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Deep learning classification 
of early normal‑tension 
glaucoma and glaucoma suspects 
using Bruch’s membrane 
opening‑minimum rim width 
and RNFL
Sat byul Seo1 & Hyun‑kyung Cho2,3*

We aimed to classify early normal‑tension glaucoma (NTG) and glaucoma suspect (GS) using Bruch’s 
membrane opening‑minimum rim width (BMO‑MRW), peripapillary retinal nerve fiber layer (RNFL), 
and the color classification of RNFL based on a deep‑learning model. Discriminating early‑stage 
glaucoma and GS is challenging and a deep‑learning model may be helpful to clinicians. NTG accounts 
for an average 77% of open‑angle glaucoma in Asians. BMO‑MRW is a new structural parameter that 
has advantages in assessing neuroretinal rim tissue more accurately than conventional parameters. 
A dataset consisted of 229 eyes out of 277 GS and 168 eyes of 285 patients with early NTG. A deep‑
learning algorithm was developed to discriminate between GS and early NTG using a training set, 
and its accuracy was validated in the testing dataset using the area under the curve (AUC) of the 
receiver operating characteristic curve (ROC). The deep neural network model (DNN) achieved highest 
diagnostic performance, with an AUC of 0.966 (95%confidence interval 0.929–1.000) in classifying 
either GS or early NTG, while AUCs of 0.927–0.947 were obtained by other machine‑learning models. 
The performance of the DNN model considering all three OCT‑based parameters was the highest 
(AUC 0.966) compared to the combinations of just two parameters. As a single parameter, BMO‑MRW 
(0.959) performed better than RNFL alone (0.914).

Glaucoma is caused by the injury of retinal ganglion cells (RGC) and their axons, bringing about defects in the 
retinal nerve fiber layer (RNFL) and the neuroretinal rim (NRR) that can result in visual field (VF)  defects1. 
Detection of early structural damage is more important than detecting a functional defect in the diagnosis of 
early  glaucoma2,3 because a detectable structural defect may occur ahead of visual functional loss at an individual 
 level4–6. As structural change is minimal in glaucoma suspect or glaucoma of early stage, the results of different 
structural tests may not demonstrate consistent findings. For example, optical coherence tomography (OCT) 
parameters of Bruch’s membrane opening-minimum rim width (BMO-MRW) and peripapillary RNFL thick-
ness may show discrepancies. Therefore, discriminating early-stage glaucoma from glaucoma suspect (GS) is 
challenging.

The clinical interpretation of abnormalities of RNFL and BMO-MRW frequently depend on the diagnostic 
report of color code classification. This diagnostic classification categorizes the measurement values into three 
classes of different color (green: within normal limits, yellow: borderline, and red: outside normal limits) based 
on the normative data built in the OCT device. High specificity was noticed in the diagnostic color code clas-
sification report because the first and the fifth percentile of the normative RNFL thickness/BMO-MRW data 
were employed in determining the abnormalities of RNFL thickness/BMO-MRW7. We previously reported on 
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the discrepancy between BMO-MRW and RNFL color code  classification8. We found that BMO-MRW may show 
a normal classification, whereas RNFL may show an abnormal classification in cases of large disc and myopia, 
which suggests the clinical usefulness of BMO-MRW in early glaucoma or glaucoma suspect when the RNFL 
color code classification may show false-positive  findings8. Glaucoma of early stage is especially important since 
the decision to initiate lifetime treatment should be made. Moreover, an incorrect diagnosis of glaucoma may 
lead to unnecessary lifetime treatment.

It is more challenging to discriminate the early stage of glaucoma from glaucoma suspect or normal subjects 
than the advanced stage of  glaucoma9–11. With the recent remarkable progress in the field of artificial intelligence 
(AI), the deep-learning method may be beneficial to aid clinicians in this  situation12–14. However, distinguishing 
early glaucoma from healthy or GS is still difficult, even with deep learning, and the studies on early glaucoma 
are still scarce. The diagnostic performance of discriminating early glaucoma from normal controls in previous 
studies ranged from an area under the receiver operating characteristic curves (AUROCs) of 0.83014 to 0.89612, 
and in another study from 0.77 to 0.97, depending on the input maps in classifying early glaucoma from healthy/
glaucoma  suspects15. Moreover, it may be more challenging to distinguish early glaucoma from GS than from 
a normal control.

Recently, Bruch’s membrane opening-minimum rim width (BMO-MRW) has been presented in the estima-
tion of discs, as a new  parameter16–20. BMO-MRW is measured as the shortest length between the inner open-
ing of the BMO and the internal limiting membrane (Fig. 1A). BMO-MRW offers more correct assessment of 
the NRR than traditional ophthalmic  examination16–18,21. Recent studies have also reported that BMO-MRW 
showed better diagnostic performance of glaucoma than preexisting NRR  parameters22–24. BMO-MRW has been 
demonstrated to have a stronger correlation with the VF than other disc parameters or  RNFL24,25. Few previous 
studies using deep-learning investigated BMO-MRW for glaucoma diagnosis. One study by Park et al.12 reported 
the diagnostic performance of combined BMO-MRW and RNFL using a neural network for glaucoma but early 
glaucoma was only partly included and they also did not consider the RNFL color code classification.

Normal-tension glaucoma (NTG) is more prevalent in Asians than other races and NTG accounts for the 
majority (mean of 76.3%) of open-angle glaucoma in  Asians26. However, previous deep-learning studies classify-
ing glaucoma and normal subjects rarely included NTG and studies solely on NTG are difficult to find.

In this retrospective cross-sectional study, we aimed to classify early NTG and GS using OCT imaging-based 
parameters including the new parameter, BMO-MRW, and peripapillary RNFL, along with the color classification 
of RNFL, based on a new model of deep-learning. We investigated the diagnostic performance of all combined 
three parameters along with each parameter alone regarding global and six Garway-Heath sectors using deep 
learning method. We aimed to assess the clinical usefulness of the new parameter, BMO-MRW, in combination 
with the conventional parameter, RNFL, in the diagnosis of early NTG. We employed a deep-learning model to 
integrate all available data from the OCT images, which may be difficult for general physicians.

Results
Baseline characteristics of the datasets. A total of 397 eyes (397 subjects) with either GS (229 
subjects) or early NTG (168 subjects) were included in the final analysis. The mean age of the subjects with 
GS was 47.68 ± 12.99  years, which was significantly younger than that of the subjects with early NTG at 
55.95 ± 11.72  years (p < 0.001). The baseline IOP was not significantly different between GS and early NTG, 
which was 14.94 ± 2.60 mmHg and 14.76 ± 2.60 mmHg, respectively.

Figure 1.  Deep neural network architecture. (A) OCT from patients. The upper row indicates a representative 
glaucoma suspect case and the lower row indicates that of early NTG. Fundus photo is shown on the left, a 
BMO-MRW image in the middle, and an RNFL image in the right from the same patient. Note that the color 
code classification of BMO-MRW and RNFL did not correspond with each other in this early stage of glaucoma 
or GS. (B) Converting image to text. Numeric values extracted from BMO-MRW and RNFL images of subjects 
with GS and early NTG. (C) Input batch. CSV file generated as input data including class (either GS or early 
NTG). (D) Deep neural network. Twenty-five parameters as input in the layer. The 1st hidden layer and the 2nd 
hidden layer had 10 neurons with activation functions as a rectified linear unit (ReLU), the 3rd hidden layer 
had five neurons with an activation function as a ReLU in the fully connected dense layer. The output layer 
applied sigmoid as an activation function return from the model to be in the range from 0 to 1. (E) Diagnosis. 
The trained model diagnoses the subject as either early NTG (≥ 0.5) or GS (< 0.5). GS: glaucoma suspect; NTG: 
normal-tension glaucoma.
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The mean deviation (MD) for GS, − 0.80 ± 2.17 dB, was significantly higher than that for early NTG at 
− 2.86 ± 2.53 dB (p < 0.001). The pattern standard deviation (PSD) and visual field index (VFI) were also signifi-
cantly different between GS and early NTG (all p < 0.001). The central corneal thickness (CCT) and spherical 
equivalent were significantly different between GS and NTG, which showed more myopic and thicker corneas 
for GS than early NTG (all p < 0.045). The detailed baseline characteristics are shown in Table 1. Pre-perimetric 
glaucoma was included in 33 subjects (19.60%) in the early NTG group. Table 2 shows the values of BMO-MRW 
and RNFL of the subjects with GS and early NTG. The global BMO-MRW values were significantly different 
between GS and early NTG (263.30 ± 41.57 um and 206.77 ± 43.96 um, respectively, p < 0.001). Six sectors of the 
BMO-MRW (T, TS, TI, N, NS, and NI) values were also significantly different between GS and NTG, as shown 
in Table 2. The mean global RNFL thickness of the patients with GS was 102.10 ± 10.05 µm, and that of the early 
NTG patients was 82.71 ± 13.14 µm (p < 0.001). The RNFL thickness of six sectors (T, TS, TI, N, NS, and NI) was 
also significantly different between the subjects with GS and early NTG (p < 0.001). Regarding global RNFL color 
code classifications, 94.3%, 4.4%, and 1.3% of the GS patients and 38.7%, 20.2%, and 41.4% of the early NTG 
patients showed within normal limits (WNL), borderline (BL), and outside normal limits (ONL), respectively. 
The majority of subjects with GS (over 200 out of 226 subjects) were classified as WNL for all regions of RNFL 
classifications as shown in Fig. 2A. On the other hand, Fig. 2B showed that for early NTG, ONL was accounted 
for higher proportion than that of WNL and BL in RNFL G and RNFL TI. Six sectors (T, TS, TI, N, NS, and 
NI) of the RNFL color code classification for GS and early NTG also had significantly different proportions of 
WNL, BL, and ONL (p < 0.05).

Correlation analysis of OCT‑based parameters for classifying GS and NTG. We established 
a statistical relationship of pairwise parameters, which included the class (GS = 0, early NTG = 1), gender, the 
OCT-based parameters of BMO-fovea angle, BMO Area, BMO-MRW (global, T, TS, TI, N, NS, and NI), RNFL 
(global, T, TS, TI, N, NS, and NI), and the RNFL color code classification (global, T, TS, TI, N, NS, and NI). 
Figure 3A shows the heatmap of Pearson’s correlations with pairwise sub-parameters in the range from -1 to 1. 
RNFL TI, RNFL global, BMO-RMW TI, RNFL classification TI, and RNFL classification global showed − 0.7, 
− 0.64, − 0.64, 0.67, and 0.6 as Pearson’s coefficients with the class (GS = 0, early NTG = 1), respectively. This 
implies that RNFL TI, RNFL global, BMO-RMW TI, RNFL classification TI, and RNFL classification global were 
significant factors correlated with discriminating the class of either GS or early NTG. In addition, RNFL global 
has positive correlations with the RNFL TI (Pearson’s coefficient = 0.77), RNFL TS (Pearson’s coefficient = 0.74), 
and RNFL NI (Pearson’s coefficient = 0.71) values. Figure 3B shows scatterplots for the joint relationship and 
the univariate distribution of BMO-MRW parameters with different categorical classifications in blue (GS) and 
orange (early NTG), respectively. BMO-MRW TI, TS, and global discriminated the classes of GS (blue) and early 
NTG (orange). The subjects with GS and early NTG were clearly discriminated in the order of BMO-MRW TI, 
TS, and global sub-parameters, as shown in Fig. 3B. There were no significant differences between the two classes 
in terms of age, gender, and BMO-fovea angle. BMO-MRW global, IT, TS NI, and RNFL thickness global, TI, 
and TS were significant key parameters in distinguishing between GS and early NTG.

Diagnostic performance of discriminating early NTG and GS. We evaluated the performance of 
machine-learning models, as well as DNN, in the testing dataset. In the ROC curves, the DNN model provided 
the highest AUC of 0.966 (95% confidence interval [CI] 0.929–1.000) in classifying either GS or early NTG. 
The AUCs of logistic regression with a random tree (RT + LR), random forest (RF), random forest with logistic 
regression (RF + LR), gradient-boosting tree (GBT), gradient-boosting tree with logistic regression (GBT + LR) 
were 0.929 (95% CI 0.866–0.992), 0.947 (95% CI 0.898–0.996), 0.929 (95% CI 0.857–1.000), 0.927 (95% CI 
0.864–0.990), and 0.929 (95% CI 0.857–0.993), respectively. The ROC curves for each model are shown in 
Fig. 4A.

Table 1.  Baseline characteristics of glaucoma suspect and early NTG subjects. NTG, normal tension 
glaucoma; GS, glaucoma suspect; OCT, optical coherence tomography; D, diopters; CCT, central corneal 
thickness; IOP, intraocular pressure; VFI, visual field index; MD, mean deviation; PSD, pattern standard 
deviation. Results comparison with GS and early NTG are done with Wilcoxon signed-rank test, bold font 
indicates significant p values (p < 0.05).

Characteristics GS Early NTG p value

Number of subjects 229 eyes (229 subjects) 168 eyes (168 subjects)

Mean age (years) 47.68 ± 12.99 55.95 ± 11.72 < .001

Female gender (%) 123 (54.18%) 75 (44.1%) 0.068

Family history of glaucoma (%) 13 (5.73%) 17 (9.94%) 0.072

Spherical equivalent (D) − 1.97 ± 2.93 − 1.47 ± 2.68 0.045

CCT (um) 547.13 ± 39.07 537.30 ± 56.50 0.014

Baseline IOP (mmHg) 14.94 ± 2.60 14.76 ± 2.60 0.557

VFI (%) 98.51 ± 4.14 93.25 ± 6.89 < .001

MD (dB) − 0.80 ± 2.17 − 2.86 ± 2.53 < .001

PSD (dB) 2.16 ± 1.39 4.69 ± 3.11 < .001
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The DNN model for the diagnosis, considering all OCT-based parameters with BMO-MRW, RNFL thick-
ness, and RNFL color code classification provided the AUC of 0.966 (95% CI 0.929–1.000) and the accuracy of 
96.2%. For the DNN model with BMO-MRW and RNFL thickness without RNFL color classification, the AUC 
was 0.943 (95% CI 0.894–0.992) with the accuracy of 87.5%. The AUC was 0.959 (95% CI 0.921–0.997) for the 
DNN model considering only BMO-MRW and the accuracy was 86.3%. For the performance of the DNN model 
with RNFL thickness and RNFL color code classification, the AUC was 0.934 (95% CI 0.868–1.000) with the 
accuracy of 91.2%. For the DNN model considering the RNFL thickness only without color code classification, 
the AUC was the lowest as 0.914 (95% CI 0.850–0.979) and the accuracy was 85.0%. The ROC curves of DNN 
with different parameters in the testing dataset are shown in Fig. 4B. The AUC of the DNN model with all OCT-
based parameters (95% CI 0.929–1.000) was the highest compared to a single parameter or the combination of 
just two parameters (0.914 – 0.959). The accuracy was also the highest (96.2%) when all OCT-based parameters 
were considered for analysis. In addition, as a single parameter, the AUC of the DNN model considering the 
BMO-MRW only (0.959 [95% CI 0.921–0.997]) was higher than that of the model with only RNFL thickness 
without RNFL color classification (0.914 [95% CI 0.850–0.979]) or with RNFL thickness and RNFL color clas-
sification (0.934 [95% CI 0.868–1.000]).

Discussion
To the best of our knowledge, the current study was the first to investigate the diagnostic performance of the new 
parameter, BMO-MRW, along with RNFL and its color code classification, in discriminating early NTG and GS 
using a deep-learning model. We found that the diagnostic performance of the DNN model was outstanding 
along with the other machine-learning models in classifying either early NTG or GS. The DNN model provided 
the highest AUC (0.966) compared to other machine-learning models (0.927–0.947). We also found that using all 
three parameters of BMO-MRW and RNFL combined with the RNFL color code classification demonstrated the 
highest diagnostic performance (0.966) compared to a single parameter or the combination of just two param-
eters. As a single parameter, BMO-MRW (0.959) demonstrated the higher diagnostic performance than that of 

Table 2.  Bruch’s membrane opening-minimum rim width and retinal nerve fiber layer of the included 
subjects. BMO-MRW, Bruch’s membrane opening-minimum rim width. RNFL, retinal nerve fiber layer: 
G, global. T, temporal. TS, superotemporal. NS, superonasal. N, nasal. NI, inferonasal. TI, inferotemporal. 
Statistical analysis between GS and early NTG for BMO-MRW and RNFL thickness was done by Wilcoxon 
signed-rank test, Bold font indicates significant p values (p < 0.05); RNFL classification: WNL, within normal 
limits. BL, borderline. ONL, outside normal limits. Statistical analysis between GS and early NTG was done by 
Mann–Whitney U Test for RNFL classification. Bold font indicates significant p values (p < 0.05).

Characteristics

Values

p valueGS (n = 229) Early NTG (n = 168)

BMO-MRW

BMO-fovea angle° − 5.43 ± 3.19 − 5.70 ± 3.19 .097

BMO area  (mm2) 2.45 ± 0.53 2.30 ± 0.55 .020

BMO-MRW G (um) 263.30 ± 41.57 206.77 ± 43.96 < .001

BMO-MRW T 192.97 ± 41.16 159.54 ± 38.02 < .001

BMO-MRW TS 267.89 ± 43.06 206.40 ± 60.51 < .001

BMO-MRW TI 295.75 ± 53.04 196.31 ± 65.92 < .001

BMO-MRW N 275.96 ± 55.72 228.40 ± 58.06 < .001

BMO-MRW NS 291.02 ± 57.55 234.69 ± 62.61 < .001

BMO-MRW NI 321.98 ± 54.94 236.53 ± 63.80 < .001

RNFL thickness

RFNL G (µm) 102.10 ± 10.05 82.71 ± 13.14 < .001

RFNL T 78.63 ± 12.24 66.51 ± 13.17 < .001

RFNL TS 142.62 ± 21.31 112.09 ± 29.72 < .001

RFNL TI 156.01 ± 19.66 101.73 ± 35.21 < .001

RFNL N 77.58 ± 15.63 68.21 ± 14.57 < .001

RFNL NS 114.78 ± 25.65 100.83 ± 27.29 < .001

RFNL NI 113.61 ± 23.78 91.91 ± 20.14 < .001

RFNL classification (WNL/BL/ONL)

RFNL G (µm) WNL (94.3%), BL (4.4%), ONL (1.3%) WNL (38.7%), BL (20.2%), ONL (41.4%) < .001

RFNL T WNL (97.8%), BL (1.7%), ONL (0.4%) WNL (85.1%), BL (7.1%), ONL (7.7%) .049

RFNL TS WNL (95.6%), BL (2.6%), ONL (1.7%) WNL (63.7%), BL (15.5%), ONL (20.8%) < .001

RFNL TI WNL (93.4%), BL (5.7%), ONL (0.9%) WNL (33.9%), BL (7.7%), ONL (58.3%) < .001

RFNL N WNL (86.9%), BL (8.7%), ONL (4.4%) WNL (70.8%), BL (15.5%), ONL (13.7%) < .001

RFNL NS WNL (94.3%), BL (3.5%), ONL (2.2%) WNL (76.2%), BL (15.5%), ONL (8.3%) < .001

RFNL NI WNL (90.0%), BL (8.3%), ONL (1.7%) WNL (77.4%), BL (15.5%), ONL (7.1%) .002
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RNFL alone (0.914) or RNFL with color code classification (0.934). Among the six Garway-Heath sectors, the 
inferotemporal sector was found to be useful in discriminating between early NTG and GS. The inferotemporal 
sector of the RNFL, BMO-MRW, and the color code classification of the RNFL all showed significant correlations 
with the class of early NTG or GS.

BMO-MRW from spectral-domain OCT has become increasingly available to clinicians and offers advantages 
compared to previous standard morphometric optic nerve head analysis confocal scanning laser tomographic 
 measurements22–24. BMO-MRW provides a geometrically more accurate assessment of the NRR than preexist-
ing ophthalmic  examination16–18,21. It has been reported that BMO-MRW is advantageous to accurately reflect 
the amount of neural tissue from the optic  nerve27. In our previous study, we reported a discrepancy between 
BMO-MRW and the RNFL color code  classification7. We found that, in cases of large disc and myopia, for which 
glaucoma suspects are frequently referred, BMO-MRW may show a normal classification, whereas RNFL shows 
an abnormal classification. In such cases, BMO-MRW may suggest normal findings when the RNFL color code 
classification shows false-positive findings, which may lead to confusion in clinicians in the diagnosis of early-
stage glaucoma. However, a consensus on the criteria discriminating abnormal from normal BMO-MRW and 
RNFL measurements is lacking. Integrating the assessment of BMO-MRW and RNFL is necessary for the better 
diagnosis of early glaucoma based on these findings. Nevertheless, the integration of these two different param-
eters is neither simple nor easy for human beings, including general physicians other than glaucoma specialists. 
This is where the recent technology of artificial intelligence can help. It has been reported that machine-learning 
classifiers can be beneficial in clinical practice and efficiently improve glaucoma diagnosis for general ophthal-
mologists in the primary eye care setting when there is no glaucoma specialist  available28. The DNN model can 
provide prompt diagnostic results in the clinics after the input of ophthalmic examination data, not requiring a 
few days of analysis. Of course, the decision to treat glaucoma is up to the physician. However, the DNN model 
can suggest a preliminary diagnosis for  reference29. The DNN diagnostic model is more economical and clini-
cally easy to access than other imaging-based CNN diagnostic programs that take days and require expensive 
equipment, such as workstations with graphics processing units (GPUs).

To our knowledge, the color code classification of RNFL has not been evaluated in the deep-learning model 
before. In our study, we included the RNFL color code classification as one of the three parameters. The diagnostic 
performance of RNFL alone (AUC 0.914) was much lower than that of RNFL with its color code classification 
(AUC 0.943) or even BMO-MRW alone (AUC 0.959). The sensitivity of RNFL thickness defined from diagnostic 
color code classification report was compared at higher specificities (between 98.7 and 100%)29. High specifici-
ties were noticed in the color code classification analysis since the first and the fifth percentile of the normative 
RNFL thickness data were employed to determine the RNFL thickness  abnormalities29. Therefore, the RNFL 
color code classification is important in the diagnosis of early glaucoma and it should be considered together 
with RNFL thickness for better diagnostic performance. The color code classification of BMO-MRW has not been 
considered in the present study, because BMO-MRW alone without color code classification was good enough to 
show higher diagnostic performance compared to RNFL alone or RNFL with color code classification. Moreover, 
color code classification for RNFL is a general diagnostic aid already widely used for clinicians. Compared to 
BMO-MRW, which is a relatively a new parameter, adding color code classification of RNFL would more benefit 
the clinical practice in glaucoma diagnosis.

Figure 2.  Proportion of WNL/BL/ONL in the RNFL color code classification of subjects (GS or early NTG). 
(A) RNFL classification (G, T, TS, TI, N, NS, and NI) of GS (n = 229) distributed by WNL/BL/ONL. The 
majority of subjects (over 200 out of 226) with GS were classified as WNL for all regions of RNFL classifications. 
(B) RNFL classification of early NTG (n = 168) distributed by WNL/BL/ONL. The proportion of ONL in RNFL 
G and RNFL TI was higher than that of WNL. RNFL, retinal nerve fiber layer. RNFL classification: WNL, within 
normal limits. BL, borderline. ONL, outside normal limits. RNFL: G, global. T, temporal. TS, superotemporal; 
NS, superonasal; N, nasal; NI, inferonasal; TI, inferotemporal.
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A

Figure 3.  Correlation analysis of OCT-based parameters. (A) Heatmap of pairwise Pearson’s correlations 
between parameters (gender, age, BMO-MRW, RNFL) including class (either GS or early NTG). The negative 
correlations are in purple and the positive correlations in orange. The numbers are correlation coefficients in the 
range from − 1 to 1. RNFL TI, RNFL global, BMO-RMW TI, RNFL classification TI, and RNFL classification 
global showed − 0.7, − 0.64, − 0.64, 0.67, 0.6 Pearson’s coefficients with the class (GS = 0, early NTG = 1), 
respectively. (B) Scatterplots of the joint relationship and univariate distribution of the BMO-MRW parameters. 
The different categorical classifications are shown in blue (GS) and orange (early NTG). Subjects with GS and 
early NTG were clearly discriminated through sub-parameters in the order of the BMO-MRW TI, TS, and 
global. BMO-MRW, Bruch’s membrane opening-minimum rim width. RNFL, retinal nerve fiber layer: G, global. 
T, temporal. TS, superotemporal. NS, superonasal. N, nasal. NI, inferonasal. TI, inferotemporal.
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It is more challenging to discriminate early stage of glaucoma from glaucoma suspect or normal subjects than 
advanced stage of  glaucoma9–11. A previous study by Park et al.12 that investigated BMO-MRW and RNFL for 
glaucoma diagnosis only included 38 subjects with early glaucoma for training, and pre-perimetric glaucoma was 
excluded. Moreover, the diagnostic performance of the neural network by AUROC including both parameters 
was only 0.896 for early glaucoma. Compared to this previous study, our study included entirely early NTG and 
the AUROC was much higher, at 0.966 (95% CI 0.929–1.000), when BMO-MRW, RNFL, and its color code clas-
sification were considered. One more point is that we included an even earlier stage of glaucoma, pre-perimetric 
glaucoma. Thirty-three patients (19.60%) with pre-perimetric glaucoma in the early NTG group were included in 
our study. The diagnostic outcome of our DNN model for the very early stage of glaucoma included in our study 
was remarkable compared to the previous study. In another study that used hybrid deep-learning to distinguish 
healthy suspects with early glaucoma, wide-field OCT scans were  used15. The accuracy ranged from 63.7 to 
93.1%, depending upon the input map. The accuracy varied widely in their study and the accuracy of our DNN 
model with all parameters was 96.2%. The AUROC of all combined OCT images was 0.95 in their  study15. The 
diagnostic performance of our DNN model was comparable to a previous study that evaluated the early stage 
of glaucoma using OCT images. Another recent study using deep-learning and transfer learning to diagnose 
early-onset glaucoma (MD of > − 5 dB) from macular OCT images reported an AUROC of 0.93730, which was 

Figure 3.  (continued)
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less than that of our study (0.966). However, it is not clear that pre-perimetric glaucoma patients were included 
in these previous  studies15,30 as it was not specifically described.

In correlation analysis of the OCT-based parameters for classifying GS and NTG, the inferotemporal sector, 
followed by the superotemporal sector of BMO-MRW and RNFL, showed significant correlations among the six 
Garway-Heath sectors. The site of the initial glaucomatous injury is correlated with the structure of the lamina 
cribrosa. It is well-recognized that the key site of glaucomatous damage is the lamina  cribrosa31–34. Initial damage 
appears more often at the inferior and superior portion of the  axons35 because a larger solitary-pore area in the 
lamina cribrosa increases glaucoma susceptibility in the inferior area, followed by the superior optic disc  area36,37. 
For this structural vulnerability, glaucomatous change occurs mainly in the inferotemporal sector, followed by 
the superotemporal sector at the beginning of the disease. Therefore, these sectors, especially the inferotemporal 
sector, is important in the diagnosis of early glaucoma and also offers better diagnostic ability than other sectors.

In the Asian population, NTG consists primarily (76.3%) of patients with open-angle glaucoma, as described 
in population-based glaucoma-prevalence studies in  Asians26. Therefore, discriminating NTG from glaucoma 
suspect is important in clinical practice in Asians. It applies to Asian countries and also to other countries world-
wide with a significant Asian population proportion. Since deep-learning models regarding data with NTG are 
rare, the present study may have a significant meaning by adding information for reference and future studies.

The present study had some limitations. First, possible limitations of the present study exist in its retrospective 
nature. We included only subjects who had had both BMO-MRW and RNFL scans and had a reliable quality of 
both structural tests. The effect of such subject selection on our results is not known. Second, it was a hospital-
based design carried out at a referral university hospital of the province, and not a population-based study. The 
included subjects might not represent the entire normal population. Another limitation is that this study included 
only Korean patients. The results of our study, including NTG, may not apply to other ethnic groups or other 
types of glaucoma. Third, the relatively small sample size of this study should also be taken into consideration. 
However, nearly 400 subjects with early NTG and GS were included in this study and this number is not insuf-
ficient to train and test diagnostic performance to classify a single disease from single device data. Lastly, in this 
study, OCT image-based analysis was conducted with numeric data extracted from the images, not direct image 
analysis using convolution neural networks (ConvNets). However, it is still meaningful that clinicians can obtain 
quick results and get aid in diagnosis by applying deep-learning models with free open-sources, compared to 
that most image analyses using ConvNets are yet less economical to achieve high accuracy. We may consider 
developing a program for the preliminary diagnosis from direct OCT-image analysis using ConvNets with the 
accuracy of its performance in the future study.

In conclusion, our DNN model showed high diagnostic performance considering all OCT-based parameters, 
including the new parameter of BMO-MRW along with RNFL and its color code classification, in discriminating 
early NTG and GS. BMO-MRW demonstrated higher diagnostic performance than other single parameters of 
RNFL or RNFL combined with its color code classification. The inferotemporal sector, among the six Garway-
Heath sectors, was found to be most useful in diagnosing early NTG. Our DNN model may be beneficial in 
clinical practice in the diagnosis of early glaucoma, which is more challenging than that of advanced glaucoma. 
Since our DNN model provides a prompt output, it may be more useful in the primary eye care setting where 
glaucoma specialists are not available. A further multi-center study with a large patient number is required to 
draw more definitive conclusions.

Materials and methods
Ethics statement. This retrospective observational, cross-sectional study was performed according to the 
tenets of the Declaration of Helsinki. It was approved by the Institutional Review Board (IRB) of Gyeongsang 
National University Changwon Hospital, Gyeongsang National University School of Medicine. The requirement 
for informed consent was exempted from the IRB of Gyeongsang National University Changwon Hospital due 
to its retrospective nature.

Subjects. Among 277 patients with GS and 285 patients with normal-tension glaucoma (NTG) who were 
evaluated between the period of February 2016 and April 2019 in a glaucoma clinic at Gyeongsang National 
University Changwon Hospital, a total of 397 eyes (397 subjects) with either GS (229 subjects) or early NTG 
(168 subjects), were included. Only those subjects with both reliable BMO-MRW and RNFL results and those 
who met the diagnosis criteria below were included. Assessment of early NTG or GS was evaluated by a single 
glaucoma specialist (H-k Cho) with consistent definition criteria.

A diagnosis of NTG was made when a patient with an IOP of ≤ 21 mmHg without treatment had findings of 
glaucomatous optic disc damage and corresponding VF defects, an open-angle observed by gonioscopic exami-
nation, and no underlying cause for optic disc damage aside from  glaucoma38. Early NTG was determined as 
VF test results of mean deviation (MD) > − 6.0 dB. Pre-perimetric glaucoma was included in the present study to 
include the very early stage of glaucoma. Pre-perimetric glaucoma was defined as cases showing definite localized 
RNFL defects on red-free fundus photography with a confirmed corresponding RNFL defect in the OCT map 
of RNFL but within normal limits on Humphrey standard automated perimetry.

GS was defined as those being followed on the basis of suspicious clinical features but not conclusive for 
glaucoma, including suspicious optic disc or RNFL changes; significant systemic, ocular or family risk factors for 
glaucoma; or suspicious visual field results and intraocular pressure within normal limits (defined as < 21 mmHg 
on applanation tonometry). By definition, none of the glaucoma suspects were receiving treatment for glaucoma 
and treated ocular hypertensive patients were  excluded39. Ocular hypertensive patients without treatment were 
also excluded. If both eyes met the inclusion criteria, only one eye was randomly selected for the study.
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A normal classification shows green, whereas an abnormal classification shows yellow (borderline) or red 
(outside normal limits) on Spectralis spectral-domain optical coherence tomography (Glaucoma Module Pre-
mium Edition, Heidelberg Engineering, Germany). All subjects underwent standard ophthalmic examinations 
including Spectralis spectral-domain OCT and standard automated perimetry (HFA model 840; Humphrey 
Instruments Inc., San Leandro, CA, USA).

The exclusion criteria are as follows: poor image scans due to eyelid blinking or bad fixation, history of 
any intraocular surgery except for uneventful phacoemulsification, history of optic neuropathies other than 
glaucoma or an acute angle-closure crisis that could influence the thickness of the RNFL or BMO-MRW (e.g., 
optic neuritis, acute ischemic optic neuritis), and retinal disease accompanied by retinal swelling or edema and 
subsequent RNFL or BMO-MRW swelling. Subjects were not excluded by refractive error or axial length, and 
optic disc size for this study.

Optical coherence tomography. OCT imaging of the spectral-domain was performed using the Glau-
coma Module Premium Edition. Twenty-four radial B-scans were obtained for BMO-MRW. For peripapillary 
RNFL thickness, a scan circle of 3.5 mm in diameter among three scan circles (3.5, 4.1, and 4.7 mm in diam-
eter) was used. Well-centered scans with correct retinal segmentation and quality score > 20 were accepted. Data 
acquisition and OCT analyses were performed according to the individual eye-specific axis (FoBMO axis), the 
axis between the BMO center and the fovea. FoBMO axis could lead to more accurate sectoral analysis consider-
ing cyclotorsion of individual eyes and more accurate comparison with normative data than the conventional 
method.

Perimetry. We used a Humphrey Field Analyzer (HFA model 840; Humphrey Instruments Inc.) for perime-
try with a central 30-2 program of Swedish Interactive Threshold Algorithm standard strategy. A reliable VF test 
had to fulfill three criteria: fixation loss less than 20%; false-positive rate < 15%; and a false-negative rate < 15%.

Data processing. The dataset consisted of 229 eyes out of 277 GS (GS group) and 168 eyes of 285 patients 
with early NTG (early NTG group). The OCT-based images of 397 patients from BMO-MRW and RNFL were 
converted into numeric values, as shown in Fig. 1A,B. Then, we generated input data with two different classes, 
GS and early NTG, and each class consisted of sub-parameters, such as age and gender, and three main quan-
tified ocular parameters, BMO-MRW, RNFL thickness, and the RNFL color code classification as shown in 
Fig. 1C. The input data were randomly divided into a training set and a testing set using programming language 
Python version 3.6.8 (https ://www.pytho n.org/). Out of 297 eyes, 217 eyes were used to construct a training set 
(80%) and 80 eyes as a test set (20%).

A B

Figure 4.  The area under the curve (AUC) of receiver operation characteristic curve (ROC) comparison. (A) 
evaluates ROC/AUC for the performance of machine learning models in testing dataset. Note that the DNN 
model provides the highest AUC [0.966 (95% CI 0.929–1.000)] in classifying either GS or early NTG, and other 
machine learning models showed AUCs in the range of 0.927–0.947. (B) evaluates ROC/AUC of DNN model 
with different set of OCT based parameters to evaluate the performance of diagnosis in testing dataset. Using 
all three parameters of BMO-MRW and RNFL combined with RNFL color code classification [AUC 0.966 (95% 
CI 0.929–1.000)] demonstrated the highest diagnostic performance than a single parameter or combination 
of just two parameters. As a single parameter, BMO-MRW [AUC 0.959 (95% CI 0.921–0.997)] demonstrated 
higher diagnostic performance than RNFL alone [AUC 0.914 (95% CI 0.850–0.979)] or even RNFL with color 
code classification [AUC 0.934 (95% CI 0.868–1.000)]. DNN: deep neural network. RT + LR: random trees with 
logistic regression. RF: random forest. RF: random forest with logistic regression. GBT: gradient boosted trees. 
GBT + LR: gradient boosted trees with logistic regression. BMO-MRW: Bruch’s membrane opening-minimum 
rim width. RNFL: retinal nerve fiber layer. BMO-MRW + RNFL: BMO-MRW and RNFL thickness with RNFL 
color code classification. BMO-MRW + RNFL w/o classification: BMO-MRW and RNFL thickness without 
RNFL color code classification. BMO-MRW: BMO-MRW only. RNFL: RNFL only with RNFL color code 
classification. RNFL w/o classification: RNFL thickness without RNFL color code classification.

https://www.python.org/
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Deep neural network architecture. A deep neural network (DNN) is a supervised classifier that con-
tains multiple layers between the input and output  layers40. Deep-learning technologies have led to the develop-
ment of neural network (NN) architectures that have been shown to be useful classification  tasks41. To discrimi-
nate GS from early NTG, we proposed a deep neural network model, as shown in Fig. 1D. We trained and tested 
our model built on Keras (https ://keras .io/), the open-source neural network API, written in Python running 
on TensorFlow (https ://www.tenso rflow .org/)42. Our model consisted of the input layer, three hidden layers, and 
the output layer. The input layer received data with 25 sub-parameters based on three main quantified ocular 
parameters: BMO-MRW, RNFL thickness, and the RNFL color code classification. The first and second hidden 
layer had 10 neurons with an activation function of a rectified linear unit (ReLU), and the third hidden layer had 
five neurons with a ReLU in the fully connected dense layer. The output layer applying a sigmoid function as an 
activation function returned to be in the range from 0 to 1, thus the model predicted the probability of glaucoma, 
as shown in Fig. 1E.

We considered additional approaches to diagnose glaucoma with other machine-learning models with (i) a 
DNN, (ii) logistic regression with a random tree (RT + LR), (iii) a random forest (RF), (iv) a random forest with 
logistic regression (RF + LR), (v) a gradient-boosting tree (GBT), and (vi) a gradient-boosting tree with logistic 
regression (GBT + LR). We also evaluated additional approaches with various combinations of parameters to 
diagnose glaucoma: (i) BMO-MRW and RNFL thickness with RNFL color code classification, (ii) BMO-MRW 
and RNFL thickness without RNFL color code classification, (iii) BMO-MRW only, (iv) RNFL thickness with 
RNFL color code classification only, and (v) only RNFL thickness without RNFL color code classification.

Statistical analysis. The demographic data were compared between the two groups of GS and early NTG 
using the Wilcoxon-signed rank test for continuous and categorical variables. Statistical significance was con-
sidered for p-values less than 0.05. We also evaluated Pearson’s correlation coefficients, which is a measure of 
the linear correlation of pairwise sub-parameters, including the class of either GS or early NTG. It has a value 
between − 1 and 1, where 1 is a total positive linear correlation, 0 is no correlation with each other, and − 1 is 
a total negative linear correlation between the two sub-parameters. To evaluate the classification performance 
of the deep-learning algorithm, the area under the curve (AUC) of the receiver operating characteristic curve 
(ROC), sensitivity, specificity, f1 score, and accuracy were utilized. All statistical analyses were performed using 
programming language Python version 3.6.8 (https ://www.pytho n.org/) and SPSS software version 24.0 (https ://
www.ibm.com/analy tics/spss-stati stics -softw are).
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