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Metabolomic signatures associated with
disease severity in multiple sclerosis

ABSTRACT

Objective: To identify differences in the metabolomic profile in the serum of patients with multiple
sclerosis (MS) compared to controls and to identify biomarkers of disease severity.

Methods: We studied 2 cohorts of patients with MS: a retrospective longitudinal cohort of 238
patients and 74 controls and a prospective cohort of 61 patients and 41 controls with serial
serum samples. Patients were stratified into active or stable disease based on 2 years of pro-
spective assessment accounting for presence of clinical relapses or changes in disability mea-
sured with the Expanded Disability Status Scale (EDSS). Metabolomic profiling (lipids and
amino acids) was performed by ultra-high-performance liquid chromatography coupled to mass
spectrometry in serum samples. Data analysis was performed using parametric methods, prin-
cipal component analysis, and partial least square discriminant analysis for assessing the dif-
ferences between cases and controls and for subgroups based on disease severity.

Results: We identified metabolomics signatures with high accuracy for classifying patients vs
controls as well as for classifying patients with medium to high disability (EDSS .3.0). Among
them, sphingomyelin and lysophosphatidylethanolamine were the metabolites that showed
a more robust pattern in the time series analysis for discriminating between patients and
controls. Moreover, levels of hydrocortisone, glutamic acid, tryptophan, eicosapentaenoic
acid, 13S-hydroxyoctadecadienoic acid, lysophosphatidylcholines, and lysophosphatidyletha-
nolamines were associated with more severe disease (non-relapse-free or increase in EDSS).

Conclusions: We identified metabolomic signatures composed of hormones, lipids, and amino
acids associated with MS and with a more severe course. Neurol Neuroimmunol Neuroinflamm

2017;4:e321; doi: 10.1212/NXI.0000000000000321

GLOSSARY
ANOVA 5 analysis of variance; EDSS 5 Expanded Disability Status Scale; m/z 5 mass-to-charge; MRS 5 magnetic reso-
nance spectroscopy; MS 5 multiple sclerosis; OPLS 5 orthogonal projection to latent structures; PCA 5 principal compo-
nents analysis; Rt5 retention time; SME5 splines mixed effects; TOF5 time of flight;UHPLC-MS5 ultra-high-performance
liquid chromatography coupled to mass spectrometry.

Metabolomics provides the opportunity to identify molecular patterns from serum or other
tissues associated with multiple sclerosis (MS), such as the presence of metabolites involved
in the control of the immune response as well as markers of brain damage that leak from tis-
sue into the serum.1–6 Identification of biomarkers of disease severity (either relapse activity
or disability worsening) or response to therapy is critical in order to improve patient man-
agement and the search for new therapies for patients with MS.7 Previous metabolomic
studies in the serum or CSF of patients with MS have found evidence of differential levels
of lipid or amino acid concentrations compared to controls,8–17 supporting the rationale
behind this approach.
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The aim of this study was to perform a me-
tabolomic analysis in the serum of patients
with MS in order to identify metabolomic sig-
natures associated with the disease. Moreover,
we aimed to identify biomarkers predicting
disease severity, defined by either the presence
of relapses (disease activity) or sustained
increase in disability (disability worsening).18

To this aim, we make use of 2 well-
characterized cohorts in which clinical pheno-
type was defined prospectively. We used
a prospective cohort with longitudinal serum
samples, allowing the assessment of metabolite
stability over time, and another cross-sectional
cohort with longitudinal clinical data and
a larger sample size to account for interindi-
vidual variability. By using both groups as
screening cohorts, we attempted to identify
robust metabolites associated with the disease.
Furthermore, their presence in both cohorts
served to validate the metabolites. We made
use of ultra-high-performance liquid chroma-
tography coupled to mass spectrometry
(UHPLC-MS), which allowed for the semi-
quantitative analysis of a wide array of lipids
and amino acids, although this was not suit-
able for the detection of metabolites related to
central carbon metabolism (e.g., glycolytic
metabolites).19,20

METHODS Patients. We studied 2 independent cohorts of

patients with MS: a retrospective longitudinal cohort from 5 cen-

ters (with longitudinally collected clinical information for 2 years)

and a prospective cohort with serial serum samples for 2 years from a

single center. Inclusion criteria included fulfilling McDonald

criteria21 and agreeing to donate a blood sample for the study.

Exclusion criteria included any significant comorbidity influencing

the metabolome (e.g., diabetes, hypertriglyceridemia). Consecutive

patients were recruited by their neurologists.

The retrospective longitudinal cohort was a multicenter

cohort composed of 238 patients and 74 controls recruited

between 2010 and 2014 from the Hospital Clinic of Barcelona;

Hospital Vall d’Hebron, Barcelona; Hospital Ramon y Cajal,

Madrid; Hospital Universitario Regional, Malaga; and Hospital

Clinico San Carlos, Madrid, Spain. Patients were of any disease

subtype and were prospectively followed for 2 years in their cen-

ters, with clinical variables, including age at disease onset, disease

duration, presence of relapses, and disability status using the

Expanded Disability Status Scale (EDSS) (table 1), collected

every 6–12 months. To decrease variability in the retrospective

cohort, the use of disease-modifying drugs was restricted to only

interferon-b (as it was the most common therapy at this time).

Serum samples were collected in the mornings (between 9 AM and

12 PM) and stored at 280°C until metabolomics analysis. This

cohort was compared to a group of 74 matched healthy controls

(age 33.2 6 4.2 years, 50 women and 24 men) with no diseases

or medications.

The prospective cohort included 61 patients and was re-

cruited between 2008 and 2012 (table 1). Consecutive patients

were prospectively followed for 2 years, collecting clinical var-

iables such as age at disease onset, disease duration, disease

subtype, presence of relapses, and disability using the EDSS

at baseline and every 6 months. The use of disease-modifying

drugs was allowed and patients were stable in their therapy for

the last 6 months. In addition, we recruited 41 healthy controls

(age 33.81 6.4 years; 29 women and 12 men). Serum samples

were collected every 3 months in patients and healthy controls

(9 samples per participant). As in the previous cohort, serum

samples were collected in the mornings after overnight fasting

and stored at 280°C until use.

Standard protocol approvals, registrations, and patient
consents. The ethical committee of each institution approved

the study and patients were included after signing the informed

consent.

Clinical variables. We collected a set of relevant clinical varia-

bles at baseline, including age at study inclusion, sex, disease sub-

type, disease duration, and EDSS score. Presence of relapses,

EDSS, and changes in the use of disease-modifying drugs were

assessed every 6 months for 2 years. After the 2-year follow-up,

patients were classified as having stable or active disease using

following definitions: (1) stable disease—no relapses and no

changes in the EDSS (confirmed at 3 and 6 months) during

the 2 years of follow-up; (2) active disease—2 or more relapses

or a 1-point increase in the EDSS score (0.5 points for EDSS

between 5.0 and 6.5) confirmed at 3 months during the 2 years of

Table 1 Demographics, clinical variables, and
samples of the multiple sclerosis
cohorts

Retrospective
longitudinal
cohort

Prospective
cohort

No. 238 61

F/M 146/92 40/21

Age, y 33.6 6 8.7 36.8 6 9.3

Subtype

CIS 39 16

RRMS 192 33

SPMS 6 8

PPMS 4 4

Disease duration, y 4.5 6 4.4 5.3 6 6.8

EDSS baseline 1.5 (0–5.5) 2.0 (0–6.0)

EDSS follow-up
(2 years)

2.0 (0–7.5) 2.0 (0–7.0)

DMD, yes/no (%) 168/70 (71) 29/32 (47)

IFN-b 168 (71) 24 (39)

Other 0 (0) 5 (8)a

Untreated 70 (29) 32 (52)

Abbreviations: CIS 5 clinically isolated syndrome; DMD 5

disease-modifying drugs; EDSS 5 Expanded Disability
Status Scale; IFN-b 5 interferon-b; PPMS 5 primary
progressive multiple sclerosis; RRMS 5 relapsing-remitting
multiple sclerosis; SPMS 5 secondary progressive multiple
sclerosis.
aAzathioprine or mitoxantrone in progressive patients.
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follow-up. Disability severity was tested by comparing patients

with EDSS,3.0 (a cutoff being used in the definition of benign

MS18) against those with EDSS .4.5 (a cutoff identified

in natural studies associated with the onset of progressive MS22)

and patients between both cutoffs were defined as uncategorized

and excluded from the analysis.

Metabolomics analysis. Two different approaches were

followed for the analysis of both cohorts (figure e-1 at

Neurology.org/nn). Serum samples included in the prospective

cohort were analyzed following the untargeted procedure described

by Barr et al.23 Briefly, the samples were defrosted, vortex mixed,

and centrifuged. An aliquot of the sample (50 mL) was diluted with

methanol (200 mL), vortex mixed, and stored at220°C overnight.

Then, samples were centrifuged at 316,000 g for 10 minutes; the

supernatant was analyzed by UHPLC-MS. In order to avoid

systematic bias during the procedure, all samples were

randomized prior to the metabolite extraction and analyzed

blinded to the diagnosis or disease phenotype.23

The analysis of the retrospective longitudinal cohort involved

a targeted approach, applying 3 separate UHPLC-MS platforms

as previously described19 (figure e-1). Briefly, UHPLC–single

quadrupole–MS was used for amino acid analysis and com-

bined with 2 separate UHPLC–time-of-flight (TOF)–MS-based

platforms analyzing methanol and chloroform/methanol serum

extracts. The first UHPLC-TOF-MS platform analyzed metha-

nol serum extracts, including the following identified ion features:

nonesterified fatty acids, oxidized fatty acids, acylcarnitines,

N-acyl ethanolamines, bile acids, steroids, and lysoglycerophos-

pholipids.19 The second UHPLC-TOF-MS platform was opti-

mized for the analysis of chloroform/methanol extracts, covering

glycerolipids, glycerophospholipids, cholesteryl esters, sphingoli-

pids, and primary fatty acid amides. In this case, all the metabolic

features were identified prior to the analysis.19

Because the first approach did not allow for identification of

metabolites, but rather peaks from the spectra, both studies were

considered screening studies. However, we were able to retrospec-

tively identify several of the peaks from the first analysis using the

second UPLC platform and were thereby able to validate several

of the metabolites (although we were unable to completely iden-

tify all the metabolites defining the signatures associated with dis-

ease activity from the prospective cohort).

Data preprocessing. The untargeted data analysis of the pro-

spective cohort was performed as follows. A list of intensities of

the chromatographic peak areas detected was generated for each

sample, identifying each peak as retention time (Rt) and mass-

to-charge (m/z) data pairs. This process was initiated with the

first sample and repeated for each UHPLC-MS run in the

batch, sorting the data such that the correct peak intensity for

each Rt–m/z pair was aligned in the final table. Data were then

normalized to correct for instrument sensitivity drift over time

and sample-to-sample preparation concentration variations.

Normalization between batches was carried out by relating the

10 extractions of reference serum samples injected per batch. The

sample-to-sample normalization constant was the median of the

ratios of intensities for all Rt–m/z pairs between the considered

injection and a reference injection (which was the first reference

serum sample injected; choice of the reference injection is

arbitrary).

In the case of the targeted approach used in the retrospective

longitudinal study, data preprocessing was performed following

the procedure described perviously.20 Briefly, data obtained were

preprocessed using the TargetLynx application manager for

MassLynx (Waters Corp., Milford, MA).20 The UHPLC-MS

features were identified prior to the analysis, either by comparison

of their chromatographic Rt and accurate mass spectra with those

of reference standards or by accurate mass MS/MS fragment ion

analysis if the reference standard was not available, as described

previously.19 Intrabatch and interbatch normalization was per-

formed based on the criteria of multiple internal standards and

pool calibration samples approach.20

Statistical analysis. The advantages of using both univariate

and multivariate approaches in data processing are complemen-

tary and their results do not necessarily coincide.24 Considering

that untargeted metabolomic analysis provided peaks of spectra

but not individual metabolites, we used machine-learning

techniques for the analysis, whereas for targeted metabolomics

analysis providing individual metabolite levels, we used

statistical analysis. Unsupervised principal components analysis

(PCA) reduces the dimensionality of the complex dataset to

enable easy visualization of any metabolic clustering of the

different groups of samples. The supervised orthogonal

projection to latent structures (OPLS) method is a supervised

approach for discriminating between groups. As it is

a supervised analysis, larger differences between groups are

obtained. This approach is usually used in the data analysis

process for the identification of metabolites contributing to the

clustering observed in the PCA plots. PCA and OPLS

multivariate data analysis were applied (SIMCA-P1 software

package, version 12.0.1; Umetrics, Umea, Sweden). Analyses of

variance (ANOVAs) were performed for each metabolite as

a statistical test for evaluating possible differences between the

means of each peak of the disease subgroups (e.g., EDSS by

month 24: 0–3.0, 3.5–4.5, and .4.5). Unpaired Student t test
p values (or Welch T test for unequal variances) were also

calculated for the following comparisons (R v2.13.0 [R

Development Core Team, 2010; cran.r-project.org] with

MASS, xlxs, robustbase, and pwr packages): (1) active vs

nonactive disease (clinical relapses); (2) disability worsening by

EDSS: decrease or stable EDSS vs increased EDSS ($1 point); and

(3) EDSS change from baseline to month 24. A p value, 0.05 was

considered significant.

An alternative approach to time series biomarkers discovery

was applied.13 First, we used the smoothing splines mixed effects

(SME) model that treats each longitudinal measurement as

a smooth function of time, and second we utilized an associated

functional test statistic (ANOVA for repeated measurements).13

Statistical significance was assessed by a nonparametric bootstrap

procedure. Results are described following Strengthening the Re-

porting of Observational Studies in Epidemiology criteria and the

guidelines for uniform reporting of body fluid biomarker studies

in neurologic disorders.25 Sample sizes were defined by the avail-

ability of a convenience dataset due to the lack of similar studies

for performing power calculations and the exploratory nature of

this study.

RESULTS Identification of metabolomic signatures in

patients with MS. We analyzed serum samples from
a prospective cohort of 61 patients with MS and
41 matched controls, collected every 3 months over
2 years (8 samples per participant) by UPLC-MS.
We searched for different signatures of the
metabolomic profile between patients and
controls. PCA analysis grouped cases and controls
based on the metabolomic profile with moderate
accuracy (R2 5 0.247, Q2 5 0.128, figure 1A)
and the PLS-DA classifier classified participants as
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healthy participants or patients with MS with high
accuracy (R2X 5 0.414, R2Y 5 0.481, Q2Y 5

0.348, figure 1E).

Due to the fact that serum samples were obtained
prospectively every 3 months over 2 years, we per-
formed a time-series analysis in order to assess the

Figure 1 Metabolic signatures in the longitudinal cohort

(A–D) Principal components analysis (PCA) models. Each model is a linear combination of the original retention time (Rt)–
mass-to-charge (m/z) pair peak areas. Hotelling T2 statistic is shown on the plot, defining a 95% confidence ellipse for the
samples included in the analysis. (A) Patients vs healthy controls (R2 5 0.247; Q2 5 0.128). (B) Patients with relapses during
follow-up vs relapse-free patients (R2 5 0.380; Q2 5 0.128). (C) Patients reaching Expanded Disability Status Scale (EDSS)
.4 from baseline to end of follow-up by month 24 (R2 50.380; Q2 5 0.126). (D) Patients with increase in the EDSS (DEDSS)
from baseline to end of follow-up by month 24 (R2 5 0.381; Q2 5 0.129). R2 5 Degree of fit (goodness of prediction); Q2 5

predictive ability (goodness of prediction). (E–H) Orthogonal projection to latent structures (OPLS) models. (E) Patients vs
healthy controls (R2X 5 0.414; R2Y 5 0.481; Q2Y 5 0.348). (F) Patients with relapses during follow-up vs relapse-free
patients (R2X 5 0389; R2Y 5 0.425; Q2Y 5 0.231). (G) Patients reaching EDSS .4.0 from baseline to end of follow-up by
month 24 (R2X 5 0.512; R2Y 5 0.756; Q2Y 5 0.555). (H) Patients with DEDSS from baseline to end of follow-up by month
24 (R2X5 0.148; R2Y5 0.222; Q2Y5 0.036). R2X5 degree of fit for X axis; R2Y5 degree of fit for y-axis; Q2Y5 predictive
ability for y-axis. MS 5 multiple sclerosis.
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stability of the metabolomic signature. We found 29
peaks of the spectra associated with MS compared to
controls along the 2-year follow-up, using ANOVA
and SME approaches (p , 0.01). Metabolite iden-
tification was achieved for a subset of these peaks
and revealed sphingomyelin and a lysophosphatidy-
lethanolamine as the main metabolites of the MS
signature (table e-1). We observed that changes in
lysophosphatidylethanolamine over time were asso-
ciated with the use of disease-modifying drugs
(interferon-b) (p 5 0.01) (figure e-2).

Second, we were interested in identifying differen-
ces in the metabolomic profile associated with disease
severity. Patients were classified after 2 years of
follow-up in active or stable disease based on presence
of relapses or changes in disability measured with
EDSS (see Methods for definitions). Therefore, pa-
tients were compared based on relapse-free status or
increase in the EDSS by the end of follow-up. We
found a metabolomic signature that was able to iden-
tify patients with MS with an increase in their EDSS
2 years later with high accuracy as well a metabolomic
signature that identified relapse-free patients with
moderate accuracy. Specifically, both PCA and PLS
analysis differentiate between relapse-free patients
during 2-year follow-up compared with patients with
relapses (PCA: R2 5 0.380, Q2 5 0.128, figure 1B;
PLS: R2X 5 0.389, R2Y 5 0.425, Q2Y 5 0.231,
figure 1F). Regarding disability, the classifiers were
able to distinguish between patients remaining with
EDSS ,3.0 compared with patients reaching an
EDSS .4.5 after 2 years of follow-up based on the
metabolic profile (PCA: R2 5 0.380, Q2 5 0.126,
figure 1C; PLS: R2X 5 0.512, R2Y 5 0.756, Q2Y 5

0.555, figure 1G) or the change in the EDSS after 2
years of follow-up (PCA: R2 5 0.381, Q2 5 0.129,
figure 1D; PLS: R2X5 0.148, R2Y5 0.222, Q2Y 5

0.036, figure 1H) with medium to high accuracy.

Metabolites associated with MS severity point to an

imbalance in phospholipid metabolism. In order to val-
idate the ability of the metabolomics signature to dis-
criminate between patients and controls, we analyzed
another independent and multicenter cohort of 238
patients with MS and 74 matched controls. We

Figure 2 Differential metabolomics profile in
patients with multiple sclerosis and
healthy controls

Heatmaps of the differences between patients (retrospec-
tive longitudinal cohort) and controls (vertical axis; ordered
by metabolite chemical group and according to their carbon
number and unsaturation degree of their esterified acyl
chains). The log2 transformed ion abundance ratios (colors
from green to red show drops or elevations of the metabo-
lite levels in patients) and unpaired Student t test (orWelch t
test where unequal variances were found) p values (gray

lines correspond to significant fold changes of individual
metabolites) per metabolite are displayed. AA 5 amino
acids; AC 5 acylcarnitines; BA 5 bile acids; Cer 5 ceram-
ides; ChoE 5 cholesteryl esters; CMH 5 monohexosylcera-
mides; DG 5 diglycerols; LPC 5 lysophosphatidylcholines;
LPE 5 lysophosphatidylethanolamines; LPI 5 lysophospha-
tidylinositols; MUFA 5 monounsaturated fatty acids; PC 5

phosphatidylcholines; PE 5 phosphatidylethanolamines;
PI 5 phosphatidylinositols; PUFA 5 polyunsaturated fatty
acids; SFA 5 saturated fatty acids; SM 5 sphingomyelins;
ST 5 steroids; TG 5 triglycerides.
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identified a set of metabolites significantly different
between patients and controls (figure 2). Metabolites
included in this signature comprised amino acids, sat-
urated, monounsaturated, and polyunsaturated fatty
acids, diglycerols, triglycerides, cholesteryl esters, bile
acids, steroids, lysophosphatidylethanolamine, lyso-
phosphatidylcholines, phosphatidyl-inositol, ceramide,
sphingomyelin, and monohexosylceramides (figure 3).

Considering that one of the clinical uses of a bio-
marker for MS would be to classify individuals with
different levels of disease severity, we analyzed the
metabolomic profile in this second cohort of 238
patients with MS stratified by disease severity (pres-
ence of relapses or increase in EDSS) (table e-2).
Regarding disease activity (relapse-free vs having re-
lapses), we found a total of 116 different metabo-
lites (uncorrected p , 0.05) in the unpaired
Student t test for stable (n 5 77) vs active (n 5

134) disease (unclassified n 5 27). Table 2 shows
the metabolites that remained significant after

correction for multiple testing for each subgroup
in the retrospective longitudinal cohort, as well as
those that were also significant in the prospective
cohort and were therefore considered validated.
Specifically, we found that levels of PC (15:0/
22:6), arachidonic acid, 13- hydroxyoctadecadie-
noic acid, and the lysophosphatidylcholines PC
(20:0/0:0), PC (201/0:0), PC (22:5/0:0), and PC
(17:0/0:0) were associated with the relapse-free sta-
tus. Moreover, we found that levels of cortisol
(hydrocortisone) showed a trend for association
with disability measured by EDSS after 2 years of
follow-up (p 5 0.051, ANOVA test). The differ-
ences showed a moderate accuracy and high speci-
ficity (area under the curve 0.6, sensitivity 0.38,
specificity 1.0) for predicting increase in the EDSS 2
years later. Moreover, the metabolites associated with
disability status (EDSS ,3.0 compared with patients
reaching EDSS.4.5 after 2 years follow-up) included
glutamic acid, tryptophan, eicosapentaenoic acid

Figure 3 Metabolic pathways of the metabolites identified

Lipid biosynthesis. Fold-change (patients with multiple sclerosis/controls) trends are indicated in red, green, and gray arrows for significant upregulated, de-
regulated, and nonsignificant chemical classes in patients with MS, respectively. Areas in orange represent processes carried out in the mitochondria. AC5

acylcarnitines; CE 5 cholesteryl esters; Cer 5 ceramides; CL 5 cardiolipins; CS 5 cholesterol sulfate; DAG 5 diacylglycerols; FAA 5 primary fatty amides;
G3P 5 glycerol 3-phosphate; LPC 5 lysophosphatidylcholines; LPE 5 lysophosphatidylethanolamines; LPG 5 lysophosphatidylglycerols; LPI 5 lysophos-
phatidylinositols; MAG5monoacylglycerols; NAE5N-acylethanolamines; NEFA5 nonesterified fatty acids; oxFA5 oxidized fatty acids; PA5 phosphatidic
acids; PC 5 phosphatidylcholines; PE 5 phosphatidylethanolamines; PG 5 phosphatidylglycerols; PI 5 phosphatidylinositols; PS 5 phosphatidylserines;
SAMe 5 S-adenosylmethionine; SM 5 sphingomyelins; ST 5 steroids; TAG 5 triacylglycerols; UC 5 unesterified cholesterol.
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(timnodonic acid), 13S-hydroxyoctadecadienoic acid,
lysophosphatidylcholine (20:5/0:0), and lysophosphati-
dylethanolamine (20:5/0:0). Finally, considering the
use of disease-modifying drugs, among all metabolites
identified in both cohorts, LysoPC (20:0/0:0) and
LysoPC (22:5/0:0) were associated with relapse-free sta-
tus and glutamic acid was associated with increase in
EDSS in patients treated with interferon-b (table e-3).

DISCUSSION In this study, we identified a set of
metabolites that were differentially present in pa-
tients with MS compared to controls. In addition,
we identified a set of metabolites that were differen-
tially present in patients with more severe disease
based on the presence of relapses or changes in
the disability scale EDSS. Moreover, we were able
to validate sphingomyelin and phosphatidyletha-
nolamine in the 2 cohorts as discriminant between
patients with MS and controls. Overall, our results
point to an imbalance in the phospholipids and
sphingolipids composition of the serum, as well as
changes in several amino acids such as glutamic acid
or tryptophan (figure 3). It is important to remem-
ber that the current metabolomic assays in the
serum or CSF have been highly optimized for lipid
and amino acid characterization; therefore other
metabolites such as intermediate metabolism are
not adequately analyzed.

The source of the differences in lipid and amino
acid levels in patients with MS compared to healthy
controls and along disease severity may suggest several
hypotheses. First, such changes may be related to
increased activation of the immune system in which
phospholipids and amino acids play a role either as
signaling molecules or as regulators of membrane syn-
thesis, cytokinesis, or lipid rafts.26 Second, these me-
tabolomic signatures may reflect changes in the CNS
lipid composition due to myelin destruction (mainly
composed by sphingolipids) and astroglia prolifera-
tion (mainly requiring phospholipids). Another alter-
native hypothesis is that genetic susceptibility
associated with MS may drive changes in lipid and
amino acid composition of the serum, although at
present none of the polymorphisms associated with
MS have been involved directly in lipid metabolism.27

Regarding the main metabolites identified, most
of them play a key role in the signaling and regulation
of the immune system.26 Sphingomyelins are one of
the main lipid classes in myelin, but also influence the
immune response through S1P receptor signaling.28,29

Phosphatidylethanolamine modulates the immune
response by activating the CD300 receptors.30,31

Phosphatidylcholine is the main phospholipid class
in cell membranes and plays a critical role in prolif-
erative growth and programmed cell death.32 Arach-
idonic acid is present in phospholipids and also works

Table 2 Metabolites associated with multiple sclerosis disease activity in the retrospective longitudinal cohort and validated in the
prospective cohort

Name Class HMDB KEGG p Value

Relapse-free status

Diacylglycerophosphocholine PC (15:0/22:6) Glycerophospholipids HMDB07958 0.0299

Arachidonic acid 20:4n-6 Nonesterified fatty acids HMDB01043 0.0195

13S-Hydroxy-octadecadenoic acid (13-HODE) Oxidized fatty acids HMDB04667 C14762 1.94E–09

1-Monoacyl-glycerophosphocholine LysoPC (20:0/0:0) Glycerophospholipids HMDB10390 0.0022

1-Monoacyl-glycerophosphocholine LysoPC (20:1/0:0) Glycerophospholipids NA 0.0076

1-Monoacyl-glycerophosphocholine LysoPC (22:5/0:0) Glycerophospholipids NA 0.0116

1-Monoacyl-glycerophosphocholine LysoPC (17:0/0:0) Glycerophospholipids NA 0.0001

DEDSS

Cortisol (hydrocortisone) Steroids HMDB00063 C00735 0.027

Glutamic acid Amino acids HMDB00148 C00025 0.0267

Tryptophan Amino acids HMDB00929 C00078 0.0194

Eicosapentaenoic acid (timnodonic acid) Nonesterified fatty acids HMDB01999 C06428 0.0193

13S-Hydroxy-octadecadenoic acid Oxidized fatty acids HMDB04667 C14762 0.0163

1-Monoacyl-glycerophosphocholine LysoPC (20:5/0:0) Glycerophospholipids HMDB10397 C04230 0.0109

Monoacylglycerophosphoethanolamine LysoPE (20:5/0:0) Glycerophospholipids HMDB11519 NA 0.0154

Metabolites significantly different between patients with relapse-free status (vs non-relapse-free status) and patients with increase in Expanded Disability
Status Scale (DEDSS) in the 2-year follow-up (differences between patients with DEDSS ,3, between 3.5 and 4.5, and .4.5). Results are shown by the
name of the metabolite (chemical formula), the class each metabolite pertains to, and the code of each metabolite at the Human metabolome Database
(HMBD) and the Kyoto Encyclopedia Genes and Genomes (KEGG). p Values correspond to the t test analysis for relapse-free status comparison and to
analysis of variance for DEDSS study.
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as a second messenger for phospholipase activation
and as a key inflammatory mediator.33 Regarding
amino acids, in addition to being part of protein
sequences and the main excitatory neurotransmitter,
glutamic acid and glutamate activate purinergic re-
ceptors P2X7 in macrophages and also contribute
to oligodendrocyte death in the white matter.34,35

Tryptophan’s key role is serving as a checkpoint in
the activation of the immune system by the enzyme
indoleamine 2,3-dioxygenase.36 For all of these rea-
sons, and in line with many genetic and immunologic
studies, our results support the first hypothesis that
changes observed in the serum metabolome are
a reflection of chronic activation of the immune sys-
tem in patients with MS and that the severity of the
disease also corresponds with greater activation of the
immune system, rather than differential involvement
of pathways.

Our results are supported by previous small me-
tabolomics studies in the serum of patients with
MS, which have identified differences in levels of
phosphatidyl-choline, phosphatidyl-inositol, gluta-
mate, and other amino acids between patients and
controls.10,12,37 Furthermore, a magnetic resonance
spectroscopy (MRS) analysis identified differences
in serum metabolites between MS and neuromyelitis
optica, namely scyllo-inositol (the second largest iso-
mer of inositol, after myo-inositol) increased in MS
and acetate (a metabolite of the neurotransmitter syn-
thesis of glutamate to glutamine in astrocytes)
increased in neuromyelitis optica.11 Moreover,
a recent well-powered MRS study of the serum was
able to identify a metabolomic signature differentiat-
ing relapsing from progressive disease in 3 indepen-
dent cohorts.9 Metabolites involved in such patterns
included reduced levels of fatty acids, phosphatidyl-
choline, N-acetyl species, lactate, and glucose and
increased levels of other fatty acids and b-hydroxybu-
tyrate in patients with progressive disease.

Regarding metabolomic differences in the CSF,
MRS analyses have revealed differences in the levels of
small metabolites (increase of choline, myo-inositol,
and threonate and decrease of 3-hydroxybutyrate, cit-
rate, phenylalanine, 2-hydroxyisovalerate, andmannose)
associated with energy and lipid metabolism in patients
with MS,14 as well as increased levels of lipid (8-iso-
prostaglandin F2a) or protein peroxidation products
(carboxymethylated, neuroketal, and malondialdehyde-
mediated protein modifications).8 Similarly, another
small metabolomic study of the CSF found differences
in metabolite concentration based on disease activity,
with increased levels of hydroxyeicosatetraenoic acid,
prostaglandin E2, and resolvin D1 in patients with
highly active MS.13

In addition, MRS allows for assessment of the
metabolomic profile of the CNS, having found

significant differences in metabolite concentration
(e.g., glutamate, N-acetylaspartate, g-aminobutyric
acid, and aspartate) between patients with MS and
controls.15 Indeed, brain tissue analysis by electro-
spray identified higher phospholipid and lower
sphingolipid content in normal-appearing gray
matter of patients with MS associated with a meta-
bolic defect that causes sphingolipids to be shuttled
to phospholipid production.38 It seems that in MS
there is an increase of phospholipids and a decrease
of sphingolipids, perhaps reflecting a reduction of
myelin-specific lipid content or production in the
CNS associated with increased cellularity due to
glial scars.

Our study has several limitations. In the first
prospective cohort, identification of metabolites
was limited in the platform used; therefore the anal-
ysis was done based on peaks of the spectra. As such,
we were unable to perform the analysis in a more
informative way (e.g., using the retrospective cohort
to identify metabolites with high classification
power [by univariate analysis], then selecting the
top performing features and training a classifier
[with internal cross-validation], and finally testing
this classifier in the other cohort, using area under
the receiver operating characteristic curve as the
metric to evaluate performance). Second, use of
disease-modifying drugs was allowed in order to
represent the type of patients currently monitored
in MS centers; therefore, it is not possible to ascer-
tain whether differences were truly due to disease
activity or related to the use of such drugs. How-
ever, the fact that most of the treated patients
received interferon-b decreased heterogeneity and
noise by this factor. Moreover, disease activity was
based on clinical activity since MRI monitoring was
not available. Consequently, active patients may
have been misclassified as stable patients if new le-
sions happened in noneloquent areas. Although this
limitation may have decreased the power of our
study and introduced false-negatives, it is unlikely
to have introduced false-positive metabolites associ-
ated with disease activity. Moreover, lack of MRI
studies prevented relating metabolites with specific
imaging markers, as described by Baranzini et al.39

Other contemporary clinical parameters such as oli-
goclonal banding presence were not analyzed here
and would require further studies in order to clarify
their relationship. Although the sample size of the
study is significant, it does not allow assessment of
differences at various steps of the EDSS or for spe-
cific subgroups. Finally, although the identified
classifiers of worsening disability were significant,
their diagnostic accuracy was not very high and
future studies should refine them to improve upon
this.
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