all P > 0.05). A significant interaction was shown
between MFR level and attention switching for the value of rtar
[F(2,30) = 5.19, P = 0.01, η2

p = 0.26] and rign [F(2,30) = 28.01,
P < 0.001, η2

p = 0.65]. The attention switching exhibited a main
effect on the value of rtar [F(1,15) = 43.03, P < 0.001, η2

p = 0.74],

but no significant main effect for MFR level on the value of
rtar [F(2,30) = 0.70, P = 0.50, η2

p 0.05]. For the value of rign,
both attention switching [F(1,15) = 43.03, P < 0.001, η2

p = 0.74]
and MFR level [F(2,30) = 0.70, P = 0.004, η2

p = 0.31] showed
significant main effect. Post hoc analysis showed that the rtar
values in the latter half were significantly smaller than those in
the first half with the 6–, 0–, and –6-dB MFR conditions. The
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changes of the rign values after attention switching from male
to female speaker streams were dependent on the SMRs, i.e., no
significant differences in 0-dB MFR condition, a decrease of rign
value with the SMR reduce (i.e., the 6-dB MFR condition), and
increased rign value with the increase of SMR levels (i.e., the –6-dB
MFR condition). These results suggested that the rtar values were
robustly modulated by auditory attention, and the attentional
gains controlled the reliable cortical responses to target speech
streams regardless of the relative intensity of the competing
streams in a wide range of SMR conditions (i.e., 6 to –6 dB
in this study), whereas the rign values showed significant effects
of the SMR changes with attentional switching. In addition,
the main effect was significant for different decoding models in
both rtar [F(2,30) = 5.19, P = 0.01, η2

p = 0.26] and rign values
[F(2,30) = 28.01, P < 0.001, η2

p = 0.65], revealing that the RMS-
level–based Dsegmented improved the reconstructed performance
of speech envelopes than the Dunified.

Auditory Attention Decoding Accuracy and Sensitivity
To examine the AAD performance of the neuro-steered system
with different decoding algorithms (i.e., Dunified and Dsegmented)
before and after the attentional switching from the male to the
female speaker stream, the non-parametric Kruskal–Wallis test
was implemented to analyze the AAD accuracy with different
decision window lengths (i.e., 2, 5, 10, 20, and 30 s). Figure 4B
and Table 1 show the detailed AAD accuracies under different
experimental conditions. The AAD accuracies using Dsegmented
were significantly higher than those using Dunified under all
experimental conditions (all P < 0.05), except for the conditions
where the decoding window length was 2 s with the 0-dB MFR
after attention switching and with the –6-dB MFR before and
after attention switching between two speech streams (P > 0.05).
The AAD accuracy was significantly increased with the extension
of decision window time before and after the auditory attention
switching with three MFR conditions (all P < 0.05). In both
the 6- and 0-dB MFR conditions, the AAD accuracies were
significantly reduced after attention switching using both the
Dunified and Dsegmented (all P < 0.05), suggesting that the switching
of the auditory attention in the competing speaker scenes affected
the AAD performance. There was a marginal decrease of AAD
accuracy after the switching of attention from the male to the
female speaker stream with the –6-dB MFR condition using
the five decoding window lengths, indicating that the increased
SMR level could supplement the decrease of AAD accuracy after
attention switching.

The ITRs were also statistically analyzed to assess the
sensitivity of the AAD system using the non-parametric Kruskal–
Wallis test. Figure 4C displays the effect of attention switching,
different decoding models (Dunified and Dsegmented), and different
MFR levels on the ITRs. The Dsegmented model yielded higher
ITRs than the Dunified model before and after the switching of the
auditory attention with all MFR levels (P < 0.05), suggesting the
significant improvement of AAD accuracy based on the speech-
RMS-level–based decoding model. Significantly higher ITRs were
displayed with the 6- and 0-dB MFR conditions than the –6-dB
MFR level in the first half (i.e., before the attention switching).
Post hoc analysis showed that the significant differences occurred

with the short decision window lengths (i.e., 2, 5, and 10 s; all
P < 0.01). In the latter half (i.e., after the switching of attention),
a significantly higher ITR was shown in the 6-dB MFR than
the 0- and –6-dB conditions with 2-s length of the decoding
decision window (χ2 = 7.02, P = 0.03). There were no significant
differences in ITRs across the five decision window lengths under
all MFR conditions using Dunified (all P > 0.05). For the effect
of attention switching, there were significant decreases of ITRs
with the 6- and 0-dB MFRs after the switching of the auditory
attention between two competing speakers using Dsegmented (all
P < 0.05). In the –6-dB MFR condition, the attention switching
had no significant effect on ITR decoded by Dsegmented (χ2 = 1.33,
P = 0.25). No significant effects of attention switching were shown
with the Dunified model in all three MFR conditions (all P > 0.05).

DISCUSSION

The present study aimed to develop objective biomarkers on
the basis of the neural-speech tracking ability to estimate the
dynamic auditory attention states under the competing speaker
auditory scenes. The present study also explored the effects of
the RMS-level–based speech segmentation and SMR level on the
AAD performance with the dynamic change of attention states.
This work provided several important and novel findings for
better understanding the neural mechanisms of the target speech
perception in the complex auditory scenes. First, the switching of
the auditory attention from one speaker stream to the other can
be detected from the corresponding EEG responses with short
time lags (i.e., the first TRF-positive deflection approximately
100 ms). Second, the cortical tracking ability to the target speech
was different between higher- and lower-RMS-level–based speech
segmentations. On the basis of these different neural responses,
the RMS-level–based segmented model improved the accuracy
and sensitivity of the neuro-steered AAD system. Third, the
SMR level and attentional states (before or after the attentional
shifting) jointly affected the attention decoding performance
in the competing speaker auditory scenes. The robust AAD
accuracy was shown with a wide range of SMR levels, and
the AAD accuracy was also sensitive to the switching of the
auditory attention.

Effect of Root Mean Square-Level–Based
Segmentation on Decoding Auditory
Attention States
In line with previous findings (e.g., Wang et al., 2019, 2020a),
this study also showed significantly different neural responses
to higher- and lower-RMS-level speech segments when subjects
concentrated their attention on one of the speaker streams
in the competing speaker conditions. Significantly higher TRF
weights were shown in lower-RMS-level speech segments than
those in higher-RMS-level speech segments, indicating high
correlations between neural responses and speech envelopes
in lower-RMS-level segments. These results implied that the
total energy of neural response evoked by lower-RMS-level
speech segments was stronger than that by higher-RMS-level
speech segments. Not only the relative RMS level but also the
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TABLE 1 | The averaged AAD accuracies and the standard deviations (mean/standard deviation) decoded by Dunified and Dsegmented using different decoding window
length (i.e., 2, 5, 10, 20, and 30 s) before and after the switching of attention from the male to the female speaker streams under the 6–, 0–, and –6-dB MFR conditions.

Decoding window length MFR = 6 dB MFR = 0 dB MFR = –6 dB

The first half The latter half The first half The latter half The first half The latter half

Dunified 2 s 61.17/1.37 57.58/1.76 62.71/1.62 58.63/1.85 62.04/0.86 57.58/1.84

5 s 65.63/2.78 61.88/3.03 69.17/2.26 65.21/2.21 67.40/1.39 61.88/3.21

10 s 69.58/2.82 66.67/3.74 77.40/2.52 70.21/3.31 74.58/1.85 66.67/3.95

20 s 78.57/4.84 76.25/5.49 87.50/2.86 76.88/4.98 85.00/2.79 76.25/6.18

30 s 88.75/3.04 80.00/6.17 86.86/2.76 77.50/4.72 88.00/3.16 80.00/5.30

Dsegmented 2 s 71.08/0.94 64.50/1.87 71.92/1.38 59.17/0.99 63.89/0.86 56.83/1.81

5 s 87.50/0.93 73.04/2.20 87.29/2.41 72.29/1.36 77.69/1.39 77.91/2.69

10 s 94.17/1.09 76.67/3.12 92.08/1.77 75.88/1.77 80.04/1.85 79.17/2.69

20 s 97.50/1.56 87.50/3.90 95.00/2.06 83.75/2.28 93.75/2.66 86.25/3.23

30 s 98.75/1.14 90.00/3.06 93.75/2.21 88.13/3.21 91.88/1.71 91.25/2.94

speech features carried in higher- and lower-RMS-level speech
segments could be contributing factors to the target speech
perception in noisy environments. More specifically, higher-
RMS-level speech segments contained most voicing parts of
the whole utterance, whereas lower-RMS-level speech segments
carried most changeable components such as the abrupt increases
and decreases sections of the whole utterance (e.g., Chen and
Loizou, 2011, 2012; Chen and Wong, 2013). The large TRF
responses with lower-RMS-level speech segments were consistent
with the previous findings that the cortical responses were
sensitive to the abrupt changes within the auditory stimulus
(Chait et al., 2005; Somervail et al., 2021).

Furthermore, this study found that the switching of the
auditory attention had different effects on the cortical responses
to higher- and lower-RMS-level speech segments. After the
switching of attention from the male to the female speaker
stream, the significant decrease of the first positive components
in the TRF responses (approximately 100-ms time lag) was
illustrated for both higher- and lower-RMS-level speech
segments. These results were consistent with previous findings
in ERP studies that the early component (e.g., P100) was
related to the attention-dependent modulation (Shuai and
Elhilali, 2014). Although lower-RMS-level speech segments
showed stronger TRF weights than higher-RMS-level speech
segments for all three typical components, attention switching
showed no significant modulations of the cortical responses
to lower-RMS-level speech segment in the first negative and
second positive TRF components. Besides, the TRF weights with
lower-RMS-level speech segments were sensitively changed with
the SMR levels. These results suggested that the lower-RMS-level
segments were easily affected by the environmental factors
(e.g., the intensity of the competing speech stream) (Billings
et al., 2009). Compared to cortical response to lower-RMS-level
speech segments, the TRF responses with higher-RMS-level
segments were robust to the SMR level changes and sensitive
to the modulation of the auditory attention. Higher-RMS-level
speech segments that included more complex speech cues
(e.g., semantic information and language structures) could
be primarily influenced by the modulation of endogenous
factors (e.g., selective auditory attention) rather than exogenous
variables (e.g., SMR levels) (Getzmann et al., 2017). Briefly, this

study demonstrated that, under the dynamic auditory attention
states, the auditory system recruited different neural response
patterns to track higher- and lower-RMS-level speech segments
under different SMR conditions.

The effects of RMS-level–based segmentation on the AAD
performance were further explored on the basis of the
different neural responses to higher- and lower-RMS-level
speech segments with the dynamic changes of attentional states.
According to our previous investigation, the speech-RMS-level–
based segmented AAD model could improve AAD sensitivity and
accuracy when subjects were concentrated on a specific speech
stream during the whole experiment (Wang, 2021). This study
further demonstrated that the segmented AAD model not only
improved the AAD accuracy under the conditions modulated
by the sustained attention, but also improved the AAD accuracy
when attention was transferred from one speech stream to the
other in a competing speaker environment (see Figure 4B).
The better performance of the segmented AAD model could be
attributed to the accurate detection of temporal gaps, because the
temporal gaps in continuous sentences can facilitate the target
speech perception in noisy environments (e.g., Li and Loizou,
2007; Vestergaard et al., 2011). Many neurological studies also
suggested that the regular structure of temporal gaps within
the continuous sentences entrained the low-frequency neural
oscillations to track the target speech streams with the selective
attention modulations (Hickok and Poeppel, 2007; Zoefel, 2018).
Correspondingly, lower-RMS-level speech segments contained
the temporal gaps (i.e., the silent regions) and weak consonants
(e.g., fricatives, stops, and nasals) of a sentence, whereas higher-
RMS-level speech segments carried most sonorous parts within
an utterance (Chen and Loizou, 2011; Chen and Wong, 2013).
Hence, the prior knowledge of speech-RMS-level segmentation
provided much detailed temporal information of speech, so that
the Dsegmented method could decode the target speech streams
more accurately from neural activities. The AAD accuracy
calculated by the Dsegmented method was not only affected by
the reconstructed performance of target speech envelopes but
also associated with the classification performance of higher-
and lower-RMS-levels segments under different experimental
conditions. As displayed in Figure 3, the classification accuracy
of higher- and lower-RMS-level speech segments was decreased
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with the attention switching from the male to the female
speaker stream. When the auditory attention was switched
between competing speakers, neural resources related to the
target auditory object needed to be redistributed through the
modulation of selective auditory attention (e.g., Fritz et al., 2007;
Shamma and Micheyl, 2010). Because the auditory system was
required to release the resources related to the prior focused
streams and active the resources belonging to the switched
auditory objects, a weak gain of the attention modulation could
occur and lead to the poor neural tracking ability after the
switching of attention (e.g., Getzmann et al., 2017; Miran et al.,
2018). Hence, the AAD accuracy was reduced after the auditory
attention switching from the male to the female speaker stream.
This study indicated that the speech-level–based segmented
decoding model not only had better AAD performance with
the sustained auditory attention but also improved the AAD
performance after the switching of the auditory attention in the
complex auditory scenes. These results provided evidence that
the segmented AAD model had the potential to decode auditory
attention in real-life applications with the dynamic change of
attention states.

Interactions Between Attention
Switching and Signal-to-Masker Ratio
Levels on the Auditory Attention
Decoding System
In a competing speaker environment, the SMR level is an
important factor affecting the target speech perception, and the
target speech intelligibility is reduced with the decrease of SMR
levels (Brungart, 2001; Billings et al., 2009). Nevertheless, the
cortical responses showed the robust phase locking of the target
speech envelopes with a large range of SMR levels (e.g., Ding
and Simon, 2012b; O’Sullivan et al., 2015). These reliably cortical
responses to the target speech envelope were associated with
the attentional gain control and the long-term integration of
the slow temporal modulations in the human auditory cortex
(Lalor et al., 2009; Kerlin et al., 2010). In line with previous
studies (e.g., Ding and Simon, 2012b; Di Liberto et al., 2015;
O’Sullivan et al., 2015), this study also suggested that the
neural responses were reliably synchronized to slow temporal
fluctuations of the target speech with the sustained attention
under different SMR conditions (i.e., from 6 to –6 dB). However,
it still remained unclear about the effect of attention switching
on the AAD performance under diverse SMR conditions. Studies
have illustrated the effect of attention switching between the co-
located competing speakers with the equal RMS levels of sound
amplitude, suggesting that the TRF response carried effective
biomarkers to estimate the auditory attention states (e.g., Akram
et al., 2016; Miran et al., 2018, 2020). On the basis of these
findings, the current study further explored the joint effect of
the attention switching and SMR levels on the AAD performance
without the spatial difference between speakers. To evaluate the
AAD ability with attention switching from moderate to severe
SMR conditions, the relative power ratios between male and
female speaker streams were fixed in this study, and thus, the
SMR level could change with the attention switching from the

male to the female speaker stream. Results demonstrated that the
cortical responses can be used to decode the switching of the
auditory attention with the increased SMRs (from –6 to 6 dB
SMR in the –6-dB MFR condition), the unchanged SMRs (in
the 0-dB MFR condition) within the continuous speech streams,
and the decreased SMRs (from 6 to –6 dB SMR in the 6-dB
MFR condition). The marginal decrease of AAD accuracy was
displayed after the switching of the auditory attention in all three
MFR conditions (see Table 1 and Figure 4B). It may be associated
with the cost of attention switching. Compared to the condition
with decreased and unchanged SMRs after attention switching,
the increased SMR could alleviate the decrease of AAD accuracy
with the switching of attention between two speakers. The AAD
accuracy after the switching of the auditory attention also showed
the larger individual differences than that before the auditory
attention switching. These individual differences implied that the
AAD performance with the dynamic changes of auditory states
may be related to some endogenous factors such as the attentional
control gains and the predicting ability of important cues in the
target speech (Kerlin et al., 2010; Getzmann et al., 2017), which
warrants further investigation in the future.

Objective Neural Markers of Auditory
Attention States
Neuroimaging studies using magneto-encephalography
have illustrated that the magnitude of the TRF component
approximately 100-ms lag was a reliable attention marker,
because the TRF responses at 100-ms lag of the target speaker
were larger than those of the ignored speaker (Ding and Simon,
2012a; Akram et al., 2016; Miran et al., 2020). In this study,
the TRF responses obtained from EEG signals also showed a
reliable marker modulated by the switched auditory attention
with latency approximately 100-ms lag. Specifically, compared
to the other typical TRF components, the TRF weight at the first
positive component showed reliable effects of attention switching
for both higher- and lower-RMS-level speech segments with a
large range of SMR levels (i.e., from –6 to 6 dB) in this study. The
observed changes of the TRF component approximately 100-ms
lag with the attention switching were in agreement with previous
findings in ERP studies that the peak of the P1 component
was modulated by purely top-down attention and marked
the initiation of a new auditory stream of the ongoing stream
(Winkler et al., 2009; Shuai and Elhilali, 2014). These results
suggested that the encoder model not only reflected the precision
of neural tracking ability to the target speech but also provided
the objective biomarker to index the dynamic attention states
(e.g., before and after the switching of attention). In addition,
the present study revealed the decrease of AAD accuracy after
the auditory attention switching (see Table 1), suggesting the
fluctuation of AAD accuracy may also be an indicator to estimate
the switching of the auditory attention in a competing speaker
environment. The Dsegmented method showed higher ITRs than
the Dunified method in the neural-based AAD system, especially
with the short decoding window length (i.e., 2, 5, and 10 s) in
various experimental conditions. The better performance of the
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segmented model with short decision window lengths suggested
that the AAD accuracy derived from the Dsegmented decoder could
also be an effective indicator to evaluate the dynamic change of
the auditory attention states.

Limitations of This Work
This study mainly explored the joint effects of the auditory
attention states, SMRs, and higher/lower-RMS-level–based
segments on cortical responses to the target speech streams,
and the AAD performance decoded by the speech-level–based
segmented computational model was investigated under different
experimental conditions. Hence, other crucial characteristics
of the competing speakers were fixed in this experiment.
Specifically, this study only examined the switching of the
auditory attention from the male speaker to the female speaker
under different MFR conditions. Nevertheless, cortical responses
are influenced by a number of voice characteristics (e.g.,
fundamental frequency differences between the competing
speakers) in the complex auditory scenes (e.g., van Canneyt
et al., 2021). Further research should systemically understand the
effects of other features (e.g., speaker gender, number of speakers,
and target-to-masker ratios) on the cortical tracking ability of the
target speech streams in the complex auditory scenarios with the
dynamic changes of the auditory attention.

CONCLUSION

This study investigated the effects of different RMS-level–based
speech segments and SMR levels on the cortical tracking ability to
the target speech with sustained and switched auditory attention.
The present study also explored effective objective indicators
for reflecting dynamic attention states from EEG recordings
under the competing speaker environments. The novel findings
in this study included the following: (a) the TRF response
at 100-time lag could sensitively index the switching of the
auditory attention from one speaker stream to the other; (b)
higher- and lower-RMS-level speech segments made different
and crucial contributions to the cortical tracking of the target
speech with both the sustained and switched auditory attention.
On the basis of the specific neural patterns to different RMS-
level segmentation, the segmented AAD model, which provided
more exact temporal structures of the target speech, improved the
AAD performance of dynamic attention states; (c) the segmented
AAD model could be used to robustly decode the dynamic
changed target speech streams according to their intentions
under different SMR conditions, even when using a short
decoding window length.

In conclusion, TRF responses and AAD accuracies could be
considered as objective indicators for estimating the auditory
attention states even in poor SMR conditions and with short
decision window lengths. The RMS-level–based segmented
AAD model also showed the sensitive and reliable decoding
performance with the attentional switching. Results exhibited
in this work provided neural evidence for understanding the
contributions of different speech features on cortical response to
the target speech with the dynamic modulation of the auditory
attention. These results also provided potential guidance for the
design of AAD algorithms in the neurofeedback control systems
under complex auditory scenarios.
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