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A B S T R A C T   

The current scale of public and private testing cannot be expected to meet the emerging need for higher levels of 
community-level and repeated screening of asymptomatic Canadians for SARS-CoV-2. Rapid point-of-care 
techniques are increasingly being offered to fill the gap in screening levels required to identify undiagnosed 
individuals with high viral loads. However, rapid, point-of-care tests often have lower sensitivity in practice. 
Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for SARS-CoV-2 has proven sensitive 
and specific and provides visual results in minutes. Using a commercially available kit for RT-LAMP and primer 
set targetting nucleocapsid (N), we tested a blinded set of 101 archived nasopharyngeal (NP) swab samples with 
known RT-PCR results. RT-LAMP reactions were incubated at 65 ◦C for 30 min, using heat-inactivated naso-
pharyngeal swab sample in viral transport medium, diluted tenfold in water, as input. RT-LAMP agreed with all 
RT-PCR defined negatives (N = 51), and all positives with cycle threshold (Ct) less than 20 (N = 24), 65% of 
positives with Ct between 20− 30 (N = 17), and no positives with Ct greater than 30 (N = 9). RT-LAMP requires 
fewer and different core components, so may not compete directly with the mainline testing workflow, pre-
serving precious central laboratory resources for those with the greatest need. Careful messaging must be pro-
vided when using less-sensitive tests, so that people are not falsely reassured by negative results, but this caveat 
must be weighed against the clear benefits of reliably identifying those with high levels of virus in prioritized 
samples at the point of care.   

1. Introduction 

In an unprecedented scientific feat, nucleic acid amplification tests 
for SARS-CoV-2 were published 21 days after the Chinese communicable 
disease control team arrived in Wuhan on 31 December 2019 [1], based 
on complete genome sequences published 10 days earlier [2]. Hundreds 
of molecular diagnostic tests for SARS-CoV-2 have been introduced since 
then [3–5]. The main diagnostic targets rely on specific host antibodies, 
viral proteins and viral RNA, each with its own specific benefits and 
limitations in accurately detecting SARS-CoV-2 during its infectious 
period, in order to more efficiently prevent its spread [6]. The best, most 
sensitive, tests require high levels of laboratory expertise and specialized 

facilities that understandably increase expense and turnaround time. 
This is especially true when challenged with recent, unprecedented 
testing volumes. 

Advice on whether to test people “without symptoms” (which rep-
resents a range of pre- symptomatic, peri-symptomatic, sub-symptom-
atic and truly asymptomatic phenotypes) wavers as much over time as 
actual demand for testing by people “without symptoms” [7,8]. 
“Asymptomatic” testing has been characterized as wasteful, since only a 
small percentage come back positive, especially when investing the most 
precise, most expensive and most time-consuming test available. Testing 
programs that incorporate parallel strategies for detecting infection in 
those without symptoms have been demonstrated at large scale in 
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Iceland [9] and more recently country-wide in Slovakia [10]. 
Several jurisdictions have approved and applied point-of-care assays 

that can rapidly indicate infection outside the laboratory. These include 
rapid antibody-detecting cassettes that use serum or a few drops of pe-
ripheral blood, rapid antigen tests on nasopharyngeal samples, and all- 
in-one RT-PCR platforms such as the Xpert® Xpress SARS-CoV-2 
(Cepheid®), which provides highly sensitive and specific results rela-
tive to other RT-PCR-based workflows in a fraction of the time [11,12]. 
However, a key limitation is lack of scalability, with each (very expen-
sive) machine only able to run one or a few samples at a time. Fluctu-
ating demand for cartridges across all jurisdictions makes overall access 
unpredictable. 

More recently, a number of nucleic acid isothermal amplification 
techniques for viral detection have been described, including loop- 
mediated isothermal amplification (LAMP) [13–15], using a 4- or 
6-primer set and incubated at 65 ◦C for 30− 60 min, 
recombinase-polymerase amplification (RPA) [16], using multiple en-
zymes and incubated at 42 ◦C for 15− 20 min, and many others [17–19]. 
Isothermal assays have been shown to detect SARS-CoV-2 with very high 
sensitivity and specificity, and underlie several tests recently authorized 
for emergency use, including the ID NOW from Abbott, and 
CRISPR-based detection by SHERLOCK [20] (currently not approved for 
sale outside the United States). 

The ID NOW compares favourably to GeneXpert [21], but also shares 
its disadvantages in terms of single sample per cartridge and 
single-source cartridges. Some kits, such as Twist Bioscience’s 
RPA-based assays [22] and the SHERLOCK LAMP/CRISPR assays, do not 
use special machines or cartridges, requiring only strip tubes or plates 
and p10 filter tips, hence can easily be scaled up to conduct hundreds or 
thousands of tests. New England Biolabs’ Colorimetric WarmStart LAMP 
kit can also be scaled and is available in Canada. In this study, we 
evaluated how a commercial colorimetric RT-LAMP kit combined with 
published SARS-CoV-2 primer sets and heat-treated, diluted sample 
compares with standard RT-PCR analysis. 

2. Materials and methods 

2.1. Archived sample set 

A total of 101 leftover nasopharyngeal swab samples in viral trans-
port medium, from both symptomatic and asymptomatic individuals 
attending for testing at walk-in or drive-through facilities in Winnipeg, 
Canada, tested for SARS-CoV-2 by RT-PCR using E gene primers and 
purified RNA template on the Cobas or Panther Fusion platforms, were 
used to validate a recently described RT-LAMP assay [23]. Comparisons 
were based on 50 RT-PCR positive samples, with fluorescence threshold 
values between 10 and 37 cycles, and 51 RT-PCR negative samples. 

2.2. Sample processing and heat treatment 

After assigning blinded sample identifiers to reduce potential bias in 
interpretation, samples were thawed and briefly spun down in a mini- 

centrifuge to collect cells and debris. An aliquot of 60 μl, drawn from 
the bottom of the tube near the pelleted material, was transferred to a 
1.7 mL Eppendorf tube, labelled with the blinded code, then incubated 
in a heating block at 95 ◦C for 5 min. Serial tenfold dilutions of sample 
were prepared in nuclease-free water (New England Biolabs, Whitby, 
ON). 

2.3. RT-LAMP assay and controls 

RT-LAMP was carried out using the Colorimetric WarmStart LAMP 
Kit (New England Biolabs) and a published LAMP primer set targeting 
the N gene of SARS-CoV-2 (Table 1), previously shown to have high 
sensitivity [23,24] (Integrated DNA Technologies, Coralville, IA). A 10X 
mixture of the six primers in the set was prepared by first suspending all 
primers separately in nuclease-free water at a concentration of 100 μM, 
then combining 16 μl each of FIP/BIP, 4 μl each of LF/LB, 2 μl each of 
F3/B3, and 56 μl nuclease-free water (final volume 100 μl). Reactions 
were set up in a final volume of 20 μl (10 μl 2X Master Mix, 2 μl 10X 
primer mix, 6–7.5 μl nuclease-free water and 0.5–2 μl sample, either 
diluted or undiluted) and incubated in a heat block at 65 ◦C for 30 min. 
After sitting on ice for a few minutes to sharpen contrast, colour was 
assessed visually and photographed. Bright yellow colour indicates a 
positive result, while magenta indicates a negative result. Tests with 
orange or pink colour were considered failed reactions and re-tested. 

2.4. Positive and negative controls 

Serial tenfold dilutions in nuclease-free water of SARS-CoV-2-N 
Positive Control or MERS-CoV Negative Control DNA (Integrated DNA 
Technologies) at a starting concentration of 2 × 108 copies per ml were 
used as positive and negative controls, respectively, and included in 
every test batch (five dilutions from 108 to 104 copies/mL). Limit of 
detection of the assay was defined as the lowest concentration of control 
resulting in a positive result, adjusted for reaction volume (e.g. 106 

copies/mL divided by 20-fold dilution in Master Mix = 5 × 104 copies/ 
mL). 

2.5. Data analysis 

After categorization as either positive (yellow) or negative 
(magenta), samples were unblinded and compared. Sensitivity, speci-
ficity and positive/negative predictive values with confidence intervals 
were calculated using standard formulas with the help of MedCalc: 
https://www.medcalc.org/calc/diagnostic_test.php. 

3. Results 

3.1. Sensitivity, specificity and predictive values 

Sensitivity of the RT-LAMP assay using raw, heat-inactivated sample 
was 77% compared to RT-PCR of purified RNA extracts (Table 2). 
Samples with the lowest Ct values (<22) were all bright yellow by RT- 

Table 1 
Primers used in this study and positions in genome.  

Name Sequence (5′-3′) Start2 Stop2 

FIP1 TCTGGCCCAGTTCCTAGGTAGTCCAGACGAATTCGTGGTGG 28,626 28,605  
TCTGGCCCAGTTCCTAGGTAGTCCAGACGAATTCGTGGTGG 28,555 28,573 

BIP1 AGACGGCATCATATGGGTTGCACGGGTGCCAATGTGATCT 28,654 28,675  
AGACGGCATCATATGGGTTGCACGGGTGCCAATGTGATCT 28,719 28,702 

LF GGACTGAGATCTTTCATTTTACCGT 28,589 28,575 
LB ACTGAGGGAGCCTTGAATACA 28,676 28,696 
F3 TGGCTACTACCGAAGAGCT 28,525 28,543 
B3 TGCAGCATTGTTAGCAGGAT 28,741 28,722  

1 Primers shown twice to indicate each targets two distinct genome regions. Start and stop values are for the region shown in bold. 
2 Position in SARS-CoV-2 RefSeq genome (NC_045512). 
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LAMP, even when diluted up to 1000-fold, indicating a similar range of 
detectable concentration to the positive control. All RT-PCR negatives 
were also RT-LAMP negative (Table 2). This indicates that RT-LAMP 
may be most useful to more quickly detect those with high viral loads. 

3.2. Interpretation of colour change 

Only samples that were bright yellow after 30 min incubation were 
considered positive (Fig. 1). In some cases, a partial colour change 
resulted, from magenta to pink to orange, but did not become yellow 
within the period of observation (20− 30 min, regardless of dilution 
factor down to 1000 copies). This partial colour change may indicate a 
weak positive (all samples do eventually turn yellow), a failed reaction 
(not indicating anything about the sample itself), or a true negative, 
depending on the reason for the weak change in pH. In this study, 9 
samples initially resulted in an orange colour and all were negative 
when re-tested (8 were from PCR-negative samples, and the remaining 
sample was PCR-positive with a Ct value of 29). 

3.3. Controls and limit of detection 

Negative controls were reliably magenta throughout the experiments 
(Fig. 2) but did eventually get contaminated. Routine cleanup with 
DNAse and careful separation of pre-amplification and amplification/ 
post-amplification areas are required (unless you use NEB’s more 
expensive dUTP kit) to prevent the massive DNA contamination that 
LAMP is prone to. The MERS-CoV DNA negative control at 50,000 and 
500,000 copies/mL did not produce any yellow colour, however 
5,000,000 copies/mL resulted in a positive reaction (not shown). SARS- 
CoV-2-N DNA positive control produced a bright yellow reaction within 

30 min down to 50,000 copies/mL, but remained magenta at lower di-
lutions, indicating that this is the lower limit of detection of this test 
under current conditions (Fig. 2). 

4. Discussion 

In this study, we confirm that one of the fastest, simplest, cheapest 
and most scalable protocols available for detecting SARS-CoV-2 nucleic 
acid is so far reliable for strong positives only, but highly specific 
compared to RT-PCR detection. Other studies have shown similar 
reduced sensitivity but high specificity [23,25–28]. One early study 
found that RT-LAMP was more sensitive than RT-PCR at detecting virus 
in an asymptomatic carrier monitored for several days [29]. RT-LAMP 
has been tested extensively at large scale in the UK and has recently 
been shown to have less-than-expected sensitivity (<50%) when rolled 
out to large populations as part of Operation Moonshot [30]. However, 
similarly to the current study, sensitivity was greatest in strong posi-
tives, indicating that only those with high viral loads may reliably be 
detected. Recent work has shown that SARS-CoV-2 could not be cultured 
from samples with Ct values greater than 24 and/or longer than 8 days 
past symptom onset [31]. This observation indicates that the RT-LAMP 
assay described here would detect all of those most likely to have cul-
turable (and therefore infectious) virus, as has been shown when the two 
have been compared directly [25]. 

Many technologies have been introduced or adapted to rapid 
detection of SARS-CoV-2 at the point of care (Table 3). The pace of 
Canadian approvals for SARS-CoV-2 point-of-care diagnostic tests has 
been much faster than for other infections, while the FDA has provided 
Emergency Use Authorization for dozens of diagnostics, including the 
Sherlock Biosciences LAMP/CRISPR platform and the recent LAMP- 
based home test by Lucira [32]. Despite limitations in practice, all 
tests applied on a wider scale, with proper messaging about the limited 
significance of negative results, could be highly useful if strong positives 
are identified and acted upon more quickly [33]. 

Several jurisdictions use the Panbio Ag Rapid Test Device to identify 
positives early, assuming that negative results should be confirmed 
[34–36]. One recent study showed that none of those who were test 
discordant (positive by RT-PCR but negative using Panbio) had cultur-
able virus in their sample [34], indicating potentially reduced trans-
missibility by individuals defined as “false negatives” in current 
protocols. Other studies have indicated that sensitivity of the Panbio 
devices drops in people with no symptoms [36], or when using 
self-collected specimens such as nasal swabs and saliva [37]. 

The impact of mutations on our ability to accurately detect SARS- 
CoV-2 with primers based on older genome sequences is an area of 
growing concern [38], requiring constant vigilance and updating of 
primers being used. Mutations across the genome (including in the N 
gene targetted in this report) are regularly reported around the world 
[39], and can conveniently be monitored online (www.covidcg.org) 
[40]. Other strategies to mitigate the risk of false negative RT-LAMP 
tests due to mutations, for example by targetting more than one gene 
(standard in RT-PCR assays), have also recently been reported [41]. 

Molecular diagnostic techniques that use raw or minimally processed 

Table 2 
Sensitivity, specificity and predictive values of RT-LAMP with raw sample input, 
compared to standard RT-PCR diagnosis.   

RT-LAMP   
RT-PCR Positive Negative N 

Positive 35 (70%) 15 (30%) 50 
< 20 cycles 24 (100%) 0 24 
20− 30 cycles 11 (65%) 6 (35%) 17 
> 30 cycles 0 9 (100%) 9 
Negative 0 51 (100%) 51  

Result (95% CI)   
Sensitivity 77% (65− 86%)   
Specificity 100% (90− 100%)   
NPV 70% (60− 78%)   
PPV 100 %   
Accuracy 85% (76− 91%)    

Fig. 1. Interpretation of colour in tests on Samples 9-24 – Only bright 
yellow results after 30 min at 65 ◦C are considered positive. Magenta colour 
indicates a “true” negative (insufficient viral RNA), while orangey colour is 
considered a failed reaction and re-tested. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article). 

Fig. 2. Positive and negative controls – Tubes 1-5: Tenfold dilutions of a new 
batch of SARS-CoV-2-N DNA (positive control), with final concentrations 
(copies per ml) of 5 × 106, 5 × 105, 5 × 104, 5 × 103, and 5 × 102. Tube 6: 
Previous batch positive control (5 × 105 per ml). Tube 7: MERS-CoV DNA 
(negative control), 5 × 105 per ml. Tube 8: No template control (NTC). 
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sample are fastest, but less sensitive, since the background chemistry of a 
raw sample may introduce uncontrolled variability [25,42]. Potential 
inhibitors or other contaminants may reduce the reliability of both 
positive and negative results. This concern is somewhat lessened in the 
context of the current report, which we have confirmed is highly specific 
and can amplify target molecules even in highly diluted samples. 
However, the current assay’s limit of detection (50,000 copies/mL, 
similar to other studies [25]) does decrease the likelihood of detecting a 
person with low viral load. In contrast, Sherlock Biosciences claims on 
its website (www.sherlock.bio) that its LAMP-based assay can detect 
7000 copies per ml VTM or more than 7 times fewer than this report. 

Is the risk of missing someone with a low viral load greater than 
making a person with a high viral load wait days to find out they are 
positive? In all cases, expectations about what a negative test result 
actually means must be properly managed. In this study, RT-LAMP with 
raw, heat-treated sample was ~75% sensitive compared to nasopha-
ryngeal RT-PCR, meaning that a false negative result can be expected 1 
out of 4 times the test is performed. Therefore, careful explanation 
should be provided as part of pre-test and post-test counselling that a 
single negative test does not mean a person is free of SARS-CoV-2. 

Another way to have more confidence in less sensitive tests is by 
repeated testing, increasing confidence that a negative test result is not 
just due to random error, transience of viral shedding or low test 
sensitivity [43]. Regular testing is facilitated when methods are fast, 
cheap, based on saliva, extract-free and easy to conduct in diverse set-
tings, identifying the earliest timepoint at which a person is infectious, 
and increasing the immediacy and impact of contact tracing. Building an 
expanded repertoire of testing platforms that do not all depend on the 
same instruments, reagents and laboratory infrastructure is an essential 
strategy to improve surge capacity [33]. Ideally, new testing modalities 
should not compete with central laboratory tests for equipment, con-
sumables or personnel, all of which are presently stretched very thin. 
Core costs and processing time of extraction-free RT-LAMP are similar to 
RT-PCR workflows (Table 4), but can be done without expensive ma-
chines or specialized labs, by trained non-specialists with oversight and 
support. This frees nurses and other front-line staff for less technical 
duties and preserves public health testing resources for those most in 
need. 

In conclusion, scalable rapid tests, such as the one evaluated in this 
study, may efficiently detect individuals with high viral loads at the 
point of care. Our findings suggest RT-LAMP could be useful as a 
screening mechanism for prioritized samples within the existing test 
chain, reliably identifying those with highest virus concentrations ahead 
of the standard RT-PCR workflow, and able to be scaled to any required 
number of tests per day. Further work must focus on improving sensi-
tivity, incorporating saliva or other self-collected samples to facilitate 
repeated testing, and triangulating evidence from different testing mo-
dalities [44] to better ascertain an individual’s infectious period. 
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