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Abstract

Electropermeabilization is a promising phenomenon that occurs when pulsed electric field

with high frequency is applied to cells/vesicles. We quantify the required values of pulsed

electric fields for the rupture of cell-sized giant unilamellar vesicles (GUVs) which are pre-

pared under various surface charges, cholesterol contents and osmotic pressures. The

probability of rupture and the average time of rupture are evaluated under these conditions.

The electric field changes from 500 to 410 Vcm-1 by varying the anionic lipid mole fraction

from 0 to 0.60 for getting the maximum probability of rupture (i.e., 1.0). In contrast, the same

probability of rupture is obtained for changing the electric field from 410 to 630 Vcm-1 by

varying the cholesterol mole fraction in the membranes from 0 to 0.40. These results sug-

gest that the required electric field for the rupture decreases with the increase of surface

charge density but increases with the increase of cholesterol. We also quantify the electric

field for the rupture of GUVs containing anionic mole fraction of 0.40 under various osmotic

pressures. In the absence of osmotic pressure, the electric field for the rupture is obtained

430 Vcm-1, whereas the field is 300 Vcm-1 in the presence of 17 mOsmL-1, indicating the

instability of GUVs at higher osmotic pressures. These investigations open an avenue of

possibilities for finding the electric field dependent rupture of cell-like vesicles along with the

insight of biophysical and biochemical processes.

1 Introduction

Biomembranes are selectively permeable barrier which separates the interior and exterior of

an organism [1,2]. Various types of equivalent circuit of biomembranes are considered by dif-

ferent groups [3–5]. Large electric potential is rare in living organisms, except in the region of

cell membrane which is about—70 mV [6]. This potential is crucial for the transport of ions

either into the lumen or out from the cells [7,8]. Because of least invasive nature and flexibility

to adjust the strength, the external electric field has long been recognized as an excellent exter-

nal agent for disrupting the cells [9–11]. Synthetic lipid vesicles such as giant unilamellar vesi-

cles (GUVs) are being used as an attractive tool in soft matter research for the mimicking of

cells since a few decades [12,13]. Lipid membranes of GUVs are significantly affected by the
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external electric field due to the charges on their polar head groups and the limited permeabil-

ity of the hydrophobic tail to the solvent. Considering the electrical environment of cells or

vesicles, external electric field can interact with the lipid membranes in various ways by influ-

encing electrical properties such as electrical conductivity [14,15], membrane capacitance

[16,17], transmembrane voltage [18,19] etc. Several types of phenomena can occur depending

on the nature of electric field, for example, permeabilization [20–22], fusion [23,24], electro-

phoresis [25] and deformation [26,27]. Among them, electroporation is a vastly accepted tech-

nique, responsible for the generation of pores in vesicles when they are subjected to large

electric field that can promptly increase the permeability of membranes. Sufficiently high elec-

tric potential applied to the membrane promotes stretching instability, which leads to the pore

formation since the applied electric field increases membrane bending stiffness and lowers

membrane tension [28]. The process of electroporation is actually twofold [29]. Firstly, a

molecular rearrangement of the lipid occurs within the membrane bilayer induced by electro-

static forces and secondly, the Maxwell stress tensor starts to rise from the applied electric

field. There is an increase in membrane current and membrane dynamic conductance with

the ascending transmembrane voltage [30]. Now-a-days, electroporation is commonly used in

many areas of biomedical, biotechnology, bioengineering, and medicine, for applications such

as cell fusion [31,32], electrochemotherapy [11,33,34], gene transfer [35,36], cancer treatment

along with localized tumor ablation [34,37,38], food processing [39,40] and so on. Based on

the electric field parameters, this permeabilization is either reversible or irreversible [41–43]. A

limited number of studies on membrane permeabilization due to electric field have already

been performed as an attempt to improve and model the effects of electric field parameters,

such as intensity and duration [44–46]. In the molecular dynamic (MD) simulations, it is evi-

dent that the transmembrane voltage is generated either by a direct electric field or by charging

of membranes [47,48]. Continuum-level description of membrane electroporation from MD

simulations has been compared to the experimental measurements on model lipid systems

[49,50]. There is a general consideration that transmembrane voltage, induced by electric field,

promotes rupture of GUVs. So far, there is no cognizant report on the quantification of electric

field for vesicle rupture under various conditions such as surface charges and cholesterol con-

tents of the membranes, and osmotic pressures in the vesicles. Hence, the experimental mea-

surements of the values of external electric fields and the average times for the rupture of

GUVs under those conditions are indispensable.

2 Materials and methods

2.1 Chemicals and reagents

1,2-dioleoyl-sn-glycero-3-phospho-(10-rac-glycerol) (sodium salt) (DOPG) and 1, 2-dioleoyl-

sn-glycero-3-phosphocholine (DOPC) were purchased from Avanti Polar Lipids Inc. (Alabas-

ter, AL). Bovine serum albumin (BSA), 1,4-Piperazinediethanesulfonic acid (PIPES), Ethylene

glycol-bis(2-aminoethylether)-N,N,N0,N0-tetraacetic acid (EGTA) and calcein were purchased

from Sigma-Aldrich (Germany). Cholesterol (i.e., Chol) was purchased from WAKO pharma-

ceuticals (Japan).

2.2 Preparation of GUVs at various conditions

The anionic charged GUVs were prepared in a physiological buffer (10 mM PIPES, 150 mM

NaCl, pH 7.0, 1mM EGTA) and the neutral GUVs were prepared in MilliQ water using the

natural swelling method [51]. Here, the method is described briefly. A mixture of 1 mM

DOPG and DOPC (about 200 μL) or DOPG, DOPC and Chol were taken into a glass vial and

dried with a gentle flow of N2 gas for producing thin and homogeneous lipid films. By keeping
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the vial in a vacuum desiccator for 12 hours, the residual chloroform in the film was removed.

Then, 20 μL MilliQ water was added into the vial and pre-hydrated at 45–47˚C for 8 minutes.

After pre-hydration, the sample was incubated with 1 mL of buffer containing 0.10 M sucrose

for about 3 hours at 37˚C. To prepare water-soluble fluorescent probe (calcein) containing

GUVs, vesicles were incubated in the buffer with 0.10 M sucrose containing 1 mM calcein.

The incubated GUV suspension (unpurified) was centrifuged at ~ 13,000×g (here g is the

acceleration due to gravity) for ~ 20 minutes at ~ 20˚C for removing the multilamellar vesicles

and lipid aggregates as these elements were sedimented at the bottom of eppendorf tubes.

After centrifugation, supernatant was collected and purified by the membrane filtering method

[52,53].

To prepare the GUVs with different surface charges, the DOPG mole fractions (XDOPG)

were considered 0.60, 0.40, 0.20, 0.10, 0. Hence, the samples were DOPG/DOPC (60/40, here

60/40 indicates molar ratio), DOPG/DOPC (40/60), DOPG/DOPC (20/80), DOPG/DOPC

(10/90) and DOPG/DOPC (0/100)-GUVs. To prepare cholesterol (Chol) containing mem-

branes, the samples DOPG/DOPC/Chol (60/40/0), DOPG/DOPC/Chol (46/39/15), DOPG/

DOPC/Chol (43/28/29) and DOPG/DOPC/Chol (40/20/40)-GUVs were prepared in the same

buffer. The corresponding cholesterol mole fraction in these samples were 0, 0.15, 0.29 and

0.40. By considering the surface areas of DOPG and cholesterol [54–59], the surface charge

density of these cholesterol containing membranes were obtained almost similar (~ - 0.15 Cm-

2). For performing the osmotic pressure experiments, DOPG/DOPC (40/60)-GUVs were pre-

pared in the buffer under various osmotic pressures (P). The osmolarity of the sucrose solu-

tion inside the GUVs was C0
in = 388 mOsmL-1, whereas the osmolarities of the glucose solution

outside the GUVs were Cout = 388, 375 and 371 mOsmL-1. Hence, the corresponding osmolar-

ity difference between the inside and outside of GUVs were DC0 ¼ C0
in � Cout = 0, 13 and 17

mOsmL-1. Due to the osmolarity difference between sucrose and glucose solutions, vesicles

became swell as water molecules of glucose solution passed into the inside of GUVs through

membranes. The osmotic gradient creates lateral tension in the membranes of GUVs. The

detail procedure to apply theP in GUVs has been described in our recent paper [60]. To avoid

the strong adhesion between the GUVs and the surface of glass slide, the chamber was coated

with 0.10% (w/v) BSA dissolved in the same buffer.

2.3 Model to apply the electric field on vesicle using COMSOL simulation

To estimate the electric potential gradient and the distribution of current density on a vesicle,

the finite element method-based software COMSOL Multiphysics was used. The simulation

was used to investigate transport processes in various model systems [61]. The parameters of

the model are summarized in Table 1. The electrodes were modeled as two rectangular plates

placed at the left and right of the center of geometry. The mesh size was refined until there was

less than 5% difference in electric field, resulting an extremely fine mesh setting. The total

number of degrees of freedom solved in the model was 153669. The model describes electric

field strength and current density in a spherical shaped vesicle. The dynamic finite-element

model for efficient modelling of electric currents in electroporated tissue has been described

elsewhere [62]. The time dependent electric current density equation is as follows:

J ¼ ðlþ ε0εr
@

@t
ÞEþ Je ð1Þ

where, λ is an electrical conductivity of the system and Je is the charge density, ε0 is the permit-

tivity of free space and εr is the relative permittivity. The electric field (E) is the gradient of

electric potential (V), i.e., E = -rV.
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The time dependent electric current module was used in the simulation where the parallel

gold electrodes were selected. The numerical model demonstrated the importance of contact

and angle between GUV and electrodes. For a certain value of electric potential with current

density, the transmembrane voltage shows its threshold value for the rupture of targeted GUV.

2.4 Setup for applying the pulsed electric field on GUVs

A MOSFET based IRE device was used for generating the pulsating DC (direct current) elec-

tric field with pulse width 200 μs and frequency 1.1 kHz. The detail circuit diagram was pub-

lished in the earlier papers [22,63]. The photograph of IRE setup is shown in Fig 1(A). The IRE

signal is applied to the GUV (GUV is kept in a U-shaped handmade microchamber) through

gold coated electrodes of length 17.0 mm and width 2.54 mm (SH-17P-25.5, Hellotronics).

The pulsed electric field, and the illustration of intact and ruptured vesicles under various con-

ditions are shown in Fig 1(B).

2.5 Theoretical equations for applying pulsed electric field on GUVs

From the electrical point, transmembrane voltage (Vm) is defined as the difference between

the values of the homogeneous electric potential on both sides of the membrane. In the pres-

ence of pulsed electric field to a vesicle, when Vm exceeds ~ 1.0 V, the structural rearrangement

of the lipid bilayer occurs, creating permanent aqueous pathways or pores in the membranes.

The induced Vm at each membrane point is defined as follows [64]:

Vm ¼ fmREjcosyjð1 � e� t=tchargÞ ð2Þ

where, R is the radius of vesicle, θ is the angle between the electric field and surface potential

and τcharg is the membrane charging time constant. The expression for fm is defined as follows

[64]:

fm ¼
3 sex½3 h R2sin þ ð3 h2R � h3Þðsm � sinÞ�

2R2ðsm þ 2sinÞðsm þ
1

2
sinÞ � 2ðR � hÞ3ðsex � smÞðsin � smÞ

ð3Þ

where, the conductivity of membrane is σm, internal medium is σin, external environment is

σex, and h is the thickness of membrane. Assuming σm = 0 (plasma membrane, σm = 3×10−7

Sm-1), then fm = 1.5. Hence, Eq (3) is expressed as the first-order Schwan’s equation:

Vm ¼ 1:5REjcosyjð1 � e� t=tchargÞ ð4Þ

where, τcharg is the membrane charging-time, which is ~ 96.80 ns [22] for membrane

Table 1. The parameters, materials and values for COMSOL simulation.

Parameters Materials Symbol Values

Vesicle Radius R 12 μm

Membrane Thickness h ~ 4 nm

Interior of vesicle Conductivity λin 1.45 Sm-1

Relative permittivity εin 70

Exterior of vesicle Conductivity λex 1.45 Sm-1

Relative permittivity εex 70

Membrane of vesicle Conductivity λm 3.0×10−7 Sm-1

Relative permittivity εm 4.5

Resistivity ρm 3.3×106 Om

https://doi.org/10.1371/journal.pone.0262555.t001
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capacitance, Cm ~ 1 μFcm-1 and GUV radius R = 10 μm. Therefore, Eq (4) can be written as

follows:

Vm ¼ 1:5REcosy ð5Þ

The transmembrane voltage becomes maximum, when θ = 0. The rupture of GUVs occurs

in that membrane site where transmembrane potential has a maximum value. The maximum

value of Vm (= Vc) is called the ‘critical transmembrane voltage for breakdown’ of vesicle.

Then Eq (5) can be written as,

Vm ¼ Vc ¼ 1:5RE ð6Þ

The value of Vc depends on the values of R and E, and in this experiment Vc ranges from

0.60 to 1.17 V.

2.6 Observation technique combined with high speed imaging

To observe the dynamics of vesicles under external electric field, the GUVs were visualized by

an inverted phase contrast fluorescence microscope (Olympus IX-73, Japan) with a 20× objec-

tive. All experiments were performed at 25 ± 1˚C. The images of GUVs were found from the

recorded video using a charge-coupled device camera (Olympus DP22, Japan) with exposure

time 111 ms. The frames per second (fps) of the camera was 25. A mercury lamp was used to

acquire images of vesicles using the fast-digital camera. Phase contrast images were acquired

using the cellSens Entry (Ver. 1.16) PC software (Olympus Corporation, Japan). The fluores-

cence intensity in the inside of GUVs was found from the active gray scale video using cellSens

Dimension (Ver. 3.20) PC software (Olympus Corporation, Japan).

Fig 1. The electroporation processes. (A) Photograph of the electroporation setup with a scheme of a GUV between the electrodes (shown in the inset, not

drawn to scale). (B) A pulsed electric field and the illustration of the electric field induced rupture of GUVs under DOPG lipid mole fraction (XDOPG),

cholesterol (Chol) content and osmotic pressure (P).

https://doi.org/10.1371/journal.pone.0262555.g001
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3 Results

3.1 Estimation of electric field for the rupture of GUVs using COMSOL

simulation

Before going to quantify the electric field required for the rupture of vesicles, it was important

to perform the simulation using the similar condition as used in the experimental study. It is

mentioned earlier (see section 2.4) that the finite element-based software COMSOL Multiphy-

sics is used to conduct the simulation. Fig 2(A) shows a simulation result in which the electric

field was applied to a ‘single GUV’. In this case, 450 V potential was applied to the left sided

gold coated electrode while the right sided electrode acted as ground. It is to be noted that for a

certain value of electric potential with current density, the transmembrane voltage must be

given at its threshold value (Vc) for the rupture of GUVs. It was simulated the value of Vc for

R = 12 μm GUV using Eq (6). The values of electric field with corresponding θ (θ is the angle

between E and surface normal) is shown in Fig 2(B). It is very clear that the electric field

required for the rupture of GUVs increases with the increase of θ. Moreover, all these values of

E are responsible for rupturing of GUVs by creating pores in the membranes. If θ = 0, the rup-

ture occurs at E ~ 450 Vcm-1, while higher values of E are required for the rupture of GUVs if

θ changes from 0 to 90˚. The value of electric field required for the rupture of GUVs is also

dependent on the sizes of GUVs for a particular value of θ. As for example, E varied from 350

to 540 Vcm-1 for R = 10 to 15 μm at θ = 0. The 1/R dependent electric field required for vesicle

rupture is shown in Fig 2(C) for the case of θ = 0. The value of E increases almost linearly with

1/R. This simulation work provided an important information on how much electric fields are

needed for the rupture of GUVs in various experimental conditions.

3.2 Effect of pulsed electric field on the average time of rupture of GUVs

Here, the effect of pulsed electric field on a ‘single GUV’ has been investigated experimentally.

In this case, an electric field, E = 390 Vcm-1 was applied on a ‘single DOPG/DOPC (60/40)-

GUV’ (DOPG mole fraction XDOPG = 0.60) for a maximum time 60 s. At time t = 0 s (i.e.,

before applying E due to electroporation signal), the GUV shows spherical structure in an

inverted phase contrast image (Fig 3A(i)), and the structure remains unchanged until 10 s. The

initiation of rupture starts at 11 s and subsequently the GUV is broken (Fig 3A(i)). Such rup-

ture occurs due to the formation of pore in the membranes of vesicles as explained earlier

[43,65]. The time of rupture is defined as the time when the vesicles start to rupture. We per-

formed the similar experiment for 15−24 ‘single GUVs’. As for the presentation, we show only

Fig 2. Electric field (E) strength for the permeabilization of spherical shaped GUV. (A) Distribution of current density with surface potential for lipid

vesicle. The side color bar indicates the applied electric potential. (B) Electric field as a function of θ for R = 12 μm. (C) The 1/R dependent electric field for the

rupture of GUVs.

https://doi.org/10.1371/journal.pone.0262555.g002
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two ‘single’ GUVs’. Fig 3A(ii) represents the rupture of the 2nd GUV, in which it occurs at 35 s.

The rupture of several ‘single GUVs’ follows stochastic nature as shown in Fig 3(B), which

means that the rupture of 18 GUVs occurs stochastically at different times in the presence of a

fixed electric field (i.e., E = 390 Vcm-1). We calculated the average time (tr_avg) of the stochastic

rupture by fitting the data. The solid red line (see Fig 3(B)) shows the linearly fitted curve from

where tr_avg = 14.4 ± 4.7 s is obtained. The similar experiment for rupture was done for

E = 330, 350 and 410 Vcm-1 and calculated the tr_avg in each condition. The value of tr_avg

decreases with the increase of E as shown in Fig 3(C). For E = 330 Vcm-1, tr_avg = 44.33 ± 2.52 s

and for E = 410 Vcm-1, tr_avg = 7.33 ± 1.53 s.

The E dependent tr_avg (s) data is fitted using a linear equation, and we obtain tr_avg ~ 0 s

when E ~ 420 Vcm-1. These investigations give us the information that how applied electric

field influences the average time of the vesicle rupture. Interestingly, the values of external elec-

tric fields required for rupture of GUVs are very much consistent with the result as obtained in

COMSOL simulation (see section 3.1).

3.3 Time of applied electric field dependent probability of rupture of GUVs

In this section, we experimentally investigated the probability of rupture (Prup_t) until different

times (tEF) during the application of E. Fig 4 shows the dependence of Prup_t of DOPG/DOPC

(60/40)-GUVs for E = 330 Vcm-1 (■) until the time, tEF = 10, 20, 40 and 60 s. The probability

of rupture is defined as the number of ruptured GUVs divided by the total number of observed

GUVs. Suppose a number of 20 GUVs are investigated in 20 individual microchamber till a

particular time after applying a specific electric field. If 10 GUVs are ruptured, Prup_t = 10/

Fig 3. Stochastic rupture of several ‘single GUVs’ with phase contrast images and average rupture time after applying pulsed electric fields on the GUVs.

(A) Phase contrast images of rupture of (i) first and (ii) second ‘single DOPG/DOPC (60/40)-GUV’ at E = 390 Vcm-1. The field direction is shown with an

arrow in the left side. The numbers above in each image indicate the time in seconds after application of electric field. The time of rupture is indicated by the

asterisk (�). The white bar corresponds to a length of 10 μm. (B) The time of stochastic rupture in several single DOPG/DOPC (60/40)-GUVs (number = 18) at

E = 390 Vcm-1. (C) The E dependent average rupture time for DOPG/DOPC (60/40)-GUVs. The average values (tr_avg) and standard deviations are obtained

using 3 independent experiments, each with 15–24 GUVs for each E.

https://doi.org/10.1371/journal.pone.0262555.g003
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20 = 0.5. At first, we observe the results of E = 330 Vcm-1 in which the value of Prup_t increases

with the increase of tEF. At 10 s, Prup_t = 0.10 ± 0.01 and at 60 s, Prup_t = 0.38 ± 0.07. Similar

experiments were done for E = 350 Vcm-1 (�), E = 390 Vcm-1 (▲) and E = 410 Vcm-1 (◆) at

the same time slot. In all conditions of electric field, the Prup_t increases with tEF.

However, at a particular time slot, the value of Prup_t is higher for higher electric field. As

for example, at tEF = 10 s, Prup_t = 0.14 ± 0.05 for E = 350 Vcm-1 and 0.86 ± 0.05 for E = 410

Vcm-1. Moreover, at E = 410 Vcm-1, Prup_t = 1.0 at 40 s and above. These investigations clearly

show that the values of electric field required for rupture of GUVs are dependent on tEF.

3.4 Quantity of electric field for the rupture of GUVs containing various

surface charges

Here, we determine the electric field required for the rupture of GUVs prepared by various

anionic charges in their membranes. The anionic charge was varied by changing the DOPG

mole fraction (XDOPG) at 162 mM salt concentration in buffer. Electric field E = 420 Vcm-1

was applied on DOPG/DOPC (40/60)-GUV (here XDOPG = 0.40) for a maximum time 60 s.

The phase contrast image of a spherical shaped GUV is shown in Fig 5A(i), which was intact

until t = 15 s and then ruptured at t = 15.5 s. The same electric field was also applied on

DOPG/DOPC (10/90)-GUV (here XDOPG = 0.10) and rupture occurred at t = 32.5 s (Fig 5A

(ii)). Fig 5(B) shows the dependence of probability of rupture until 60 s, Prup_60s, for XDOPG =

0.60 (�), 0.40 (■), 0.20 (▼), 0.10 (⬢) and 0 (◆) for various E. In all cases of XDOPG, the value of

Prup_60s increases with E. However, as the value of XDOPG decreases from 0.60 to 0, the electric

Fig 4. The time of applied electric field dependent probability of rupture of DOPG/DOPC (60/40)-GUVs until

different time slots. Average and standard deviation are calculated from 3 independent experiments using 15–24

GUVs for each case.

https://doi.org/10.1371/journal.pone.0262555.g004
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field required for the similar value of Prup_60s is larger. As an example, Prup_60s = 0.87 ± 0.05 for

XDOPG = 0.60 at E = 390 Vcm-1 whereas Prup_60s = 0.86 ± 0.12 for XDOPG = 0.20 at E = 430

Vcm-1. It has also been investigated the XDOPG dependence of Prup_60s for a specific electric

field. Fig 5(C) shows the Prup_60s with XDOPG for E = 430 Vcm-1 in which Prup_60s = 0.16 ± 0.06

at XDOPG = 0 is much lower than Prup_60s = 0.86 ± 0.12 at XDOPG = 0.20. The value of Prup_60s =

1.0 at XDOPG = 0.40 and 0.60 for the same electric field.

In addition, we measured the average time of rupture (tr_avg) for XDOPG = 0.60 (�), 0.40 (■),

0.20 (▼), 0.10 (⬢) and 0 (◆) for various E as shown in Fig 5(D). The values of tr_avg decrease

with the increases of E for all XDOPG. As an example, for XDOPG = 0.20, tr_avg = 49.00 ± 2.00 s at

E = 330 Vcm-1
, tr_avg = 34.67 ± 1.53 s at E = 370 Vcm-1, tr_avg = 20.67 ± 1.53 s at E = 410 Vcm-1

and tr_avg = 6.33 ± 0.58 s at E = 430 Vcm-1. Similar tr_avg can be found by decreasing the electric

fields for various XDOPG. For better understanding, the value of tr_avg = 34.67 ± 1.53 s at

E = 370 Vcm-1 for XDOPG = 0.40 is almost similar to tr_avg = 34.33 ± 2.52 s at E = 420 Vcm-1 for

XDOPG = 0.10 and also tr_avg = 34.33 ± 3.79 s at E = 470 Vcm-1 for XDOPG = 0. These investiga-

tions suggest that the mechanical stability of vesicles becomes weaker at higher surface charges

in membranes. The electric field dependent Prup_60s, Vc and tr_avg for various XDOPG are pre-

sented in Table 2.

3.5 Quantity of electric field for the rupture of GUVs containing various

concentrations of cholesterol in their membranes

So far, we investigated how much electric field is required for the rupture of GUVs under vari-

ous surface charges of membranes. Now the electric field is quantified for the rupture of vesi-

cles containing various concentrations of cholesterol in their membranes. The value of E = 470

Vcm-1 was applied on a ‘single DOPG/DOPC/Chol (46/39/15)-GUV’ (here cholesterol mole

fraction, Chol = 0.15) for a maximum time 60 s. In this case, the inside of vesicle was 1 mM cal-

cein with 0.10 M sucrose. Prior to apply the pulsed electric field, the inside of GUV shows

white color in a fluorescence microscopic image (Fig 6(A)) at 0 s due to this calcein solution.

Fig 5. Electric field dependent probability of rupture and the average time of rupture of GUVs containing various surface charges in their membranes.

(A) Phase contrast images of rupture of (i) a ‘single DOPG/DOPC (40/60)-GUV’ at E = 420 Vcm-1 and (ii) a ‘single DOPG/DOPC (10/90)-GUV’ at E = 420

Vcm-1. The field direction is shown with an arrow in the left side. The numbers above in each image indicate the time in seconds after application of electric

field. The time of rupture is indicated by the asterisk (�). The yellow bar corresponds to a length of 10 μm. (B) The electric field dependent Prup_60s for XDOPG =

0.60 (�), 0.40 (■), 0.20 (▼), 0.10 (⬢) and 0 (◆). (C) The XDOPG dependent Prup_60s at E = 430 Vcm-1. (D) The electric field dependent average rupture time for

XDOPG = 0.60 (�), 0.40 (■), 0.20 (▼), 0.10 (⬢) and 0 (◆). Average and standard deviation are calculated from 3 independent experiments using 15–24 GUVs for

each case.

https://doi.org/10.1371/journal.pone.0262555.g005
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During the application of electric field, the spherical shaped GUV starts to rupture at 10.5 s

and subsequently a complete rupture occurs at 13 s (Fig 6(A)). The time dependent fluores-

cence intensity of the same GUV is shown in Fig 6(B). This graph clearly indicates two-stage

phenomena; one is intact state of GUV and another is rupture state. Moreover, it gives the

exact time of the rupture of GUVs. The abruptly decreasing line of intensity denotes the rup-

ture state. Fig 6(C) shows the dependence of Prup_60s for Chol = 0 (�), 0.15 (■), 0.29 (▼) and

0.40 (⬢) for various E. At a fixed cholesterol mole fraction, the value of Prup_60s increases with

the increase of E. However, as the cholesterol increases from 0 to 0.40, the electric field

required for the similar Prup_60s value is larger. As an example, Prup_60s = 0.45 ± 0.07 for

Chol = 0.15 at E = 435 Vcm-1 whereas Prup_60s = 0.48 ± 0.05 for Chol = 0.29 at E = 520 Vcm-1.

Fig 6(D) shows the Prup_60s with various cholesterols for E = 410, 500 and 550 Vcm-1. It is

observed that at Chol = 0.15 the value of Prup_60s = 0.20 ± 0.09 is much lower than Prup_60s =

1.0. It means the Prup_60s = 1.0 when E increases from 410 to 500 Vcm-1. Similar tendency is

followed for other cholesterol concentrations. These investigations clearly show that as the

cholesterol content increases in the membranes of vesicles, the mechanical stability become

increases.

We also determine the average time of rupture (tr_avg) for Chol = 0 (�), 0.15 (■), 0.29 (▼)

and 0.40 (⬢) for various E (Fig 6(E)). The value of tr_avg decreases with the increases of E for

each Chol. As for example, tr_avg = 44.00 ± 2.65 s at E = 410 Vcm-1
, tr_avg = 35.00 ± 2.00 s at

E = 435 Vcm-1, tr_avg = 22.83 ± 3.82 s at E = 470 Vcm-1 and tr_avg = 9.33 ± 1.53 s at E = 500

Vcm-1 for Chol = 0.15. The tendency of decreasing the value of tr_avg with electric field for vari-

ous cholesterol containing membranes is similar. The electric field dependent Prup_60s, Vc and

tr_avg for various cholesterol mole fraction are presented in Table 2.

3.6. Quantity of electric field for the rupture of GUVs under various

osmotic pressures

The mechanical stability is greatly influenced by the surface charges and the cholesterol con-

tent in the membranes of vesicles as observed in sections 3.4 and 3.5. In this section, we quan-

tify the electric field for the rupture of DOPG/DOPC (40/60)-GUVs under different osmotic

Table 2. The electric field dependent probability of rupture and average time for various surface charges, cholesterol contents and osmotic pressures (Both XDOPG

= 0.60 and Chol = 0 are same membrane. Again, both XDOPG = 0.40 and XDOPG = 0.40 with ΔC0 = 0 mOsmL-1 are same membrane).

Electric field E (Vcm-

1)

Critical transmembrane voltage, Vc

(V)

Membrane composition Probability of rupture,

Prup_60s

Average time of rupture, tr_avg

(s)

410 0.77 XDOPG = 0.60 1.0 7.33 ± 1.53

430 0.83 XDOPG = 0.40 6.33 ± 0.58

445 0.84 XDOPG = 0.20 9.47 ± 0.55

455 0.86 XDOPG = 0.10 12.00 ± 3.00

500 0.94 XDOPG = 0 11.67 ± 2.08

410 0.77 Chol = 0 1.0 7.33 ± 1.53

500 0.94 Chol = 0.15 9.33 ± 1.53

575 1.09 Chol = 0.29 12.33 ± 2.08

630 1.17 Chol = 0.40 13.00 ± 1.00

430 0.83 XDOPG = 0.40, ΔC0 = 0 mOsmL-

1
1.0 6.33 ± 0.58

370 0.71 XDOPG = 0.40, ΔC0 = 13

mOsmL-1
8.67 ± 2.02

300 0.60 XDOPG = 0.40, ΔC0 = 17

mOsmL-1
10.00 ± 2.65

https://doi.org/10.1371/journal.pone.0262555.t002
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pressures (P). The osmolarity of the inside sucrose of GUVs,C0
in was 388 mOsmL-1. When

GUVs are transferred to a hypotonic solution of concentration Cout (mOsmL-1), osmotic pres-

sure is induced in the GUV, which increases the radius of the membrane at swelling equilib-

rium. The osmolarity difference at an initial condition between the inside and the outside of

GUV becomes DC0 ¼ C0
in � Cout. We fixed the osmolarity of glucose solution Cout = 375 and

Fig 6. Electric field dependent probability of rupture and the average time of rupture of GUVs containing various cholesterol in their membranes. (A)

Fluorescence images of rupture of a ‘single DOPG/DOPC/Chol (46/39/15)-GUV’ at E = 470 Vcm-1. The field direction is shown with an arrow in the left side

of image. The numbers above in each image indicate the time in seconds after applying E. The yellow scale bar is 10 μm. The time of rupture is indicated by

asterisk mark (�). (B) The time dependent normalized fluorescence intensity of GUV as shown in (a). (C) The electric field dependent Prup_60s for Chol = 0 (�),

0.15 (■), 0.29 (▼) and 0.40 (⬢). (D) The cholesterol dependent Prup_60s at the values of E = 410 (◆), 500 (▼) and 550 Vcm-1 (⬟). (E) The electric field

dependent average rupture time, tr_avg for Chol = 0 (�), 0.15 (■), 0.29 (▼) and 0.40 (⬢). Average and standard deviation are calculated from 3 independent

experiments using 15–24 GUVs for each case.

https://doi.org/10.1371/journal.pone.0262555.g006
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371 mOsmL-1, and hence the corresponding ΔC0 = 13 and 17 mOsmL-1. The detail description

of maintaining the osmolarity difference is reported earlier [60]. The phase contrast images of

GUV at E = 300 Vcm-1 under 17 and 13 mOsmL-1 are shown in Fig 7A(i) and 7A(ii), respec-

tively. The corresponding GUVs became rupture at 9 and 28 s. Fig 7(B) shows the electric field

dependent Prup_60s for ΔC0 = 0 (■), 13 (▲) and 17 mOsmL-1 (⬟). As the value of ΔC0 increases,

the electric field required for the similar Prup_60s is quite smaller. As an example, Prup_60s =

0.87 ± 0.04 at ΔC0 = 0 for E = 410 Vcm-1 whereas Prup_60s = 0.81 ± 0.06 at ΔC0 = 13 mOsmL-1

for E = 330 Vcm-1 and also Prup_60s = 0.82 ± 0.05 at ΔC0 = 17 mOsmL-1 for E = 270 Vcm-1. In

all conditions, the value of Prup_60s increases with E. Fig 7(C) shows the Prup_60s for E = 370 (■)

and 300 Vcm-1 (�) at different ΔC0. It is found that for E = 300 Vcm-1, Prup_60s = 0.48 ± 0.04 at

ΔC0 = 0 is much lower than Prup_60s = 1.0 at ΔC0 = 13 mOsmL-1. Besides, Prup_60s = 1.0 can be

obtained by decreasing E from 370 to 300 Vcm-1 at ΔC0 = 13 mOsmL-1 (Fig 7(C)).

The value of tr_avg for ΔC0 = 0 (■), 13 (▲) and 17 mOsmL-1 (⬟) for various E are shown in

Fig 7(D). The tr_avg decreases with the increases of E for each ΔC0. As for example, tr_avg =

34.00 ± 4.00 s at E = 300 Vcm-1
, tr_avg = 16.67 ± 3.06 s at E = 330 Vcm-1 and tr_avg = 8.67 ± 2.02

s at E = 370 Vcm-1 under ΔC0 = 13 mOsmL-1. However, the tr_avg = 20.67 ± 1.53 s at E = 410

Vcm-1 for ΔC0 = 0 is similar to the value of tr_avg = 19.00 ± 3.61 s at E = 270 Vcm-1 for ΔC0 = 17

mOsmL-1. These investigations suggest that a lower electric field is required for the rupture of

GUVs for higher osmotic pressure. The electric field dependent Prup_60s, Vc and tr_avg for vari-

ous osmotic pressures are presented in Table 2.

4 Discussion

At first, we performed the COMSOL simulation for estimating the electric field required for

the vesicle rupture. Then, we quantify the electric field for different conditions. The rupture of

vesicles occurs when the transmembrane voltage is reached to a threshold value (Vc), that is,

when the externally applied electric field is above the electroporation threshold value. Electric

Fig 7. Electric field dependent probability of rupture and the average time of rupture of GUVs in the presence of various osmotic pressures. (A) Phase

contrast images of rupture of (i) a ‘single DOPG/DOPC (40/60)-GUV’ at E = 300 Vcm-1 under 17 mOsmL-1 and (ii) a ‘single DOPG/DOPC (40/60)-GUV’ at

E = 300 Vcm-1 under 13 mOsmL-1. The field direction is shown with an arrow in the left side. The numbers above in each image indicate the time in seconds

after application of electric field. The time of rupture is indicated by the asterisk (•). The yellow bar corresponds to a length of 10 μm. (B) The electric field

dependent Prup_60s for ΔC0 = 0 (■), 13 (▲) and 17 mOsmL-1 (⬟). (C) The ΔC0 dependent Prup_60s at E = 370 (■) and 300 Vcm-1 (�). (D) The electric field

dependent tr_avg for ΔC0 = 0 (■), 13 (▲) and 17 mOsmL-1 (⬟). Average and standard deviation are calculated from 3 independent experiments using 15–24

GUVs in each case.

https://doi.org/10.1371/journal.pone.0262555.g007
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field distribution, which is established in lipid membranes when electric current passes

through the GUV, is difficult to predict, especially when the targeted vesicle has different con-

ditions. For effective prediction of electric field strength and distribution, we performed the

simulation study using the similar experimental condition (Fig 2). The electroporation

depends on the effective electric field, which is directly related to the angle between the field

and the membrane surface normal. The simulation results also show that the critical electric

field strength for vesicle rupture depends linearly on reciprocal of the radius of GUVs, which

agrees with Eq (5).

In the experimental study, for getting Prup_60s = 1.0, the value of E changes from 500 to 410

Vcm-1 by changing the XDOPG from 0 to 0.60. On the other hand, for getting the same Prup_60s,

the value of E changes from 410 to 630 Vcm-1 by changing the cholesterol mole fraction from

0 to 0.40. In addition, the value of E changes from 430 to 300 Vcm-1 by changing the ΔC0 from

0 to 17 mOsmL-1. A numerical calculation regardless of the vesicle geometry was investigated

by applying the electric field 600 Vcm-1 in which Vc was 0.80 V [66]. In our simulation, the

electric field for rupture of GUV is obtained 350 to 540 Vcm-1 at θ = 0, which support that

numerical calculation.

The coarse-grained MARTINI force field simulations indicated the instability of lipid mem-

branes at higher electric fields [67]. With the increase of electric field, the undulation ampli-

tude increases and consequently decreases the membrane density, which leads to the

formation of pores in the membranes of GUVs. Such pores appear at the highly curved regions

of the membranes. The formation of pore reorients the water-bilayer interface. The driving

mechanism for the instability of membranes is related to the well-known fact that, when an

electric field is applied, the low-energy configuration corresponds to the one where the inter-

face aligns parallel to the applied field [68]. As the higher pulsed electric field creates instability

of membranes, the electric field dependent average time for rupture (rupture occurs when the

radius of pores increases to infinite within a very short time) of GUVs is lower, that supported

our investigations (Fig 3(C)).

The intramembrane electrostatic effect due to the anionic lipids in the membranes destabi-

lize the vesicles [69]. The electrostatic effect became prominent as the anionic charged lipids

were added to the membranes [70–72]. Again, as the anionic lipid mole fraction increases in

the membranes, the repulsive force between the lipid molecules also increases and hence

increases the electrostatic effect [73]. With the increase of electrostatic interaction, the proba-

bility of rupture increases and consequently the average time of rupture decreases, supporting

our investigation (Fig 5). Hence, membrane electrostatics play vital role for the processes of

rupture of lipid vesicles.

Recently, it has been reported that as the cholesterol content increased in the membranes of

DOPC vesicles, the bending rigidity increased several folds [59]. The results also indicated the

local stiffening in DOPC membranes due to the addition of cholesterol. Buckling simulations

on DOPC membranes also indicated the increase of bending rigidity [74]. Therefore, it can be

reasonably considered that the membrane instability in cholesterol containing membranes

due to electric field became lower compared to the membranes without cholesterol. Therefore,

higher electric field is required for the rupture of GUVs as the cholesterol increases in the

membranes that follows our investigations (Fig 6).

The electroporation in GUVs under various osmotic pressures was reported earlier [60],

where we calculated the membrane tension generated by the osmotic pressures. In present

report, we have aimed to quantify the pulsed electric field for the rupture of GUVs with various

surface charges, cholesterols and osmotic pressures. It is well reported that the membrane ten-

sion due to electric field (σe) is connected with transmembrane voltage (Vm) [75,76] by

se1V2
m. Since, Vm1E, hence σe1E2. Osmotic swelling creates lateral membrane tension (σos)
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in the GUVs [77,78]. Therefore, the total tension in the membrane of GUVs is σt = σos + σe (if

there is no osmotic effect, σt = σe). With the increase of osmotic pressure, the value of σt

increases, and therefore, the stability of membranes decreases. Again, the probability of rup-

ture is defined as follows [79]:

Prup t ¼ 1 � expð� kptEFÞ ð7Þ

where, kp is the rate constant of vesicle rupture. Generally, the rate constant for any reaction

can be expressed by the following well-known Arrhenius equation [80]:

kp ¼ Aexpð� Ub=kBTÞ ð8Þ

where, A is a constant whose unit is s-1, kB is the Boltzmann constant and T is the absolute tem-

perature. According to the classical theory of pore formation in lipid bilayers, the energy bar-

rier of a prepore at a critical radius is defined as follows [79,81]:

Ubðr; stÞ ¼
pG2

st þ B
ð9Þ

where, B is the electrostatic term for charged lipids in membranes [72], Γ is the line tension of

a prepore and r is the prepore radius.

As the anionic lipid in membranes increases, the repulsive force between the anionic lipids

becomes stronger. Such stronger effect increases the value of B and decreases the value of Ub

(see Eq 9), which ultimately increases the probability of rupture (using Eqs 7 and 8) as

obtained in Fig 5. Again, several reports indicated that the increase of cholesterol increase the

value of Γ [82–85]. The higher is the value of Γ, the lower the value of Ub, which eventually

decreases the probability of rupture as found in Fig 6. Lastly, with the increase of osmotic gra-

dient, the value of σos in σt increases. With the increased σos, the value of Ub decreases, and

consequently increases the rupture probability. This explanation is consistent with the result

mentioned in Fig 7. Therefore, the above discussion supports our investigations.

5 Conclusions

We quantify the pulsed electric field required for the rupture of GUVs along with the behavior

of such vesicles exposed to electric field. The optically detectable rupture is identified in the

phase contrast and fluorescence images due to the disruption in membrane integrity. The

amount of electric field required for vesicle rupture depends on the surface charges, cholesterol

contents and the osmotic pressures. Addition of anionic lipid in membranes requires relatively

lower electric field for the rupture of GUVs. In contrast, higher cholesterol content requires

relatively higher electric field for vesicle rupture. Again, the value of applied electric field for

vesicle rupture is greatly influenced by the osmotic gradient, indicating that higher gradient

required lower electric field. Such differences are well explained by the mechanical stability of

membranes of vesicles. The pore formation in the membranes of vesicles and consequently the

rupture of vesicles are explained by the well accepted classical theory of pore formation in lipid

bilayers. These investigations provide quantitative and valuable information on the electric

field dependent rupture of GUVs under various conditions. This study serves as a guideline

for further experiments in this area and offers an entrancing biophysical description of the

phenomenon of electroporation in vesicles together with the insight of biological

consequences.
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