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Abstract

The engineering of enzymes with altered activity, specificity and stability, using directed evolution
techniques that mimic evolution on a laboratory timescale, is now well established. However, the
general acceptance of these methods as a route to new biocatalysts for organic synthesis requires
further improvement of the methods for both ease-of-use and also for obtaining more significant
changes in enzyme properties than is currently possible. Recent advances in library design, and
methods of random mutagenesis, combined with new screening and selection tools, continue to
push forward the potential of directed evolution. For example, protein engineers are now beginning
to apply the vast body of knowledge and understanding of protein structure and function, to the
design of focussed directed evolution libraries, with striking results compared to the previously
favoured random mutagenesis and recombination of entire genes. Significant progress in
computational design techniques which mimic the experimental process of library screening is also
now enabling searches of much greater regions of sequence-space for those catalytic reactions that
are broadly understood and, therefore, possible to model.

Biocatalysis for organic synthesis frequently makes use of whole-cells, in addition to isolated
enzymes, either for a single reaction or for transformations via entire metabolic pathways. As many
new whole-cell biocatalysts are being developed by metabolic engineering, the potential of directed
evolution to improve these initial designs is also beginning to be realised.

Introduction

Natural enzymes can catalyse reactions with up to 1017
fold rate accelerations [1], and with exquisite control of
regio- and stereo-chemistry. This along with their compat-
ibility with mild aqueous conditions has led to their
increasing use as biocatalysts in synthetic chemistry, espe-
cially in cases where chemical routes are difficult to imple-
ment [2,3]. Enzymes used in such biotransformations are
frequently prepared as isolated enzymes in solution or
immobilised onto resins, and used in the presence of
organic solvents, harsh chemical compounds, or under
conditions of temperature or pH that are suboptimal for

enzyme activity. Such non-natural conditions also often
result in poor enzyme activity, or complete deactivation
due to denaturation or chemical modifications. Develop-
ments in protein engineering over the past ten years have
enabled enzymes to be evolved in vitro for properties that
favour the required process conditions, and also to obtain
enzyme variants with altered substrate specificity or enan-
tioselectivity [4,5]. Despite the significant advances to
date on many industrially relevant enzymes, there still
remains a need to improve directed evolution strategies
and develop generic screening or selection tools which
make the process of identifying novel enzyme activities
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more efficient, and also to access much greater changes to
enzyme function.

Just as Nature evolves enzymes without any 'knowledge'
of enzyme structure and function, the techniques of in
vitro directed evolution mimic natural processes such as
random mutagenesis [6] and sexual recombination [7-10]
to improve enzymes without understanding them in great
detail.

This review discusses recent advances in the techniques
and strategies used for the directed evolution of biocata-
lytic enzymes, including the development of new genetic
and computational strategies aimed at improving the
quality and potential of enzyme libraries, as well as new
screening tools that broaden the range of targets for
directed evolution. Also discussed is the use of directed
evolution for enhancing metabolically engineered path-
ways, and some future applications arising from novel
pathway engineering in E. coli. Examples of the applica-
tion of established methods to new enzymes are not dis-
cussed.

New mutagenic strategies for directed enzyme
evolution

Despite the rapid growth of published examples of
directed evolution, there is still a clear need for alternative
and improved methods for the directed evolution of
enzymes. Current constraints include the difficulty in
optimising ligation steps when large libraries (>10° vari-
ants) are sought for selection-based methods, practical
limitations to library sizes that can be screened, and barri-
ers to technology licensing [5]. Some improvements have
been made in circumventing the need for ligations by
adopting PCR-based approaches [11], and more recently
by directing in vivo hypermutation with B cells to target
genes delivered by retroviral infection [12]. However, liga-
tion free approaches for DNA shuffling have yet to be
demonstrated. Practical limitations to library sizes have
been partially addressed recently by improving the pro-
portion of non-redundant or degenerate variants in librar-
ies. For example, the analysis of the frequency and
distribution of beneficial single mutants obtained from
initial libraries, can be used to define the ratio of tem-
plates to be used in recombination by overlap extension
PCR [13]. The effect is to improve the diversity of the mul-
tiple mutation variants obtained in the shuffled library.
Another recent study has examined why libraries con-
structed using high-mutation frequencies, tend to yield a
higher than expected number of functional variants [14].
Increased mutation rates permit the synergistic effects of
multiple mutations to be identified more frequently,
though they also lead to an increased likelihood of negat-
ing positive mutations, or non-functional variants. It was
demonstrated that increased mutation rates lead to more
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unique variants in each library, whereas single mutant
libraries can contain many copies of the same variant. This
work leads to the possibility of finding an optimal muta-
genic load for a given mutagenic method or application.

Another strategy, previously suggested as having the
potential to obtain more useful variants from restricted
library sizes, is to focus mutations in regions of the
enzyme more likely to result in beneficial mutations [4].
In the same review it was also noted that recent examples
of the directed evolution of properties traditionally asso-
ciated with the active site, were producing the majority of
mutations in regions that contribute to substrate binding,
catalysis or the conformation and dynamics of the active
site environment. A more recent and extensive study of
previously published rational design and directed evolu-
tion experiments demonstrates that indeed by far the
majority of mutations that improve the enantioselectivity
of enzymes, occur within 10 A of the enzyme active site
[15]. The authors also compared random mutagenesis of
five residues in the P. fluorescens esterase active site, to sin-
gle random mutations across the entire enzyme, demon-
strating a five-fold improvement of enantioselectivity
enhancement for the focussed approach compared to the
more random method. In a similar study, four residues
which in tetrameric form comprise the sixteen-residue
active-site of dihydrofolate reductase (DHFR), were
mutated by cassette mutagenesis [16]. The resulting
library yielded three mutants with entirely altered active-
sites and showing increased activity. More recently, a tech-
nique dubbed CASTing (combinatorial active-site satura-
tion), in which pair-wise saturation mutagenesis of
residues adjacent in sequence, was focussed into the active
site of a lipase from Pseudomonas aeruginosa, yielded a
number of mutants active on substrates not previously
accepted by the wild type [17]. In another striking exam-
ple, Parikh et al. compared the site-saturation mutagenesis
of three carefully chosen active-site residues in E. coli -
galactosidase, to a previous DNA shuffling experiment for
the same enzyme [18]. The previous DNA shuffling exper-
iment enhanced the k, /K, for B-fucosidase by 10-fold
after seven rounds, whereas the saturation mutagenesis
technique resulted in a 180-fold improvement in a single
round. Not all enzyme properties can be expected to
improve through active-site mutations alone, however.
Indeed, thermostability was shown to be improved
equally by mutations close to and distant from the active
site [19].

One further promising approach for obtaining more effi-
cient searches of sequence-space is the use of consensus-
sequence data for constructing libraries [20]. By aligning
the target gene of B-lactamase from Enterobacter cloacae
with the consensus sequence from 38 homologues, 29 res-
idues were identified as differing from the consensus.
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Each of these sites was simultaneously mutated back to
the consensus sequence, using the QuikChange multi site-
directed mutagenesis kit (QCMS) (Stratagene), to produce
a combinatorial library. Screening of just 90 variants
yielded 15 variants with improved thermostability and
subsequent recombination led to further improvements.
This demonstrated the potential power of refined library
design, though it is yet to be seen whether this type of
approach can be applied to properties other than ther-
mostability.

New screening and selection strategies for
directed enzyme evolution

The available methods for screening of, and selection
from enzyme libraries have recently been reviewed [21].
New screens are required to enable the identification of
improved enzymes from larger libraries, and also to
obtain the desired properties with generic methods that
measure it directly. The latter issue addresses the often
quoted first law of directed evolution, ie. 'you get what
you screen for' [22]. A frequent target for the directed evo-
lution of enzymes is the improvement of thermostability
which leads to more robust biocatalysts [4], and increased
stability in organic solvents, as shown in a recent study on
fructose bisphosphate aldolase [23]. Most screens for ther-
mostability have made use of indirect measures, such as
resistance to thermoinactivation at high temperatures
[23]. Such a screen, though effective in many cases, is not
a direct measure of protein stability and is unsuitable for
proteins that are reversibly unfolded, or those that are
likely to become reversibly unfolded upon mutation [24],
thus leading to false positives. To enable a more direct
screen for protein stability, the measurement of protein
denaturation curves using tryptophan fluorescence in
microplates has been explored [25]. The results have
shown that using autotitration of denaturant directly into
the microwells can yield transition midpoints (C, ;) with
an accuracy of + 0.15 M and a throughput of up to 1000
samples per day. Linkage with automated protein purifi-
cation has the potential to enable application of the
screen to directed evolution libraries.

Screening for improved enzyme activity often leads to loss
of substrate selectivity (or vice versa). The ability to screen
directly for both activity and selectivity would enable
more useful enzyme variants to be found. Recently, a cell-
surface display approach that uses multiparameter flow
cytometry (FACS), demonstrates the benefits of simultane-
ously screening for activity and selectivity, using the E. coli
endopeptidase Omp T as an example [26]. FACS-based
methods permit the screening of up to 107 cells per hour,
enabling large areas of sequence-space to be searched.
Combined with the ability to cell sort based upon two dif-
ferent fluorescent reporters, the authors have shown that
large numbers of enzyme variants can be screened under
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simultaneous positive and negative selection pressures to
obtain protease mutants with both improved activity to
the new Ala-Arg substrate and reduced activity to the Arg-
Arg substrate preferred by wild type. Although the partic-
ular FACS technique used is limited to cell-surface dis-
played proteases, the concept of dual screening in this
manner could potentially be applied to other enzymes
screened by more traditional methods.

The use of selection-based methods has the potential to
identify novel enzyme variants from much larger libraries
(10°-1013 variants), than for screening methods (up to
10°-107) and have been reviewed in detail [21,27,28].
Consequently, deeper searches of sequence-space can be
performed to access better enzyme variants. Selection of
enzymes has been achieved using complementation of
the deleted activities in auxotrophic strains [29], enrich-
ment of active beta-lactamase from a background of an
inactive point mutant by ribosome display and selection
for binding of a mechanism-based inhibitor [30], enrich-
ment of phage display libraries by affinity capture of the
phage-bound turnover product [31], and enrichment of
phage display libraries by selection for transition-state
analogue or suicide inhibitor binding [32-34]. While
genetic selection with auxotrophs is limited to the range
of activities found to be essential to survival of the host
cells, display methods have to potential to explore more
novel activities perhaps not previously found in Nature as
they rely mostly on the design of good transition-state
analogues (TSA) or suicide inhibitors for the desired activ-
ity. However, mechanism-based inhibitors do not neces-
sarily represent a full catalytic turnover, and TSA structures
may not accurately reflect the true transition state struc-
ture in the desired reaction mechanism. Recently, selec-
tion for a complete turnover has been achieved using
phage display [35]. The product formed after phosphatase
turnover is spontaneously converted into an electrophilic
reagent that can capture the nearby phage particle. While
this approach has enabled significant enhancement of cat-
alytic activity compared to the TSA binding methods it is
still to be seen how generally applicable such methods can
become and will presumably require a good deal of inven-
tive chemistry to identify suitable capture reagents that
spontaneously form after the turnover of other desired
reactions.

Computational approaches for enzyme
evolution and design

The last two years have seen a revolution in the use of
computational approaches to search sequence space in a
combinatorial manner that is analogous to experimental
screening of directed evolution libraries. Previously, com-
putational design was used to eliminate the vast propor-
tion of sequences that were incompatible with the protein
fold, before experimentally screening the remaining vari-
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ants for improved activity [36]. The introduction of new
activity into protein scaffolds was also achieved using the
careful placement of potentially catalytic residues into
models and the computational search of variants with
improved binding affinity to high-energy reaction inter-
mediates [37,38]. Since these groundbreaking efforts, the
use of computational design has expanded to include the
thermostabilization of enzymes [39] and the redesign of
an enzyme active-site for improved catalytic activity [40].
As computational processing power continues to increase,
and protein modelling algorithms become further
refined, computational design should soon be capable of
tackling more complex enzyme mechanisms and also of
dramatically refining experimental library approaches.

Directed evolution of metabolic pathways

The use of whole cell biocatalysts potentially enables
novel molecular synthesis via entire metabolic pathways,
involving multiple enzymes. Consequently, directed evo-
lution could also be applied to natural or engineered met-
abolic pathways, multiple enzyme systems (mini-
pathways), and even whole organisms [41]. The directed
evolution of the three-enzyme arsenate resistance path-
way in E. coli, for increased resistance to arsenate, was the
first example of using DNA shuffling within a metabolic
pathway [42]. Since then, the approach has been com-
bined with that of metabolic engineering to obtain
entirely new pathways and products. For example, carote-
noids can be synthesised in E. coli by expression of genes
from the isoprenoid pathways of Archaeoglobus fulgidus
and Agrobacterium aurantiacum. Directed evolution was
successfully applied to optimize the expression level of
the geranylgeranyl diphosphate (GGPP) synthase gene,
increasing the production of astaxanthin [43]. In parallel
work, neurosporene was produced by co-exression of iso-
prenoid pathway genes from R.sphaeroides, in E.coli.
Directed evolution of the R.sphaeroides phytoene desatu-
rase yielded variants capable of producing lycopene [44].
A similar independent study yielded a metabolically engi-
neered E. coli that could produce lycopene. DNA shuffling
of the phytoene desaturase genes from E. uredovora and E.
herbicola resulted in variants of E. coli capable of tetrade-
hydrolycopene production. Further extension of the path-
way with shuffled lycopene cyclase (crtY) genes from E.
uredovora and E. herbicola yielded the production of toru-
lene [45]. Previously unknown C-45 and C-50 caroten-
oids have also been synthesised by directed evolution of
the C-30 carotenoid synthase (crtM) gene [46]. More
recently, a carotenoid desaturase (CrtOx) homolog from
S. aureus has been coexpressed in the previously evolved
tetradehydrolycopene producing strain, to yield the C-40
carotenoid tetradehydrolycopendial [47].

The directed evolution of enzymes within metabolically
engineered pathways can benefit product yields via a
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number of mechanisms, including the reduction of prod-
uct inhibition at a key enzyme step. Metabolic engineer-
ing has been used to enhance glucosamine production in
E. coli by 15-fold to 60 mg L1 [48]. The directed evolution
by error-prone PCR of the overexpressed glucosamine syn-
thase gene (GImS), and screening for reduced product
inhibition by glucosamine-6-P, yielded an E. coli strain
capable of producing glucosamine to 17 g L-1.

Conclusion

Directed evolution using genetic techniques has led the
way for engineering altered proteins during the last dec-
ade, yet there is still considerable scope for developing
experimentally simpler and also more efficient techniques
and strategies. Recent advances have addressed the issue
of library redundancy in terms of the numbers of unique
sequences as a function of mutation frequency, and also
in terms of focussing random mutagenesis to regions of
enzymes more likely to elicit the desired effect. An alterna-
tive to improving such library quality is to screen larger
libraries by more efficient means. The power of cell sur-
face-display techniques for the selection of novel enzymes
is greatly improving the library size and hence the
sequence space that can be searched. The ability of this
method to perform multiple simultaneous measurements
will also potentially improve the quality and usefulness of
the enzyme variants isolated from libraries. The use of
phage- and ribosome-display methods also has the poten-
tial to search much larger variant libraries. While, mecha-
nisms for the affinity-based capture of active enzyme
variants are continually being developed and improved,
there is still some way to go in widening the general appli-
cability of these methods to more useful enzyme activi-
ties.

Computational approaches are also improving rapidly
and will become very useful in either creating novel
enzymes as starting points for directed evolution, or for
defining smarter libraries that contain fewer redundant
enzyme variants. While for simple reactions the capability
of computational methods is approaching that of genetic
techniques, there is still considerable effort required to
extend its use towards obtaining novel enzymes with
more complex catalytic mechanisms.

Finally, advances in the metabolic engineering of whole
cell biocatalysts is stimulating the use of directed evolu-
tion to improve metabolic pathways. Considerable
progress has been made, especially in the synthesis of
novel carotenoids. This area also opens up new targets for
directed evolution, such as the reduction of product inhi-
bition on a single enzyme which in turn improves the
yield of product from the whole pathway, as demon-
strated for the production of glucosamine.
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List of abbreviations
CAST Combinatorial active-site saturation

DHEFR Dihydrofolate reductase

FACS Fluorescence-activated cell sorting

GGPP Geranylgeranyl diphosphate

PCR Polymerase chain reaction

QCMS QuikChange multi site

TSA Transition state analogue
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