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ABSTRACT: A variety of methods, including chemical precipitation, biological
phosphorus elimination, and adsorption, have been described to effectively eliminate
phosphorus (P) in the form of phosphate (PO4

3−) from wastewater sources. Adsorption is
a simple and easy method. It shows excellent removal performance, cost effectiveness, and
the substantial option of adsorbent materials. Therefore, it has been recognized as a
practical, environmentally friendly, and reliable treatment method for eliminating P.
Nanocomposites have been deployed to remove P from wastewater via adsorption.
Nanocomposites offer low-temperature alteration, high specific surface area, adjustable
surface chemistry, pore size, many adsorption sites, and rapid intraparticle diffusion
distances. In this Mini-Review, we have aimed to summarize the last eight years of progress
in P removal using graphene-based composites via adsorption. Ultimately, future
perspectives have been presented to boost the progress of this encouraging field.

1. INTRODUCTION

Globally, freshwater for recreation, amusement, farming, and
domestic usage is progressively being jeopardized due to the
stressors of climate change, growing human demand, and water
contamination.1 Many countries regulate contamination by
requiring industries to treat wastewater before dumping it into
natural watercourses. However, due to the limited accessibility
of high-quality water resources, recycling and repossession of
treated wastewater have become imperative to renewable water
management. Phosphorus (P) is the primary nutrient pollutant
in water bodies such as rivers, streams, lakes, reservoirs, and
estuaries.1c−e P often enters water reservoirs via sewage
releases, treated wastewater, agricultural and industrial
activities, and mining. Excessive concentrations of phosphorus
in water bodies can cause eutrophication.2 This phenomenon
deteriorates water quality due to the overabundant develop-
ment of plants, e.g., algae. In advanced eutrophication,
dissolved oxygen (O2) can become diminished to threateningly
low levels, leading to fish kills.
Efficient treatment processes for removing phosphorus are

essential to address water quality deterioration.3a−c Conven-
tional procedures such as adsorption, chemical precipitation,
biological treatment, and membrane separation have been
investigated to eliminate phosphorus.3d,e Among these
processes, the adsorption method is currently the most
practical phosphorus removal process in water. Phosphorus is
found in numerous forms, such as HPO4

2−, H2PO4
−, and

H3PO4, in ecological environments.4 Adsorbed phosphorus can
potentially desorb from the adsorbent, and the retrieved
phosphate can be further utilized in various applications such
as in fertilizers or the production of steel.5a For any adsorption
technique, an adsorbent should have a high surface area, pore

volume, and suitable functionalities to sorb contaminants from
the soil, water, and air.5b A variety of porous materials such as
granular activated carbon, clays, fly ash, zeolites, furnace slag,
metal oxides, graphene, graphene oxide, functionalized
graphene, metal−organic frameworks, and carbon nanotubes
have been studied as absorbents for phosphorus removal.6

Over the past few years, graphene-based composites such as
graphene, graphene oxide (GO), reduced graphene oxide
(rGO), and modified graphene and graphene oxide have drawn
interest for wastewater treatment applications.7 Graphene is a
2-D carbon nanomaterial with a single layer of sp2-hybridized
carbon atoms organized in one plane of six-membered rings.
Graphene demonstrates 2630 m2/g of theoretical specific
surface area with robust thermal, mechanical, and electrical
characteristics.8 Functionalized graphene with variable oxygen
functionalities is known as graphene oxide (GO). Numerous
reviews have been reported on applying graphene-based
materials as adsorbents to remove pollutants in water and
wastewater treatment.8c However, to the best of our knowl-
edge, no review on phosphate removal in wastewater treatment
using graphene-based composites is presented. This review
reports the research in graphene-based composites as
adsorbents for phosphate removal in water systems.
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2. PHOSPHORUS REMOVAL BY GRAPHENE
COMPOSITES

Vasudevan and his research group utilized graphene as an
adsorbent to remove phosphate from water (C0 = 100 ppm).
Graphene showed an excellent adsorbent capacity of up to
89.37 mg/g at 30 °C.9a They also investigated the effect of pH
on phosphate adsorption by varying the solution’s pH from 2
to 12. The optimal phosphate adsorption was obtained at a pH
of 6−8. Lower adsorption of phosphate was observed in basic
conditions (pH > 8) due to the electrostatic repulsion between
phosphate ions (PO4

2−) and the negatively charged graphene
surface. However, phosphate adsorption is enhanced in acidic
media and reaches the peak elimination efficacy of 99.1% at pH
7. Phosphate’s adsorption on graphene also intensifies at
higher temperatures, indicating the endothermic process. A rise
in temperature decreases the interaction between the solvent
and solute in the solution. This phenomenon then enhances
the interaction between the solute (phosphate) and adsorbent
(graphene), ensuring the viability of more active sites for
phosphate binding.9b This adsorption method undergoes
second-order kinetics, signifying that phosphate’s adsorption
on graphene is a chemical directing process. GO has also been
utilized for the removal of phosphate in wastewater treat-
ment.10 Similarly, graphene oxide is highly dispersible in
water.10b GO has been shown to eliminate 70% of phosphate
(C0 = 100 ppm) from water at 30 °C. By incorporating iron
nanoparticles on graphene oxide, GO’s intake efficiency toward
phosphate was increased from 70% to 80%.10b

Recently, Huang and his research group studied the static
adsorption of trace concentrations of phosphorus on reduced
graphene oxide (rGO).10c Their technology removed 98.9% of
P from water. Hydrogen bonds between the reduced graphene
oxide and phosphate ions enhanced the adsorption process. To
prove the concept, acetaminophen, which also forms hydrogen
bonds with rGO, was spiked into the real water as a contender
for phosphate adsorption. Consequently, the coexistence of
acetaminophen reduced the adsorption of phosphate on rGO.
Overall, graphene, graphene oxide, and reduced graphene

have shown an adequate ability to adsorb phosphate.
Furthermore, these studies demonstrate the ability of carbona-
ceous nanomaterials to treat water. However, these materials
are ineffective in removing phosphate in the presence of
foreign multianions/copollutants due to their nonspecific
selectivity toward phosphate. Additionally, these investigations
have been performed at the bench scale. Column studies have
not yet been conducted in detail.

3. PHOSPHORUS REMOVAL BY
FUNCTIONALIZED/MODIFIED GRAPHENE

Graphene and functionalized graphene can be easily dispersed
in water homogeneously due to their low density.11 Due to
their homogeneous nature, these composites have increased
the interaction area with phosphorus.11d Therefore, modified
graphene-based composites have been applied widely as
adsorbents for phosphate removal. This section will discuss
using different types of functionalized and modified graphene-
based composites as adsorbents to remove phosphate.
a. Lanthanum/Graphene Composites. Metal cations

(Mn+) are often recommended as effective constituents to alter
the graphene’s negatively charged surface to enhance the
loading of anions such as PO4

2− and NO3
−. From the previous

studies, it has been established that La3+ ions have a high

sorption affinity toward phosphate.12 Therefore, several
investigations have been performed using lanthanum-sup-
ported graphene to increase the nanocomposite’s adsorption
efficiency.12b In one study, lanthanum hydroxide (LaOH) was
immobilized onto graphene nanosheets (GNS) via a micro-
wave-mediated hydrothermal process and utilized for phos-
phate adsorption from an aqueous solution. GNS-LaOH
showed two times higher phosphate adsorption capacity
(41.96 mg/g) than lanthanum hydroxide supported on
activated carbon fiber (15.3 mg/g).12c

In other studies, 3-D lanthanum oxide immobilized
graphene composites exhibited a promising phosphate
adsorption capacity of 82.6 mg/g.12d The addition of
coexisting anionic species such as SO4

2−, NO3
−, and Cl−

(8000 ppm) did not affect these adsorbents’ efficiency and
showed 100% phosphate (C0 = 25 ppm) removal. Similarly,
Nouri and his research group developed an innovative
technology of lanthanum (La3+) hydrate immobilized magnetic
reduced graphene oxide (MG@La) nanocomposites for
phosphate removal from river and sewage media. The
synthesized MG@La nanocomposite demonstrated a high
adsorption capacity of 116.28 mg/g for phosphate.13a The
introduction of La3+ hydrate on graphene sheets also enhanced
their affinity toward oxygen−donor compounds. Also,
graphene nanosheets with a high surface as support evade
the accumulation of La3+ hydroxide nanoparticles. The
presence of a high concentration of coexisting ions, including
SO3

2−, CO3
2−, Br−, Cl−, Fe3+, Cu2+, Ca2+, K+, Na+, and Zn2+,

shows only a minor effect on the adsorption efficiency of
MG@La toward phosphate. This may be due to a large
number of active sites or the high adsorption capacity of MG@
La.
Moreover, MG@La showed excellent chemical stability

during the leaching test. Even though the developed adsorbent
was shaken for 24 h in water with pH range 4−10, a
significantly lower amount of La was released. Recently,
innovative phosphate ion-imprinted polymer (GO-IIP) was
synthesized by Hu et al. and used for phosphate recovery.13b

GO-IIP was fabricated by evolving La(III)-coordinated 3-
methyacryloxyethyl-propyl bifunctionalized graphene oxide.
The developed GO-IIP showed exceptional selectivity and
higher adsorption capacity (104.3 mg/g) for phosphate at 25
°C. Also, GO-IIP can be utilized up to seven times, with only
about 8.95% loss of initial adsorption capacity. Recently, Li and
his research group fabricated a membrane by blending a
lanthanum supported metal−organic framework with graphene
oxide under pressure and tested for the removal of phosphorus
in water. The membrane showed a maximum adsorption
capacity at pH = 4. Also, the phosphorus adsorption removal
rate can reach 100% when the contaminated water (<100
ppm) is passed through the membrane during the treatment
process.13c

Therefore, La-modified graphene-based composites propose
a new method for optimizing the highly effective adsorbent for
eliminating pollutants from water samples via adsorption.

b. Zirconium/Graphene Composites. Due to their
nontoxicity, chemical stability, resistance to oxidation,
heterogeneity, and amphoteric nature, zirconium-based oxides
have been extensively utilized to eliminate phosphate from
water. However, some of these materials have ultrafine
characteristics and are very difficult to isolate from water.
The fine powders of zirconium-based materials help them to
immobilize on appropriate supports to address the leaching
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issue.14 To take advantage of the benefits of both zirconium-
based oxides and graphene oxide (GO)/reduced graphene
oxide (rGO), the zirconium-loaded reduced graphene oxide
(RGO-Zr) adsorbent was synthesized via a one-step green
hydrothermal process. These materials were utilized for
phosphate adsorption in an aqueous environment under
various conditions.14b RGO-Zr showed an adsorption capacity
of 27.71 mg P/g at pH 5 and 25 °C. The surface hydroxyl
groups may play a key role in phosphate sorption on the
adsorbent surface. Phosphate adsorption on the RGO-Zr
surface followed the ion exchange and ligand exchange
mechanisms in a weakly acidic solution at pH 5 (Scheme 1).
Similarly, zirconium-cross-linked graphene oxide/alginate (Zr-
GO/Alg) aerogel beads were tested for phosphate uptake
performance.14c The integration of graphene oxide provides
the composite beads more strength and uniform pores. The Zr-
GO/Alg beads showed the highest adsorption capacity of
189.06 mg/g as established by batch and fixed-bed column
studies at an optimal pH range of 2.1−4.0. Also, increases in
temperature and amount of adsorbent supported enhanced
phosphate uptake. The existence of HCO3

− and F− repressed
phosphate adsorption, whereas the presence of SO4

2−, NO3
−,

and Cl− did not affect phosphate uptake. By comparing fresh
and used Zr-GO/Alg aerogel beads, it was confirmed that the
strong binding affinity between phosphate and adsorbents
primarily occurred by ligand exchange effect and electrostatic
interaction (Scheme 1). Also, spent Zr-GO/Alg aerogel beads

were easily regenerated using 0.1 M NaOH solution, and
recycled beads showed high adsorption capacity after five
reuses. Recently, Hosseinifard et al. developed a zirconium
application, an immobilized nanochitosan−graphene oxide
(NCS@GO/H−Zr) adsorbent for the removal of phosphate
from water. NCS@GO/H−Zr demonstrated an excellent
phosphate uptake of 172.41 mg P/g and retained a 76%
phosphate adsorption ability after ten recycles.14d

In summary, zirconium-immobilized graphene-based com-
posites have promising applications in the remediation of water
eutrophication. However, further research should be con-
ducted through the column for their scalability and industrial
applications.

c. Layered Double Hydroxide/Graphene Composites.
Layered double hydroxides (LDHs) have lamellar hydroxides
of divalent (MI

2+) and moderately substituted trivalent (MII
3+)

cations, which are parted by water molecules and anions in the
interlayer spaces to stabilize the overall charge.15 Due to their
capacities to exchange ions, several forms of LDHs have been
documented as encouraging and heterogeneous materials for
phosphate treatment.15 However, these processes require
prolonged treatment time and insufficient renewal capability.
Limited investigations have demonstrated the recycling of used
LDHs.15c Extremely concentrated NaCl or NaOH solutions
have been utilized to extract the adsorbed phosphate from
LDHs. However, this regeneration process is complicated, is

Scheme 1. Plausible Reaction Mechanism of Phosphate Adsorption on the Surface of RGO-Zr in Weakly Acidic Solution
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unprofitable for commercial applications, and produces a vast
amount of harsh wastewater.15

Similarly, MgMn-LDH has been employed as a prospective
alternative for removing phosphate due to its high stability in
solutions, its selectivity for phosphate ions, and the low cost of
manganese compounds.16 By utilizing MgMn-LDH, Tai and
his research group established an ultraefficient method of a
continuous electrosorption−desorption system for the selec-
tive adsorption and discharge of phosphate. They synthesized
GO/magnesium manganese-layered double hydroxide (LDH)
composites, GO/MgMn-LDH-300, by calcinating at 300 °C.16

In this process, adsorbed phosphate can be quickly discharged
by monitoring the applied voltage. The graphene oxide
incorporated within the layered structure enhances the surface
area and produces additional mesopores to capture phosphate.
Also, oxidation of Mn increases when oxygen-carrying
functionalities of GO interact with metal ions. This
phenomenon generates different active sites for phosphate
adsorption. The synthesized GO/MgMn-LDH-300 demon-
strated ultrahigh productivity, selective phosphate elimination,
and outstanding recyclability, with phosphate uptake and
release rates of 0.97 and 3.56 mg P/g/min, respectively.16

Recently, the same research group again synthesized a
scalable and sustainable hierarchical porous adsorbent using
inexpensive Garcinia subelliptica leaves as a bioderived natural
template for enhanced phosphate adsorption.16b First, MgMn-
layered double hydroxide (MgMn-LDH) and GO were grown
in situ on Garcinia subelliptica leaves to get L-GO/MgMn-
LDH. Then, L-GO/MgMn-LDH was calcinated at 300 °C to
obtain the final hierarchical porous L-GO/MgMn-LDH-300
adsorbent. The leaves are composed of vessels and fibers and
possess a natural hierarchical porous structure. Therefore, they
can act as a potential biotemplate. The L-GO/MgMn-LDH-
300 adsorbent selectively uptakes phosphate and shows high,
reusable phosphate adsorption capacity and a desorption rate
of 244.08 mg P/g and 85.8%, respectively.16b

Overall, layered double hydroxide/graphene composites are
capable, scalable, suitable, and recyclable selective phosphate
adsorbents. These techniques propose an appropriate process
for efficient and cost-effective phosphate recycling from water.
d. Iron-Based Nanomaterials/Graphene Composites.

In combination with graphene or its derivatives, iron oxide
nanomaterials show great potential in catalysis, sensing, water,
and wastewater treatment.17 Previously, an innovative tri-
ethylene tetramine-functionalized magnetic graphene oxide
chitosan composite (TETA-MGO/CS) with a high uptake
efficiency toward phosphate has been synthesized.18a The
maximum adsorption capacity of TETA-MGO/CS was found
to be 353.36 mg/g at pH 3. The adsorption methods achieved
equilibrium in 50 min. Also, adsorbed PO4

3− ions could be
released from TETA-MGO/CS and recycled three times.
Therefore, TETA-MGO/CS has been investigated as an
efficient and renewable adsorbent in phosphate removal.
Losic and his research group developed a technology of 3-D

graphene aerogels fabricated with goethite (α-FeOOH) and
magnetite (Fe3O4) nanoparticles for capturing phosphates in
water.18b These synthesized aerogels demonstrated a high
capacity to eliminate phosphate (C0 = 200 ppm) up to 350
mg/g. Similarly, α-Fe2O3-immobilized graphene oxide (GO-
Fe2O3) was utilized for the adsorption of phosphate.18c GO-
Fe2O3 adsorbed 93.28 mg/g phosphate (C0 = 50 ppm) at pH
6.0 and 25 °C. The synthesized GO-Fe2O3 showed very stable
phosphate adsorption capacity between the pH range of 2.0−

10.5 and the temperature range of 20−60 °C. GO-Fe2O3
achieved adsorption equilibrium within 5 min. Mainly, GO-
Fe2O3 follows the electrostatic attraction (physical adsorption)
and ion exchange (chemical adsorption) mechanisms to
remove the phosphate in treatment application. In another
study, akaganeite nanorods (β-FeOOH) integrated on GO
sheets were utilized to remove phosphate from water at pH 7
and 30 °C.18d The incorporation of GO during the preparation
of β-FeOOH nanorods raises the characteristic ratio of rods
from 5 to 7. The kinetics data demonstrated second-order
kinetics, and the equilibrium condition was attained within 2 h.
The removal of phosphate was enhanced at a lower pH and
decreased at a higher pH solution. β-FeOOH/GO displayed
good recyclability at different pH solutions and showed a
maximum of 78% at pH 7 and 30 °C.
Overall, iron-based nanomaterials/graphene composites are

stable, recyclable, and scalable adsorbents to remove phosphate
in wastewater treatment applications. Therefore, these
materials can be an excellent choice to deal with phosphate-
contaminated water for commercial purposes.

e. Other Miscellaneous Graphene-Based Composites.
Graphene-based composites possess high chemical stability
and good mechanical strength.19 Titania-functionalized gra-
phene oxide (TiO2/GO) has been widely utilized in water
treatment applications compared to other oxidative deriva-
tives.19c The large surface area of graphene oxide and its high
uptake efficiency also boost titanium/graphene-based compo-
sites’ adsorption capacity. Sakulpaisan and his research group
synthesized titania-functionalized graphene oxide by the sol−
gel method. TiO2/GO composites yielded better adsorption
results than titania and graphene oxide.20a The synthesized
TiO2/GO showed 30.4 mg/g of phosphate adsorption capacity
at pH 6. Phosphate adsorption decreases at high pH levels due
to a rise in the repulsion between phosphate anions and the
oxygen-carrying functional group of adsorbent surfaces.
Similarly, Martińez and his research group performed a
comparative study between GO and GO-functionalized silver
nanoparticles (GO@AgNPs) as adsorbents to eliminate
phosphate from water samples. An amount of 20 mg of GO
removed 75% phosphate (C0 = 30 ppm) at pH 10. Only 500
μL of GO@AgNPs eliminated 100% phosphate (C0 = 30 ppm)
at pH 7.20b Recently, Keggin-type aluminum polyoxocation
species, Al30, modified graphene oxide nanosheets, and
triaminotriazine-functionalized GO composites were inves-
tigated for the efficient removal of phosphate.20c These
adsorbents are cost-effective and can be reused up to several
cycles without significant loss of their uptake efficiency.
Further, these heterogeneous composites could be synthesized
at a large scale for commercial use in the industrial application
of wastewater treatment.

f. Conclusions and Future Perspectives. Graphene is
increasingly appealing to more researchers and scientists due to
its exceptional thermal, electronic, and mechanical character-
istics. Modified graphene-based materials have been synthe-
sized by cross-linking organic scaffolds via noncovalent and
covalent interaction and impregnating inorganic metals. These
modified/functionalized graphene-based composites demon-
strate exceptional and enhanced abilities in numerous fields. In
this mini-review, we summarize the applications of graphene
and functionalized graphene-based composites in removing
phosphorus in the form of phosphate. The elimination of
phosphorus from contaminated water is a worldwide concern
as an excess of phosphorus instigates negative ecological
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effects. Excess phosphorus can cause eutrophication, which
further leads to inferior water quality and marine life damage.
Many treatment processes have been investigated to eliminate
phosphorus from water to stop the excess toxic ecological
effects from phosphorus. Among many techniques, the
adsorption method has its exclusive benefits for practical and
large-scale applications, such as high efficiency and easy
operation.
The present mini-review focuses on phosphate removal in

wastewater treatment using graphene-based composites.
Several metals (e.g., titania, zirconium, iron, layered double
hydroxide, lanthanum, aluminum, and silver) and modified
graphene composites have been studied for the effective
adsorption of phosphate. Among these, iron-based nanoma-
terials/graphene composites and layered double hydroxide/
graphene composites have shown promising, stable, recyclable,
and scalable adsorbents for the selective removal of phosphate.
Some biomasses (e.g., cellulose and chitosan) and function-
alized graphene-based composites have also been investigated
for the cost-effective removal of phosphate from water.
These graphene-based adsorbents can be an excellent

alternative to treat phosphate. However, most of the studies
have been performed at the bench scale. Further research
needs to be conducted at the pilot scale, including column
study for their industrialization. This will most likely be done
by further examining phosphorus elimination mechanisms and
favorable removal conditions on a large scale during column
studies.
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