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Abstract: The tetraspanin CD9 is considered a metastasis suppressor in many cancers, however its
role is highly debated. Currently, little is known about CD9 prognostic value in cutaneous melanoma.
Our aim was to analyse CD9 expression in melanocytic nevi and primary cutaneous melanomas
through immunohistochemistry and immunofluorescence approaches to determine its correlation
with invasiveness and metastatic potential. CD9 displayed homogeneous staining in all melanocytic
nevi. In contrast, it showed a complete loss of reactivity in all thin melanomas. Interestingly, CD9
was re-expressed in 46% of intermediate and thick melanomas in small tumor clusters predominantly
located at sites of invasion near or inside the blood or lymphatic vessels. The most notable finding is
that all CD9 stained melanomas presented sentinel node positivity. Additionally, a direct association
between CD9 expression and presence of distant metastasis was reported. Finally, we confirm that
CD9 expression is consistent with an early protective role against tumorigenesis, however, our
data endorse in melanoma a specific function of CD9 in vascular dissemination during late tumor
progression. The presence of CD9 hotspots could be essential for melanoma cell invasion in lymphatic
and endothelial vessels. CD9 could be a valid prognostic factor for lymph node metastasis risk.

Keywords: tetraspanin CD9; melanocytic nevi; cutaneous melanoma; lymph node metastasis;
transendothelial invasion; prognostic marker

1. Introduction

Malignant melanoma, originated from genetically modified or activated melanocytes,
can be considered a result of complex interactions between environmental, constitutional,
and genetic factors. Melanoma is characterized by clinically distinguishable subtypes:
cutaneous, mucosal, uveal, and unknown primary melanomas [1–4].

Once a rare tumor, cutaneous melanoma is considered the third most common cancer.
Despite the increasing recognition of melanoma in situ, the incidence of the invasive
melanoma was not decreased [5]. In Europe, the melanoma incidence rate is <10–25 new
cases per 100,000 inhabitants [6], with the highest percentage of fatal cases seen in men
over the age of 65 years old and with thick lesions (>1 mm) [7]. Thus, early diagnosis and
treatment innovations, encompassing targeted therapies and immune checkpoint-inhibitors,
promote better outcomes [8], taking into account that responses to the treatments depend
on the efficiency of the host immune system, including the innate immunity [9–11]. Recent
research has highlighted the importance of the melanoma microenvironment, capable of
influencing melanoma progression and its response to anticancer therapies [12,13].
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Even if a real decline in mortality rates has been recorded in the past few years [14],
the rapid rise in cutaneous melanoma remains one of the most aggressive tumors in the
world. Therefore, exploring the molecular mechanisms subjacent melanoma development
could be helpful to identify biomarkers for reliable prediction of survival and recurrence.

Tetraspanins, a family of transmembrane proteins, have been confirmed to play an
important role in carcinogenesis and malignant progression [15]. The tetraspanin CD9
is regarded as a metastasis suppressor in some tumors where low levels of this protein
correlate with advanced disease and poor prognosis. An early study by Ikeyama et al.
demonstrated that CD9 overexpression decreased their motility in a variety of cancer
cells [16]. In many tumors such as breast, lung, and colon, lower CD9 expression wors-
ens the prognosis. Nevertheless, some studies suggested opposite results [17]. In acute
lymphoblastic leukemia, CD9 expression was associated with a poor prognosis [18] as
well as its overexpression in an aggressive tumor like esophageal squamous cell correlated
with tumor clinical staging and lymph node involvement [19]. Tasdemir et al. found that
gastric carcinoma behaved more aggressively and is inclined to lymphatic and vascular
invasion, lymph node metastasis, peritoneal dissemination, and advanced stage, when CD9
is more expressed [20]. Moreover, Miki et al. showed increased migration and invasion
abilities in CD9-positive exosomes from cancer-associated fibroblasts of scirrhous-type
gastric cancer cells, and the prognosis of patients with positive CD9 expression was worse
than CD9-negative patients. [21]. Recently, CD9 staining was also found increased and
strongly associated with worse prognosis in pancreatic ductal adenocarcinoma [22] and
in primary ovarian tumors [23]. Therefore, the role of CD9 is highly debated and con-
troversial, since its expression in cancer cells has been reported to exert both pro- and
anti-migratory functions, probably due to its modulatory activity toward integrins and
other transmembrane proteins [24].

Tetraspanins, like CD9, often combine with different molecules they assemble into
extracellular vesicles (EVs) called exosomes [25,26], whose levels resulted as increased in
cancer patients [27]. In an interesting study, Peinado et al. observed that tumor-derived
EVs were shown to regulate systemic metastasis by forming pre-metastatic niches in distant
organs [28].

However, most of these findings have been obtained using tumor cell lines, whereas
little is known about CD9 prognostic value. The aim of our study was to analyze CD9
expression in melanocytic nevi and primary cutaneous melanomas through an immuno-
histochemistry approach to determine its correlation with melanoma invasiveness and
metastatic potential.

2. Results
2.1. Patient Characteristics

All available details of clinical and histopathological features of the melanoma patients
are summarized in Table 1.

In total, 20 melanocytic nevi and 120 primary cutaneous melanomas (24 thin, 56 inter-
mediate, and 40 thick melanomas) were included in our study. Median age of the patients
was 68 years (range: 30–92 years) with 75 (53.6%) male patients. Median Breslow thickness
of the primary melanoma was 2.9 mm (range 0.4–10 mm). Of the 120 melanomas 8 had II,
16 had III, 64 had IV, and 32 had V Clark level.

Tumor ulceration was identified in 12 intermediate (21.4%) and in 22 thick melanomas
(55%). There was a significant relationship between Breslow thickness and ulceration
presence (p < 0.01, Chi square test).

In the 96 patients with intermediate and thick melanoma, sentinel lymph node biopsy
(SNB) was performed. Among these patients 44 (45.8%) were positive by hematoxylin-eosin
or immunohistochemistry for micro-metastases, or both. Table 1 shows the distribution
of positive sentinel lymph nodes (N1) according to melanoma thickness. Sixteen (29%)
of 56 patients with intermediate melanomas and 28 (70%) of 40 patients with thicker
lesions (>4 mm) had a positive sentinel node. Chi square test was utilized to determine the
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relationship between increment of melanoma thickness and sentinel lymph node status
(p < 0.001). A logistic regression model was used for describing and analyzing risk factors
for SNB positive status in the patients with intermediate and thick melanomas. The results
in Table 2 showed that Breslow thickness >4 mm, tumor ulceration, and CD9 positivity
were associated with significantly increased risk for SNB positivity. Among these factors,
tumor ulceration and CD9 expression were the strongest predictors of positive SNB results
(p < 0.0001).

Table 1. Patient characteristics.

Characteristic Patient Number p-Value

Gender
Male 75

Female 65
Age

<40 years 50
≥40 years 90

Melanocytic nevus 20
Primary melanoma 120
Breslow thickness
≤1.0 mm (thin) 24

1.1–4.0 mm (intermediate) 56
>4.0 mm (thick) 40

Clark level
II 8
III 16
IV 64
V 32

Tumor ulceration presence
Thin melanoma -

Intermediate melanoma 12 (21.4%)

Thick melanoma 22 (55%)
<0.01 *

Sentinel lymph node biopsy (SNB) performed 96
Positive sentinel nodes 44
Intermediate melanoma 16 (29%)

Thick melanoma 28 (70%)
<0.001 *

Distant metastasis (M1)
Thin melanoma M1 -

Intermediate melanoma M1 20 (35%)
Thick melanoma M1 25 (62%)

* p-value by Chi square test.

In the 120 patients with invasive melanoma, 45 (37.5%) developed distant metastasis
after a median of 76 months (95% CI 59–92 months). All patients affected by thin melanoma
displayed no evidence of distant metastasis and none of them died for melanoma. Of
the 56 patients with intermediate melanomas, 20 (35%) developed distant metastasis after
a median time of 105 months (95% CI 87–124 months), compared to 57 months (95% CI
36–78 months) for the 25 of the 40 patients (62%) with thick melanomas (log-rank p = 0.006;
Figure 1a). Metastasis localizations were in the lung (n = 23), liver (n = 10), brain (n = 8),
and skin (n = 4).

Sixteen patients (28%) affected by intermediate melanoma died from melanoma dis-
ease (MSS) after a median time of 116 months (95% CI 98–134 months), while 13 patients
(32%) with thick lesions died after a median time of 76 months (95% CI 64–87 months).
Kaplan–Meier curves revealed that Breslow thickness was significantly correlated with
MSS (log rank p = 0.02; Figure 1b).



Int. J. Mol. Sci. 2022, 23, 4775 4 of 18Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. Kaplan–Meier analysis of Distant Metastasis Free Survival (DMFS) and Melanoma Specific 
Survival (MSS). (a) Patients with thick melanomas were significantly associated with shorter DMFS 
respect to the patients with intermediate melanoma. (b) Breslow thickness was significantly associ-
ated with MSS. (c) Breslow thickness >1 mm (intermediate and thick melanoma) associated with 
positive sentinel node biopsy (SNB) and (d) tumor ulceration presence were significant negative 
prognostic factors for MSS. 

Sixteen patients (28%) affected by intermediate melanoma died from melanoma dis-
ease (MSS) after a median time of 116 months (95% CI 98–134 months), while 13 patients 
(32%) with thick lesions died after a median time of 76 months (95% CI 64–87 months). 
Kaplan–Meier curves revealed that Breslow thickness was significantly correlated with 
MSS (log rank p = 0.02; Figure 1b).  

In Figure 1c, Kaplan–Meier curves showed that patients with intermediate/thick mel-
anoma and positive SNB status (SNB+) died for MSS after a significantly decreased me-
dian time compared to the patients affected by intermediate/thick melanoma and negative 
SNB (SNB-) (log rank: p = 0.001; intermediate SNB- median survival time 148 months, 95% 
CI 137–159 months; intermediate SNB+ 64 months, 95% CI 43–85 months; thick SNB- 94 
months, 95% CI 62–127 months; thick SNB+ 64 months, 95% CI 46–81 months).  

The patients with melanoma presenting ulceration were 34 and had median MMS 
time of 87 months (95% CI 69–105 months), significantly shorter than MSS time of the 

Figure 1. Kaplan–Meier analysis of Distant Metastasis Free Survival (DMFS) and Melanoma Specific
Survival (MSS). (a) Patients with thick melanomas were significantly associated with shorter DMFS
respect to the patients with intermediate melanoma. (b) Breslow thickness was significantly associated
with MSS. (c) Breslow thickness >1 mm (intermediate and thick melanoma) associated with positive
sentinel node biopsy (SNB) and (d) tumor ulceration presence were significant negative prognostic
factors for MSS.

In Figure 1c, Kaplan–Meier curves showed that patients with intermediate/thick
melanoma and positive SNB status (SNB+) died for MSS after a significantly decreased
median time compared to the patients affected by intermediate/thick melanoma and nega-
tive SNB (SNB-) (log rank: p = 0.001; intermediate SNB- median survival time 148 months,
95% CI 137–159 months; intermediate SNB+ 64 months, 95% CI 43–85 months; thick SNB-
94 months, 95% CI 62–127 months; thick SNB+ 64 months, 95% CI 46–81 months).

The patients with melanoma presenting ulceration were 34 and had median MMS time
of 87 months (95% CI 69–105 months), significantly shorter than MSS time of the patients
without ulceration (138 months, 95% CI 125–152 months, log-rank p = 0.014, Figure 1d).

At multivariate analysis with Cox proportional hazard model, tumor ulceration, CD9
expression, and SNB status resulted in independent prognostic factors associated with MSS
(Table 3).
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Table 2. Predictive values of high-risk pathological and clinical features for positive sentinel lymph
node biopsy (SNB) in patients with intermediate and thick melanomas.

SNB Risk Factor No. Cases a No. Controls b Odds Ratio 95% CI

Gender
Female 20 20 1 Referent
Male 24 32 0.75 0.332–1.694

p = 0.49
Age
<40 15 15 1 Referent
≥40 29 37 0.783 0.330–1.862

p = 0.58
Breslow thickness

Intermediate 16 40 1 Referent
Thick 28 12 5.833 2.394–14.216

p < 0.001
Tumor ulceration

Absence 12 50 1 Referent
Presence 22 12 7.639 2.971–19.639

p < 0.0001
CD9 expression

Negativity 0 52 1 Referent

Positivity 44 0 8505 1651.8–
437,916.42

p < 0.0001
a Patients with SNB positive; b Patients with SNB negative; Abbreviation: SNB, sentinel lymph node biopsy; CI,
confidence interval. The p-values that are statistically significant are highlighted in bold.

Table 3. Multivariate Cox regression associated with melanoma specific survival (MSS).

Variable HR 95% CI (HR) p-Value

Gender
Female 1 Referent
Male 0.965 1.019–1.722 0.864
Age
<40 1 Referent
≥40 0.992 334–2.468 0.561

Breslow thickness
Thin 1 Referent

Intermediate 1.15 0.321–4.120 0.761
Thick 1.65 0.641–4.239 0.298

Tumor ulceration
Absence 1 Referent
Presence 3.741 1.377–10.164 0.010

SNB status
Negative 1 Referent
Positive 17.323 4.229–70.958 0.0001

Not recommended a 1.105 0.448–2.725 0.658
CD9 expression

Negative 1 Referent
Positive 13.077 2.896–59.046 0.0001

Note: Regression model with stepwise Wald-backward adjusted for gender, age, Breslow thickness, tumor
ulceration, SNB status, and CD9 expression. Abbreviations: CI, confidence interval; HR, hazard ratio; SNB,
sentinel lymph node biopsy. a Patients with thin melanoma: SNB is not recommended; The p-values that are
statistically significant are highlighted in bold.

2.2. Immunohistochemical and Immunofluorescence Evaluation

The cells forming the basal and suprabasal layers of the uninvolved squamous ep-
ithelium displayed strong CD9 staining and provided internal positive control for CD9
immunoreactivity that was pronounced in the basal layer at the regions adjacent to stromal
tissue (Figure 2a).
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arose. (d–f) Homogeneous CD9 staining in melanocytic nevus. (g–i) Loss of CD9 expression in thin 
melanoma. (l–o) CD9 staining was often re-expressed in small clusters of tumor melanocytic cells 
in intermediate and thick melanomas. (p–q) Thick melanoma negative for CD9. (immuno-peroxi-
dase, scale bars 50 µ). 

CD9 expression in cells forming the squamous epithelium from which the tumors 
arose was not always conserved in melanomas (Figure 2b). CD9 was predominantly lo-
calized in the cell plasma membrane (as expected for a membrane antigen), but it was also 
sometimes detected in the cytoplasm (Figure 2c).  

Figure 2. CD9 expression in melanocytic nevi and melanomas. (a–c) CD9 staining in the squamous
epithelium, (b) CD9 staining was often not conserved in the epithelium from which the tumors
arose. (d–f) Homogeneous CD9 staining in melanocytic nevus. (g–i) Loss of CD9 expression in thin
melanoma. (l–o) CD9 staining was often re-expressed in small clusters of tumor melanocytic cells in
intermediate and thick melanomas. (p,q) Thick melanoma negative for CD9. (immuno-peroxidase,
scale bars 50 µ).

CD9 expression in cells forming the squamous epithelium from which the tumors arose
was not always conserved in melanomas (Figure 2b). CD9 was predominantly localized in
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the cell plasma membrane (as expected for a membrane antigen), but it was also sometimes
detected in the cytoplasm (Figure 2c).

CD9 showed a marked and homogeneous expression in all melanocytic nevi (Figure 2d–f).
In contrast, CD9 was not found in almost two-thirds of the melanomas (76/120). Primary
melanomas showed two variations of CD9 staining: (a) an absolute loss of reactivity in the
total of thin melanomas (24/24) (Figure 2g–i); (b) a reactivity limited to <50% of the total
intermediate and thick melanomas, occurring in 44 of the 96 lesions (Table 4).

Table 4. Expression of CD9 in melanocytic nevi and primary melanomas.

Patient’s Characteristics (No. Patients) CD9+
No. Patients (%)

CD9-
No. Patients (%)

Histology
Melanocytic nevus (20) 20 (100%) -

Primary melanoma (120):
Breslow thickness

Thin melanoma (24) - 24 (100%)
Intermediate melanoma (56) 16 (29%) 40 (71%)

Thick melanoma (40) 28 (70%) 12 (30%)
Clark level

II (8) - 8 (100%)
III (16) - 16 (100%)
IV (64) 20 (31%) 40 (69%)
V (32) 24 (75%) 8 (25%)

Sentinel lymph node biopsy status
Positive (44) 44 (100%) -

Negative (52) - 52 (100%)
Distant metastasis (M) *

Presence M1 (45) 29 (64%) ** 16 (36%) **
Absence M0 (51) 15 (29%) ** 36 (71%) **

* Distant metastasis in intermediate and thick melanomas; ** A chi-square test of independence was performed to
examine the relation between CD9 positivity and M status. The relation between these variables was significant,
χ2 = 10.5, p < 0.001.

In positive melanomas, the staining pattern was somewhat lower and less homoge-
neous with respect to the nevi, often turning from “membranous” to “cytoplasmatic”. CD9
staining was mainly confined to several small clusters of tumor melanocytic cells that
strongly expressed CD9, even in weakly stained sections or with wide negative regions
(Figure 2l–o). These tumor sites with marked localized CD9 expression were detected at
a density of at least three per sample in the positive intermediate and thick melanomas.
Tumor sections with no CD9 positive clusters were classified as negative (Figure 2p,q).

As shown in microphotographs of immunofluorescence and immunohistochemistry,
we successfully stained CD9 positive clusters of melanoma cells, obtaining similar staining
patterns with both techniques. As expected, CD9 expression was observed predominantly
on the cytoplasm of melanoma cells in positive clusters often located in totally negative
tumor areas (Figure 3a).

Immunohistochemical double staining with antibodies against CD9 and CD34 or
D240 revealed an interesting finding: CD9 positive clusters, in which CD9 appeared to
be re-expressed, were predominately located at sites of invasion near (Figure 4a–c,g–i)
or inside the blood (CD34+, Figure 4d–f) or lymphatic vessels (D240+, Figure 4l–n). In
summary, CD9 was found to be downregulated or absent in the main tumor mass, but it
was still expressed immediately adjacent or within vessels.

Double immunostaining (dark staining) also revealed that CD9 and CD34 are found
contemporaneously in the endothelium of the vessels (Figure 4d,e), just as CD9 and D240
in lymphatic vessels (Figure 4l,m), in particular, adjacent to CD9 positive tumoral clusters.
The Figure 4f,n showed the immunolocalization of CD9 (brown staining) in endothelial
and lymphatic vessels, respectively. This result was confirmed by double immunofluores-
cence reaction: Figure 3b shows that endothelial vessels (CD34+) and lymphatic vessels
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(D240+) were both positive for CD9. This marker colocalization was represented by an
orange staining.
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(d) Statistical representation of CD9 positivity in benign nevi and cutaneous melanomas grouped 
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Figure 3. (a) Similar staining pattern of CD9 in positive tumor clusters using immunofluorescence
and immunohistochemistry. (b) Endothelial vessels (CD34+) and lymphatic vessels (D240+) resulted
CD9 positive using double immunofluorescence (orange staining). (c) CD9 expression related to
Breslow thickness in cutaneous melanoma (0: negativity; 1: positivity; Student t test, **** p < 0.0001).
(d) Statistical representation of CD9 positivity in benign nevi and cutaneous melanomas grouped
according to Breslow thickness (ANOVA and Bonferroni test, * p < 0.05).
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Figure 4. CD9 re-expression in positive tumor clusters near or inside blood and lymphatic vessels
by immunohistochemical double staining. (a–f) Tumor melanocytic cells and blood vessels stained
by CD9/CD34 double staining. (g–i,l–n) Tumor melanocytic cells and lymphatic vessels stained by
CD9/D240 double staining. (immuno-peroxidase scale bars 50 µ).

2.3. CD9 Staining and Correlation with Clinic-Pathological Features

The results are summarized in Table 4. We detected the expected decrease in expression
in melanoma lesions as compared to nevi. Statistical analysis revealed that CD9 staining
was directly related to the thickness of the primary melanomas (p < 0.0001, Figure 3c);
it was absent in all thin melanomas, while 16 cases of 56 intermediate melanomas (29%)
and 28 of 40 thick melanomas (70%) showed CD9 positive clusters (p < 0.05; Figure 3d).
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Similarly, CD9 was lost in melanomas with II and III Clark level and re-expressed in 20
of the 64 melanomas with IV level (31%) and in 24 of the 32 with V Clark level (75%).
These differences in CD9 expression were statistically significative (p < 0.05; Figure 5a) and
supported by the existence of a significant directly correlation between CD9 positivity and
Clark level (p < 0.001; r = 0.753; Figure 5b).
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3. Discussion 
It is now recognized that prognostic and clinicopathological significance of CD9 ex-

pression is controversial and changed with respect to the tumor type. In fact, the tetra-
spanins have recently gained attention as both suppressors and promoters of metastasis. 
It can be presumed that variability in the membrane and vesicular elements, associated 
with single tetraspanins, justifies their conflicting skills to promote and suppress metas-
tasis [26]. In particular, CD9 tends to interact with various integrins and transmembrane 
proteins [24] and, together with other tetraspanins such as CD63 and CD81, is recognized 

Figure 5. (a) Statistical representation of CD9 expression according to Clark level. CD9 staining was
lost in II and III Clark levels and re-expressed in IV and V levels (* p < 0.05). (b) Correlation between
CD9 and Clark level (p < 0.001; r = 0.753, Spearman rank correlation). (c,d) Statistical representation of
CD9 expression according to sentinel node and distant metastasis status (* p < 0.001); CD9+, positive
to CD9; CD9-, negative to CD9; N0, sentinel lymph node negative; N1, sentinel lymph node positive;
M0, absence of distant metastasis; M1, presence of distant metastasis. (e) Kaplan–Meier survival
curves showed a significant association between CD9 expression and melanoma specific survival in
patients with melanoma (p = 0.018).
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The most interesting finding was that all 44 CD9 stained melanomas (100%) presented
sentinel node positivity (CD9+N1) and, consequently, none of the CD9 negative melanomas
(CD9-N0) had sentinel lymph node micrometastases. Therefore, CD9 expression was closely
associated with the sentinel lymph node status (p < 0.001; Figure 5c). As shown in Table 2,
logistic regression analysis revealed that CD9 expression was a strong predictor of SNB
positivity (p < 0.0001).

Comparing the differential expression patterns of CD9 with distant metastasis status
and considering that all patients affected by thin melanomas showed no evidence of disease
progression, it was found that 29 of the 45 primary intermediate and thick melanomas
with distant metastasis (64%) were stained for CD9 (CD9+M1) while only 15 CD9 positive
patients had no metastasis (CD9+M0) (p < 0.001). On the contrary, most CD9 negative
patients (71%) developed no metastasis (CD9-M0) (p < 0.001; Figure 5d).

To evaluate whether marker expression correlated with prognosis of melanoma pa-
tients, Kaplan–Meier survival curves were considered using melanoma-specific survival
(Figure 5e). The analysis displayed that the patients positive to CD9 had a significantly
shorter MSS (median 98 months, 95% CI 80–116 months) compared to the negative patients
(median 130 months, 95% CI 116–145 months; log rank p = 0.018). Cox regression analysis
for MSS showed that CD9 expression, along with tumor ulceration and sentinel node status,
was an independent predictor of melanoma specific survival in patients with cutaneous
melanoma (p < 0.001; Table 3).

3. Discussion

It is now recognized that prognostic and clinicopathological significance of CD9
expression is controversial and changed with respect to the tumor type. In fact, the
tetraspanins have recently gained attention as both suppressors and promoters of metastasis.
It can be presumed that variability in the membrane and vesicular elements, associated with
single tetraspanins, justifies their conflicting skills to promote and suppress metastasis [26].
In particular, CD9 tends to interact with various integrins and transmembrane proteins [24]
and, together with other tetraspanins such as CD63 and CD81, is recognized as an abundant
marker on the surface of exosomes [29,30]. An interesting study showed that extracellular
vesicles (EVs), in particular exosomes, play an essential role in both primary tumor growth
and metastatic progression, since they are critical mediators of intercellular link between
tumor cells and stromal cells in processes like vascular leakiness, extracellular remodeling,
and regulation of the immune system [31].

In cutaneous melanoma, a pilot study of Si et al. demonstrated an inverse correlation
between CD9 expression and the invasive potential of tumor cells [32]. However, it has
been demonstrated that B16 mouse melanoma cells overexpressing CD9 showed increased
capacity to invade Matrigel, although CD9 positivity in mouse and human melanoma cell
lines was found to be reduced with respect to normal melanocytes [33]. Rambow et al.
described the presence of CD9 in the MeLiM swine model during spontaneous regression
and differentiation of melanomas. In particular, high CD9 expression was observed in
sparse highly pigmented cells, while small pigmented cancer cells were weakly or not
stained [34].

In human samples, Mischiati et al. reported that this tetraspanin was expressed in
18/18 nevi but was lost in 20/28 primary melanomas (71%, including thin lesions), which
showed a complete loss in more than 90% of the cells or a limited reactivity [35]. Similarly,
we observed that CD9 expression was present in all nevi but lost in the totality of thin
melanomas and in 52 of intermediate and thick melanomas (63%). Interestingly, CD9
expression was restored in 30% and in 70% of the intermediate and thick melanomas,
respectively, even if confined to several small clusters of tumor melanocytic cells. We
believe that the presence of CD9 expression in melanocytes of nevi is coherent with a
protective function of the tetraspanin against tumorigenesis. Fan et al. hypothesized that
in the transition phase from melanocytes to melanoma, the suppression of CD9 amounts
may be crucial [33]. However, in most advanced-stage melanomas, as we have observed,
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CD9 re-expression within the tumor microenvironment may lead to enhanced invasion,
suggesting that the decreased of CD9 expression occurs in the earliest stage of melanoma
while it is re-expressed in the invasive stage [33]. Interestingly, in our study we found
that these melanocytic clusters in which the tetraspanin was re-expressed were located
at sites of invasion near or even inside the blood or lymphatic vessels positive for CD9.
Similar results were obtained by Sauer et al. in cervical cancer. The authors found that the
tumor sites with high localized CD9 positivity showed cones expanding into lymphatic or
blood vessels and suggested a tetraspanin functional role in transendothelial migration as
a critical step in lymph node metastases development [36]. Consistent with these findings,
we found, for the first time in melanoma, that all the specimens presenting lymph node
metastasis were CD9 positive. The majority of these samples showed distinct regions
of strong immunoreactivity at sites of vessel penetration that were mostly CD9 stained.
Erovic et al., after hall, found that this tetraspanin was a valid marker for lymphatic
endothelial cells and able to promote transmigration of tumor cells through the adherence
to lymphatic vessels [37]. This is also supported by our other important finding, namely
that CD9 was associated with significantly increased risk for SNB positivity, as well as
tumor ulceration and Breslow thickness.

It is well known that locoregional lymph nodes metastases set up to a higher risk of
progression into distant metastases and recurrence following surgery [38]. Another intrigu-
ingly result of our study was a direct correlation between CD9 expression and presence
of distant metastasis. This data is consistent with previous studies of Garcia-Lopez et al.,
showing that melanocyte motility is enhanced by CD9 and suggesting that its overexpres-
sion may partly cause the invasion activity of melanoma cells across the Matrigel [39]. In
fact, a critical step in the lymphatic or distant metastasis is the invasion of lymphatic or
blood vessels by cancer cells. Different types of cell surface glycoproteins, which impact
a wide variety of cellular processes, are essential for adhesion, motility, and the ability
of tumor cells to invade surrounding tissue [40]. Among these, tetraspanins have a key
role as transmembrane adapter proteins forming functionally complexes with adhesion
molecules. As already mentioned, CD9 was detected as the most prominent marker of ex-
tracellular membrane vesicles, nanometer-sized entities that are released into surrounding
body fluids and affect intercellular communication under physiological and pathological
conditions [41]. Leary et al. found that EVs derived from melanoma cells are rapidly trans-
ported by lymphatic vessels to draining lymph nodes, where they selectively interact with
lymphatic endothelial cells [42]. Therefore, in vitro studies on transendothelial migration of
melanoma cells highlight the significant role of CD9 in tumor–endothelial/lymphatic cell
interaction and vascular dissemination of tumor cells. Ito et al. showed that heterologous
gap junctions between endothelial and melanoma cells can help to metastasis formation
in vivo [43]. Interestingly, it has been shown that CD9 localized along lateral junctions of
endothelial (CD34 positive) and epithelial cells [25]; more specifically, Longo et al., similarly
to our findings, described that endothelial cells had an active redistribution of CD9 to
the points of melanoma cell insertion, and CD9 expression was mostly concentrated at
tumor cells-endothelial cells contact areas, suggesting a stated role of CD9 in the extrava-
sation phase of cancer cell invasion. Moreover, it has been showed that melanoma cells’
transendothelial migration was inhibited by anti-CD9 monoclonal antibodies [44]. In lym-
phatic endothelial cells, CD9 was also seen to regulate molecular organization of integrins,
supporting several functions necessary for lymphatic vessel formation [45]. Our results
confirmed that tumor cells CD9 positive may establish intimate contact with endothelial
cells. This finding highlights an important role for endothelial/lymphatic CD9 in active
recognition required for melanoma cells during insertion. However, the CD9 contribution
to the in vivo transcellular migration deserves further investigation.

The presence of tumor cells within patient lymph nodes is an important indicator of
poor prognosis and progression. Recent research has showed that tumor cells navigating
the lymphoid system acquire advantages in survival, suggesting that metastases in lymph
node may be the starting point of distant metastasis. Recently, Ubellacker et al. reported
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that melanoma cells in lymph incorporate oleic and other antioxidants acid, protecting
them from ferroptosis (an iron dependent programmed cell death) and increasing their
capacity to survive for subsequent migration through the blood [46].

In conclusion, in line with previous reports [47,48], our results confirmed that Bres-
low thickness, tumor ulceration, and SNB status were significantly associated with poor
prognosis for patients with cutaneous melanoma. The direct correlation between CD9
expression and distant metastasis observed in our study assesses a potential clinical value
of this tetraspanin in melanoma prognosis. We confirmed that CD9 expression is consistent
with an early protective role of the tetraspanin against tumorigenesis, however, our data
endorse in melanoma a specific function of CD9 in vascular dissemination during late tu-
mor progression, supported by the existence of CD9 re-expressing cell clusters that mediate
transendothelial invasion of the tumor cells.

Our most important finding shows that the presence of CD9 hotspots is essential for
melanoma cell invasion in lymphatic and endothelial vessels.

Melanoma is an aggressive tumor, in particular intermediate and thick melanomas that
easily metastasize. It is well known that positive sentinel node biopsy identifies patients
demanding adjuvant therapy. Breslow thickness is usually used to identify patients for SNB.
Several clinical pathological characteristics, including Clark level, ulceration, mitotic count,
vessel invasion, tumor site, and age, have been associated with SNB positivity [49,50], albeit
with conflicting results. Therefore, molecular biomarkers could be an effort to improve
melanoma risk stratification and to avoid unnecessary SNB procedures. Recently, several
authors suggested the predictive ability of a model that included molecular variables
in combination with the clinicopathologic variables (Breslow depth and tumor ulcera-
tion) [51,52]. The Clinicopathological and Gene Expression Profile (CP-GEP) model was
recently developed to accurately identify patients with primary melanoma at low risk for
nodal metastasis [53,54]. Our results showed that CD9 expression exhibited a significant
predictive effect on SNB status, suggesting that it could serve as a useful addition to a
marker panel for selecting melanoma patients, in particular with intermediate thickness
melanoma for SNB.

4. Materials and Methods
4.1. Sample Collection

All paraffin-embedded tissue samples from benign and malignant melanocytic le-
sions, surgically removed between 2005 and 2015, were identified retrospectively from the
Archives of the Institute of Pathological Anatomy of the Marche Polytechnic University.
Diagnoses were made on hematoxylin and eosin-stained sections and based on the usual
criteria [55]. Histopathological diagnoses of the included cases comprised 20 ordinary,
benign, melanocytic nevi and 120 primary cutaneous melanomas. The inclusion criteria
for melanoma patients were as follows: only one primary malignancy, complete follow
up, clear causes of death. Exclusion criteria were: patients with more than one primary
cancer, patients younger than 18 years old of age, deaths reported within the first month
of diagnosis. In order to guarantee a valid sample number, melanomas were selected
sequentially until 120 according to Breslow thickness, lymph node, and distant metastasis
status. Clinical data of the patients were retrieved from medical records. Twenty-four
cases with Breslow thickness ≤ 1.0 mm were assembled in the category of thin melanomas,
56 cases with Breslow thickness 1.1–4.0 mm were considered intermediate melanomas
and 40 cases > 4.0 mm were considered thick melanomas. None of the patients had been
treated with adjuvant, immune, or targeted therapy. Ninety-six patients (melanoma Bres-
low > 1.0 mm) underwent sentinel lymph node biopsy (SNB). Lymph node specimens were
stained with routine hematoxylin-eosin and assessed by our institution’s dermatopatholo-
gists for presence of micrometastasis. The patient was considered to have a positive sentinel
node if one or more lymph nodes stained positive for melanoma cells by hematoxylin-eosin
staining. Negative nodes were screened for micrometastasis using antibodies ELAN A and
HBM 45.
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All patients were followed for at least 5 years after surgery, and distant metastasis
and death events were recorded. The occurrence of distant metastasis was designated M1
and the absence M0. Distant metastasis-free survival (DMFS) was defined as the time from
diagnosis to the onset of distant metastasis. Melanoma specific survival (MSS) was defined
as the time from diagnosis to death from melanoma. Overall survival was calculated as the
time from diagnosis to date of death related to melanoma or the last follow-up. The mean
follow-up of the patents was 84 months (range, 20–168).

Written informed consent of all patients was obtained according to the Declaration
of Helsinki.

4.2. Immunohistochemistry

Five µm serial paraffin-embedded sections were processed by immunohistochemistry.
They were deparaffinized using xylene, rehydrated through graded ethanol, and treated
with a microwave for heat-induced epitope retrieval in 10 mmol/L sodium citrate buffer
(pH 6.0). The tissue sections were subsequently incubated with the monoclonal mouse anti-
body anti-CD9 (motility-related protein 1, NCL-CD9, Novocastra Laboratories, Newcastle,
UK) overnight in humidified atmosphere at 4 ◦C.

The reaction was revealed using the streptavidin-biotin-peroxidase technique (En-
Vision Plus/HRP peroxidase kit; Dako Cytomation, Milan, Italy) according to Simon-
etti et al. [55]. CD9 staining was revealed by incubation with 3.3 diaminobenzidine (0.05 di-
aminobenzidine DAB in 0.05 mol/L Tris buffer, pH 7.6, and 0.01% hydrogen peroxide)
(Sigma-Aldrich, Milano, Italy), a chromogen showing a brown precipitate at the location of
the antibody.

For staining two antigens on a tissue-section using immuno-enzymatic detection
double immunohistochemistry, two sets of antibodies were used: first antibody anti-
CD9 and then anti-CD34 (clone HPCA1, Beckton Dickinson, Erembodegem, Belgium)
for labelling blood vessels, or anti-D240 (prediluted; Signet Laboratories Inc, Dedham,
MA) for highlighting lymphatic vessels. The sections designed for sequential double
staining were previously stained for CD9, according to the procedure described above, and,
upon completion of the first reaction, the antibody anti-CD34 or anti-D240 was applied
overnight at 4 ◦C. Successively, the slices were immunostained by Envision peroxidase kit
(Dako Cytomation, Milan, Italy) according to the standard procedure [43]. The sections
were stained with DBA/Cobalt tablets (Sigma Fast DAB with Metal Enhancer, D0426,
Sigma Aldrich, St. Luis, USA) that yield an intense dark blue to bluish back color, easily
distinguishable from brown DAB. In contrast to mono staining, which always ended with
precipitated brown indicating CD9 expression, double staining produced CD34 or D240
stained dark blue and CD9 stained brown.

All the sections were counterstained with Mayer’s hematoxylin (Bio-Optica, Milan,
Italy) and cover-slipped with Eukitt mounting medium (Electron Microscopy Sciences,
Hatfield, PA, USA).

For all sections immunostained with specific antibodies, parallel sections were pro-
cessed with isotype-matched control antibodies to confirm specificity.

Immunohistochemical staining of the markers was examined under a Nikon Eclipse
E600 light microscope (Nikon, Düsseldorf, Germany) in at least 10 fields/samples at 400×
magnification independently by two investigators (GG and GL) who had no previous
knowledge of the histopathological classification. Agreement between the observers was
always >95%.

The positivity of CD9-specific staining was assigned when the positive cells were >30%
(quantified as a percentage of the total counted cells). In melanomas, the positivity was
assigned according to the presence of CD9 positive tumor melanocytic clusters in certain
regions of the sections. These tumor cell clusters were detected at a density of three to
five in at least three microscopic fields, but they were never observed in tumors classified
as negative.
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4.3. Immunofluorescence

To validate the presence of CD9 in tissue from patients with melanoma, CD9 local-
ization was also investigated by immunofluorescence. Paraffin-embedded sections were
deparaffinized, hydrated with xylene and a graded alcohol series, and subjected to antigen
retrieval with 10 mmol/L sodium citrate buffer (pH 6.0) in microwave. To reduce autofluo-
rescence, samples were incubated with 0.1% Sudan Black B (Sigma-Aldrich, St Louis, MO,
USA) in 70% ethanol for 30 min then washed with PBS 1X with 0.03% Tween20. Sections
were incubated with mouse antibody anti-CD9 (NCL-CD9, Novocastra Laboratories, New-
castle, UK) overnight in a wet box at 4 ◦C in the dark. Then, the anti-mouse fluorescein
isothiocyanate (FITC) secondary antibody (Goxmo Fitch High Xads; Invitrogen, Carlsbad,
CA, USA) was added and incubated at room temperature for 1 h. Slides were then incu-
bated with DAPI (Invitrogen, Carlsbad, CA, USA) for 10 min for nuclear staining, washed
and mounted onto glass slides using Vectashield mounting medium (Vector Laboratories,
Inc., Burlingame, CA, USA). Negative controls were performed by omitting the primary an-
tibody. Stained sections were examined and photographed using a fluorescence microscope
(Nikon Eclipse E600, Nikon Instruments Europe B.V., Badhoevedorp, The Nederlands).

For staining two antigens on a tissue-section, double immunofluorescence was per-
formed using two sets of antibodies: first antibody anti-CD9 and then anti-CD34 (clone
HPCA1, Beckton Dickinson, Erembodegem, Belgium) for labelling blood vessels, or anti-
D240 (prediluted; Signet Laboratories Inc, Dedham, MA, USA) for highlighting lymphatic
vessels. The sections were stained for CD9, according to the immunofluorescence procedure
described above, and, upon completion of the first reaction, the antibody anti-CD34 or
anti-D240 was applied overnight at 4 ◦C. Successively, anti-mouse rhodamine-conjugated
secondary antibody (Goxmo, Tritch Affinity, Invitrogen, Carlsbad, CA, USA) was added at
room temperature for 1 h. The vessels positive to CD9 (green labelled) and anti-CD34 or
anti-D240 (red labelled) showed colocalization of these markers at the same site and the pos-
itive vessels appeared stained orange. Slides were then incubated with DAPI (Invitrogen,
Carlsbad, CA, USA).

4.4. Statistical Analysis

Statistical analyses were carried using the SPSS 16 package (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism 9 (GraphPad Software, San Diego, CA, USA). Differences be-
tween mean values in different categories were analyzed by paired Student t test, unpaired
Student t test analysis of variance (ANOVA) test followed by Bonferroni test. Chi-square
test was performed for the basic clinical-pathological characteristics of the patient cohorts.
The Kaplan–Meier method was used to describe differences in survival for the different
expression groups; statistical analysis was carried out by use of a log-rank test. p < 0.05
was considered to indicate a statistically significant difference.

A logistic regression model was used for analyzing risk factors for SNB positivity. The
results of the logistic regression model were presented as odds ratio (OR), 95% confidence
interval (CI) and p-value. All variables were evaluated by multivariate Cox regression to
identify independent predictors of MSS. Insignificant prognostic factors were excluded
from the model through Wald-backward elimination. Probability values of <0.05 were
considered as significant.
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